/*
* Copyright © 2011 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "main/core.h"
#include "ir.h"
#include "linker.h"
#include "ir_uniform.h"
#include "glsl_symbol_table.h"
#include "program/hash_table.h"
#include "program.h"
static inline unsigned int
align(unsigned int a, unsigned int align)
{
return (a + align - 1) / align * align;
}
/**
* \file link_uniforms.cpp
* Assign locations for GLSL uniforms.
*
* \author Ian Romanick <ian.d.romanick@intel.com>
*/
/**
* Count the backing storage requirements for a type
*/
static unsigned
values_for_type(const glsl_type *type)
{
if (type->is_sampler()) {
return 1;
} else if (type->is_array() && type->fields.array->is_sampler()) {
return type->array_size();
} else {
return type->component_slots();
}
}
void
uniform_field_visitor::process(ir_variable *var)
{
const glsl_type *t = var->type;
/* Only strdup the name if we actually will need to modify it. */
if (t->is_record() || (t->is_array() && t->fields.array->is_record())) {
char *name = ralloc_strdup(NULL, var->name);
recursion(var->type, &name, strlen(name));
ralloc_free(name);
} else {
this->visit_field(t, var->name);
}
}
void
uniform_field_visitor::recursion(const glsl_type *t, char **name,
size_t name_length)
{
/* Records need to have each field processed individually.
*
* Arrays of records need to have each array element processed
* individually, then each field of the resulting array elements processed
* individually.
*/
if (t->is_record()) {
for (unsigned i = 0; i < t->length; i++) {
const char *field = t->fields.structure[i].name;
size_t new_length = name_length;
/* Append '.field' to the current uniform name. */
ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field);
recursion(t->fields.structure[i].type, name, new_length);
}
} else if (t->is_array() && t->fields.array->is_record()) {
for (unsigned i = 0; i < t->length; i++) {
size_t new_length = name_length;
/* Append the subscript to the current uniform name */
ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i);
recursion(t->fields.array, name, new_length);
}
} else {
this->visit_field(t, *name);
}
}
/**
* Class to help calculate the storage requirements for a set of uniforms
*
* As uniforms are added to the active set the number of active uniforms and
* the storage requirements for those uniforms are accumulated. The active
* uniforms are added the the hash table supplied to the constructor.
*
* If the same uniform is added multiple times (i.e., once for each shader
* target), it will only be accounted once.
*/
class count_uniform_size : public uniform_field_visitor {
public:
count_uniform_size(struct string_to_uint_map *map)
: num_active_uniforms(0), num_values(0), num_shader_samplers(0),
num_shader_uniform_components(0), map(map)
{
/* empty */
}
void start_shader()
{
this->num_shader_samplers = 0;
this->num_shader_uniform_components = 0;
}
/**
* Total number of active uniforms counted
*/
unsigned num_active_uniforms;
/**
* Number of data values required to back the storage for the active uniforms
*/
unsigned num_values;
/**
* Number of samplers used
*/
unsigned num_shader_samplers;
/**
* Number of uniforms used in the current shader
*/
unsigned num_shader_uniform_components;
private:
virtual void visit_field(const glsl_type *type, const char *name)
{
assert(!type->is_record());
assert(!(type->is_array() && type->fields.array->is_record()));
/* Count the number of samplers regardless of whether the uniform is
* already in the hash table. The hash table prevents adding the same
* uniform for multiple shader targets, but in this case we want to
* count it for each shader target.
*/
const unsigned values = values_for_type(type);
if (type->contains_sampler()) {
this->num_shader_samplers +=
type->is_array() ? type->array_size() : 1;
} else {
/* Accumulate the total number of uniform slots used by this shader.
* Note that samplers do not count against this limit because they
* don't use any storage on current hardware.
*/
this->num_shader_uniform_components += values;
}
/* If the uniform is already in the map, there's nothing more to do.
*/
unsigned id;
if (this->map->get(id, name))
return;
this->map->put(this->num_active_uniforms, name);
/* Each leaf uniform occupies one entry in the list of active
* uniforms.
*/
this->num_active_uniforms++;
this->num_values += values;
}
struct string_to_uint_map *map;
};
/**
* Class to help parcel out pieces of backing storage to uniforms
*
* Each uniform processed has some range of the \c gl_constant_value
* structures associated with it. The association is done by finding
* the uniform in the \c string_to_uint_map and using the value from
* the map to connect that slot in the \c gl_uniform_storage table
* with the next available slot in the \c gl_constant_value array.
