//===-- lib/adddf3.c - Double-precision addition ------------------*- C -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements double-precision soft-float addition with the IEEE-754
// default rounding (to nearest, ties to even).
//
//===----------------------------------------------------------------------===//
#define DOUBLE_PRECISION
#include "fp_lib.h"
ARM_EABI_FNALIAS(dadd, adddf3)
COMPILER_RT_ABI fp_t
__adddf3(fp_t a, fp_t b) {
rep_t aRep = toRep(a);
rep_t bRep = toRep(b);
const rep_t aAbs = aRep & absMask;
const rep_t bAbs = bRep & absMask;
// Detect if a or b is zero, infinity, or NaN.
if (aAbs - 1U >= infRep - 1U || bAbs - 1U >= infRep - 1U) {
// NaN + anything = qNaN
if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
// anything + NaN = qNaN
if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
if (aAbs == infRep) {
// +/-infinity + -/+infinity = qNaN
if ((toRep(a) ^ toRep(b)) == signBit) return fromRep(qnanRep);
// +/-infinity + anything remaining = +/- infinity
else return a;
}
// anything remaining + +/-infinity = +/-infinity
if (bAbs == infRep) return b;
// zero + anything = anything
if (!aAbs) {
// but we need to get the sign right for zero + zero
if (!bAbs) return fromRep(toRep(a) & toRep(b));
else return b;
}
// anything + zero = anything
if (!bAbs) return a;
}
// Swap a and b if necessary so that a has the larger absolute value.
if (bAbs > aAbs) {
const rep_t temp = aRep;
aRep = bRep;
bRep = temp;
}
// Extract the exponent and significand from the (possibly swapped) a and b.
int aExponent = aRep >> significandBits & maxExponent;
int bExponent = bRep >> significandBits & maxExponent;
rep_t aSignificand = aRep & significandMask;
rep_t bSignificand = bRep & significandMask;
// Normalize any denormals, and adjust the exponent accordingly.
if (aExponent == 0) aExponent = normalize(&aSignificand);
if (bExponent == 0) bExponent = normalize(&bSignificand);
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
const rep_t resultSign = aRep & signBit;
const bool subtraction = (aRep ^ bRep) & signBit;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize( ), but setting it twice won't hurt
// anything.)
aSignificand = (aSignificand | implicitBit) << 3;
bSignificand = (bSignificand | implicitBit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
const unsigned int align = aExponent - bExponent;
if (align) {
if (align < typeWidth) {
const bool sticky = bSignificand << (typeWidth - align);
bSignificand = bSignificand >> align | sticky;
} else {
bSignificand = 1; // sticky; b is known to be non-zero.
}
}
if (subtraction) {
aSignificand -= bSignificand;
// If a == -b, return +zero.
if (aSignificand == 0) return fromRep(0);
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if (aSignificand < implicitBit << 3) {
const int shift = rep_clz(aSignificand) - rep_clz(implicitBit << 3);
aSignificand <<= shift;
aExponent -= shift;
}
}
else /* addition */ {
aSignificand += bSignificand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (aSignificand & implicitBit << 4) {
const bool sticky = aSignificand & 1;
aSignificand = aSignificand >> 1 | sticky;
aExponent += 1;
}
}
// If we have overflowed the type, return +/- infinity:
if (aExponent >= maxExponent) return fromRep(infRep | resultSign);
if (aExponent <= 0) {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
const int shift = 1 - aExponent;
const bool sticky = aSignificand << (typeWidth - shift);
aSignificand = aSignificand >> shift | sticky;
aExponent = 0;
}
// Low three bits are round, guard, and sticky.
const int roundGuardSticky = aSignificand & 0x7;
// Shift the significand into place, and mask off the implicit bit.
rep_t result = aSignificand >> 3 & significandMask;
// Insert the exponent and sign.
result |= (rep_t)aExponent << significandBits;
result |= resultSign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if (roundGuardSticky > 0x4) result++;
if (roundGuardSticky == 0x4) result += result & 1;
return fromRep(result);
}