*
* \warning
* This class assumes that every uniform that will be processed is
* already in the \c string_to_uint_map. In addition, it assumes that
* the \c gl_uniform_storage and \c gl_constant_value arrays are "big
* enough."
*/
class parcel_out_uniform_storage : public uniform_field_visitor {
public:
parcel_out_uniform_storage(struct string_to_uint_map *map,
struct gl_uniform_storage *uniforms,
union gl_constant_value *values)
: map(map), uniforms(uniforms), next_sampler(0), values(values)
{
memset(this->targets, 0, sizeof(this->targets));
}
void start_shader()
{
this->shader_samplers_used = 0;
this->shader_shadow_samplers = 0;
}
void set_and_process(struct gl_shader_program *prog,
struct gl_shader *shader,
ir_variable *var)
{
ubo_var = NULL;
if (var->uniform_block != -1) {
struct gl_uniform_block *block =
&shader->UniformBlocks[var->uniform_block];
ubo_block_index = -1;
for (unsigned i = 0; i < prog->NumUniformBlocks; i++) {
if (!strcmp(prog->UniformBlocks[i].Name,
shader->UniformBlocks[var->uniform_block].Name)) {
ubo_block_index = i;
break;
}
}
assert(ubo_block_index != -1);
ubo_var_index = var->location;
ubo_var = &block->Uniforms[var->location];
ubo_byte_offset = ubo_var->Offset;
}
process(var);
}
struct gl_uniform_buffer_variable *ubo_var;
int ubo_block_index;
int ubo_var_index;
int ubo_byte_offset;
private:
virtual void visit_field(const glsl_type *type, const char *name)
{
assert(!type->is_record());
assert(!(type->is_array() && type->fields.array->is_record()));
unsigned id;
bool found = this->map->get(id, name);
assert(found);
if (!found)
return;
/* If there is already storage associated with this uniform, it means
* that it was set while processing an earlier shader stage. For
* example, we may be processing the uniform in the fragment shader, but
* the uniform was already processed in the vertex shader.
*/
if (this->uniforms[id].storage != NULL) {
/* If the uniform already has storage set from another shader stage,
* mark the samplers used for this shader stage.
*/
if (type->contains_sampler()) {
const unsigned count = MAX2(1, this->uniforms[id].array_elements);
const unsigned shadow = (type->is_array())
? type->fields.array->sampler_shadow : type->sampler_shadow;
for (unsigned i = 0; i < count; i++) {
const unsigned s = this->uniforms[id].sampler + i;
this->shader_samplers_used |= 1U << s;
this->shader_shadow_samplers |= shadow << s;
}
}
return;
}
const glsl_type *base_type;
if (type->is_array()) {
this->uniforms[id].array_elements = type->length;
base_type = type->fields.array;
} else {
this->uniforms[id].array_elements = 0;
base_type = type;
}
if (base_type->is_sampler()) {
this->uniforms[id].sampler = this->next_sampler;
/* Increment the sampler by 1 for non-arrays and by the number of
* array elements for arrays.
*/
this->next_sampler += MAX2(1, this->uniforms[id].array_elements);
const gl_texture_index target = base_type->sampler_index();
const unsigned shadow = base_type->sampler_shadow;
for (unsigned i = this->uniforms[id].sampler
; i < MIN2(this->next_sampler, MAX_SAMPLERS)
; i++) {
this->targets[i] = target;
this->shader_samplers_used |= 1U << i;
this->shader_shadow_samplers |= shadow << i;
}
} else {
this->uniforms[id].sampler = ~0;
}
this->uniforms[id].name = ralloc_strdup(this->uniforms, name);
this->uniforms[id].type = base_type;
this->uniforms[id].initialized = 0;
this->uniforms[id].num_driver_storage = 0;
this->uniforms[id].driver_storage = NULL;
this->uniforms[id].storage = this->values;
if (this->ubo_var) {
this->uniforms[id].block_index = this->ubo_block_index;
unsigned alignment = type->std140_base_alignment(ubo_var->RowMajor);
this->ubo_byte_offset = align(this->ubo_byte_offset, alignment);
this->uniforms[id].offset = this->ubo_byte_offset;
this->ubo_byte_offset += type->std140_size(ubo_var->RowMajor);
if (type->is_array()) {
this->uniforms[id].array_stride =
align(type->fields.array->std140_size(ubo_var->RowMajor), 16);
} else {
this->uniforms[id].array_stride = 0;
}
if (type->is_matrix() ||
(type->is_array() && type->fields.array->is_matrix())) {
this->uniforms[id].matrix_stride = 16;
this->uniforms[id].row_major = ubo_var->RowMajor;
} else {
this->uniforms[id].matrix_stride = 0;
this->uniforms[id].row_major = false;
}
} else {
this->uniforms[id].block_index = -1;
this->uniforms[id].offset = -1;
this->uniforms[id].array_stride = -1;
this->uniforms[id].matrix_stride = -1;
this->uniforms[id].row_major = false;
}
this->values += values_for_type(type);
}
struct string_to_uint_map *map;
struct gl_uniform_storage *uniforms;
unsigned next_sampler;
public:
union gl_constant_value *values;
gl_texture_index targets[MAX_SAMPLERS];
/**
* Mask of samplers used by the current shader stage.
*/
unsigned shader_samplers_used;
/**
* Mask of samplers used by the current shader stage for shadows.
*/
unsigned shader_shadow_samplers;
};
/**
* Merges a uniform block into an array of uniform blocks that may or
* may not already contain a copy of it.
*
* Returns the index of the new block in the array.
*/
int
link_cross_validate_uniform_block(void *mem_ctx,
struct gl_uniform_block **linked_blocks,
unsigned int *num_linked_blocks,
struct gl_uniform_block *new_block)
{
for (unsigned int i = 0; i < *num_linked_blocks; i++) {
struct gl_uniform_block *old_block = &(*linked_blocks)[i];
if (strcmp(old_block->Name, new_block->Name) == 0) {
if (old_block->NumUniforms != new_block->NumUniforms) {
return -1;
}
for (unsigned j = 0; j < old_block->NumUniforms; j++) {
if (strcmp(old_block->Uniforms[j].Name,
new_block->Uniforms[j].Name) != 0)
return -1;
if (old_block->Uniforms[j].Offset !=
new_block->Uniforms[j].Offset)
return -1;
if (old_block->Uniforms[j].RowMajor !=
new_block->Uniforms[j].RowMajor)
return -1;
}
return i;
}
}
*linked_blocks = reralloc(mem_ctx, *linked_blocks,
struct gl_uniform_block,
*num_linked_blocks + 1);
int linked_block_index = (*num_linked_blocks)++;
struct gl_uniform_block *linked_block = &(*linked_blocks)[linked_block_index];
memcpy(linked_block, new_block, sizeof(*new_block));
linked_block->Uniforms = ralloc_array(*linked_blocks,
struct gl_uniform_buffer_variable,
linked_block->NumUniforms);
memcpy(linked_block->Uniforms,
new_block->Uniforms,
sizeof(*linked_block->Uniforms) * linked_block->NumUniforms);
for (unsigned int i = 0; i < linked_block->NumUniforms; i++) {
struct gl_uniform_buffer_variable *ubo_var =
&linked_block->Uniforms[i];
ubo_var->Name = ralloc_strdup(*linked_blocks, ubo_var->Name);
}
return linked_block_index;
}
/**
* Walks the IR and update the references to uniform blocks in the
* ir_variables to point at linked shader's list (previously, they
* would point at the uniform block list in one of the pre-linked
* shaders).
*/
static bool
link_update_uniform_buffer_variables(struct gl_shader *shader)
{
foreach_list(node, shader->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->uniform_block == -1))
continue;
assert(var->mode == ir_var_uniform);
bool found = false;
for (unsigned i = 0; i < shader->NumUniformBlocks; i++) {
for (unsigned j = 0; j < shader->UniformBlocks[i].NumUniforms; j++) {
if (!strcmp(var->name, shader->UniformBlocks[i].Uniforms[j].Name)) {
found = true;
var->uniform_block = i;
var->location = j;
break;
}
}
if (found)
break;
}
assert(found);
}
return true;
}
void
link_assign_uniform_block_offsets(struct gl_shader *shader)
{
for (unsigned b = 0; b < shader->NumUniformBlocks; b++) {
struct gl_uniform_block *block = &shader->UniformBlocks[b];
unsigned offset = 0;
for (unsigned int i = 0; i < block->NumUniforms; i++) {
struct gl_uniform_buffer_variable *ubo_var = &block->Uniforms[i];
const struct glsl_type *type = ubo_var->Type;
unsigned alignment = type->std140_base_alignment(ubo_var->RowMajor);
unsigned size = type->std140_size(ubo_var->RowMajor);
offset = align(offset, alignment);
ubo_var->Offset = offset;
offset += size;
}
/* From the GL_ARB_uniform_buffer_object spec:
*
* "For uniform blocks laid out according to [std140] rules,
* the minimum buffer object size returned by the
* UNIFORM_BLOCK_DATA_SIZE query is derived by taking the
* offset of the last basic machine unit consumed by the
* last uniform of the uniform block (including any
* end-of-array or end-of-structure padding), adding one,
* and rounding up to the next multiple of the base
* alignment required for a vec4."
*/
block->UniformBufferSize = align(offset, 16);
}
}
void
link_assign_uniform_locations(struct gl_shader_program *prog)
{
ralloc_free(prog->UniformStorage);
prog->UniformStorage = NULL;
prog->NumUserUniformStorage = 0;
if (prog->UniformHash != NULL) {
prog->UniformHash->clear();
} else {
prog->UniformHash = new string_to_uint_map;
}
/* Uniforms that lack an initializer in the shader code have an initial
* value of zero. This includes sampler uniforms.
*
* Page 24 (page 30 of the PDF) of the GLSL 1.20 spec says:
*
* "The link time initial value is either the value of the variable's
* initializer, if present, or 0 if no initializer is present. Sampler
* types cannot have initializers."
*/
memset(prog->SamplerUnits, 0, sizeof(prog->SamplerUnits));
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
if (!link_update_uniform_buffer_variables(prog->_LinkedShaders[i]))
return;
}
/* First pass: Count the uniform resources used by the user-defined
* uniforms. While this happens, each active uniform will have an index
* assigned to it.
*
* Note: this is *NOT* the index that is returned to the application by
* glGetUniformLocation.
*/
count_uniform_size uniform_size(prog->UniformHash);
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
/* Reset various per-shader target counts.
*/
uniform_size.start_shader();
foreach_list(node, prog->_LinkedShaders[i]->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != ir_var_uniform))
continue;
/* FINISHME: Update code to process built-in uniforms!
*/
if (strncmp("gl_", var->name, 3) == 0)
continue;
uniform_size.process(var);
}
prog->_LinkedShaders[i]->num_samplers = uniform_size.num_shader_samplers;
prog->_LinkedShaders[i]->num_uniform_components =
uniform_size.num_shader_uniform_components;
}
const unsigned num_user_uniforms = uniform_size.num_active_uniforms;
const unsigned num_data_slots = uniform_size.num_values;
/* On the outside chance that there were no uniforms, bail out.
*/
if (num_user_uniforms == 0)
return;
struct gl_uniform_storage *uniforms =
rzalloc_array(prog, struct gl_uniform_storage, num_user_uniforms);
union gl_constant_value *data =
rzalloc_array(uniforms, union gl_constant_value, num_data_slots);
#ifndef NDEBUG
union gl_constant_value *data_end = &data[num_data_slots];
#endif
parcel_out_uniform_storage parcel(prog->UniformHash, uniforms, data);
for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
if (prog->_LinkedShaders[i] == NULL)
continue;
/* Reset various per-shader target counts.
*/
parcel.start_shader();
foreach_list(node, prog->_LinkedShaders[i]->ir) {
ir_variable *const var = ((ir_instruction *) node)->as_variable();
if ((var == NULL) || (var->mode != ir_var_uniform))
continue;
/* FINISHME: Update code to process built-in uniforms!
*/
if (strncmp("gl_", var->name, 3) == 0)
continue;
parcel.set_and_process(prog, prog->_LinkedShaders[i], var);
}
prog->_LinkedShaders[i]->active_samplers = parcel.shader_samplers_used;
prog->_LinkedShaders[i]->shadow_samplers = parcel.shader_shadow_samplers;
}
assert(sizeof(prog->SamplerTargets) == sizeof(parcel.targets));
memcpy(prog->SamplerTargets, parcel.targets, sizeof(prog->SamplerTargets));
#ifndef NDEBUG
for (unsigned i = 0; i < num_user_uniforms; i++) {
assert(uniforms[i].storage != NULL);
}
assert(parcel.values == data_end);
#endif
prog->NumUserUniformStorage = num_user_uniforms;
prog->UniformStorage = uniforms;
link_set_uniform_initializers(prog);
return;
}