// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/udp/udp_socket_win.h"
#include <mstcpip.h>
#include "base/callback.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/metrics/histogram.h"
#include "base/metrics/sparse_histogram.h"
#include "base/metrics/stats_counters.h"
#include "base/rand_util.h"
#include "net/base/io_buffer.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/net_log.h"
#include "net/base/net_util.h"
#include "net/base/winsock_init.h"
#include "net/base/winsock_util.h"
#include "net/socket/socket_descriptor.h"
#include "net/udp/udp_net_log_parameters.h"
namespace {
const int kBindRetries = 10;
const int kPortStart = 1024;
const int kPortEnd = 65535;
} // namespace
namespace net {
// This class encapsulates all the state that has to be preserved as long as
// there is a network IO operation in progress. If the owner UDPSocketWin
// is destroyed while an operation is in progress, the Core is detached and it
// lives until the operation completes and the OS doesn't reference any resource
// declared on this class anymore.
class UDPSocketWin::Core : public base::RefCounted<Core> {
public:
explicit Core(UDPSocketWin* socket);
// Start watching for the end of a read or write operation.
void WatchForRead();
void WatchForWrite();
// The UDPSocketWin is going away.
void Detach() { socket_ = NULL; }
// The separate OVERLAPPED variables for asynchronous operation.
OVERLAPPED read_overlapped_;
OVERLAPPED write_overlapped_;
// The buffers used in Read() and Write().
scoped_refptr<IOBuffer> read_iobuffer_;
scoped_refptr<IOBuffer> write_iobuffer_;
// The address storage passed to WSARecvFrom().
SockaddrStorage recv_addr_storage_;
private:
friend class base::RefCounted<Core>;
class ReadDelegate : public base::win::ObjectWatcher::Delegate {
public:
explicit ReadDelegate(Core* core) : core_(core) {}
virtual ~ReadDelegate() {}
// base::ObjectWatcher::Delegate methods:
virtual void OnObjectSignaled(HANDLE object);
private:
Core* const core_;
};
class WriteDelegate : public base::win::ObjectWatcher::Delegate {
public:
explicit WriteDelegate(Core* core) : core_(core) {}
virtual ~WriteDelegate() {}
// base::ObjectWatcher::Delegate methods:
virtual void OnObjectSignaled(HANDLE object);
private:
Core* const core_;
};
~Core();
// The socket that created this object.
UDPSocketWin* socket_;
// |reader_| handles the signals from |read_watcher_|.
ReadDelegate reader_;
// |writer_| handles the signals from |write_watcher_|.
WriteDelegate writer_;
// |read_watcher_| watches for events from Read().
base::win::ObjectWatcher read_watcher_;
// |write_watcher_| watches for events from Write();
base::win::ObjectWatcher write_watcher_;
DISALLOW_COPY_AND_ASSIGN(Core);
};
UDPSocketWin::Core::Core(UDPSocketWin* socket)
: socket_(socket),
reader_(this),
writer_(this) {
memset(&read_overlapped_, 0, sizeof(read_overlapped_));
memset(&write_overlapped_, 0, sizeof(write_overlapped_));
read_overlapped_.hEvent = WSACreateEvent();
write_overlapped_.hEvent = WSACreateEvent();
}
UDPSocketWin::Core::~Core() {
// Make sure the message loop is not watching this object anymore.
read_watcher_.StopWatching();
write_watcher_.StopWatching();
WSACloseEvent(read_overlapped_.hEvent);
memset(&read_overlapped_, 0xaf, sizeof(read_overlapped_));
WSACloseEvent(write_overlapped_.hEvent);
memset(&write_overlapped_, 0xaf, sizeof(write_overlapped_));
}
void UDPSocketWin::Core::WatchForRead() {
// We grab an extra reference because there is an IO operation in progress.
// Balanced in ReadDelegate::OnObjectSignaled().
AddRef();
read_watcher_.StartWatching(read_overlapped_.hEvent, &reader_);
}
void UDPSocketWin::Core::WatchForWrite() {
// We grab an extra reference because there is an IO operation in progress.
// Balanced in WriteDelegate::OnObjectSignaled().
AddRef();
write_watcher_.StartWatching(write_overlapped_.hEvent, &writer_);
}
void UDPSocketWin::Core::ReadDelegate::OnObjectSignaled(HANDLE object) {
DCHECK_EQ(object, core_->read_overlapped_.hEvent);
if (core_->socket_)
core_->socket_->DidCompleteRead();
core_->Release();
}
void UDPSocketWin::Core::WriteDelegate::OnObjectSignaled(HANDLE object) {
DCHECK_EQ(object, core_->write_overlapped_.hEvent);
if (core_->socket_)
core_->socket_->DidCompleteWrite();
core_->Release();
}
//-----------------------------------------------------------------------------
UDPSocketWin::UDPSocketWin(DatagramSocket::BindType bind_type,
const RandIntCallback& rand_int_cb,
net::NetLog* net_log,
const net::NetLog::Source& source)
: socket_(INVALID_SOCKET),
addr_family_(0),
socket_options_(SOCKET_OPTION_MULTICAST_LOOP),
multicast_interface_(0),
multicast_time_to_live_(1),
bind_type_(bind_type),
rand_int_cb_(rand_int_cb),
recv_from_address_(NULL),
net_log_(BoundNetLog::Make(net_log, NetLog::SOURCE_UDP_SOCKET)) {
EnsureWinsockInit();
net_log_.BeginEvent(NetLog::TYPE_SOCKET_ALIVE,
source.ToEventParametersCallback());
if (bind_type == DatagramSocket::RANDOM_BIND)
DCHECK(!rand_int_cb.is_null());
}
UDPSocketWin::~UDPSocketWin() {
Close();
net_log_.EndEvent(NetLog::TYPE_SOCKET_ALIVE);
}
void UDPSocketWin::Close() {
DCHECK(CalledOnValidThread());
if (!is_connected())
return;
// Zero out any pending read/write callback state.
read_callback_.Reset();
recv_from_address_ = NULL;
write_callback_.Reset();
base::TimeTicks start_time = base::TimeTicks::Now();
closesocket(socket_);
UMA_HISTOGRAM_TIMES("Net.UDPSocketWinClose",
base::TimeTicks::Now() - start_time);
socket_ = INVALID_SOCKET;
addr_family_ = 0;
core_->Detach();
core_ = NULL;
}
int UDPSocketWin::GetPeerAddress(IPEndPoint* address) const {
DCHECK(CalledOnValidThread());
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
// TODO(szym): Simplify. http://crbug.com/126152
if (!remote_address_.get()) {
SockaddrStorage storage;
if (getpeername(socket_, storage.addr, &storage.addr_len))
return MapSystemError(WSAGetLastError());
scoped_ptr<IPEndPoint> address(new IPEndPoint());
if (!address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
remote_address_.reset(address.release());
}
*address = *remote_address_;
return OK;
}
int UDPSocketWin::GetLocalAddress(IPEndPoint* address) const {
DCHECK(CalledOnValidThread());
DCHECK(address);
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
// TODO(szym): Simplify. http://crbug.com/126152
if (!local_address_.get()) {
SockaddrStorage storage;
if (getsockname(socket_, storage.addr, &storage.addr_len))
return MapSystemError(WSAGetLastError());
scoped_ptr<IPEndPoint> address(new IPEndPoint());
if (!address->FromSockAddr(storage.addr, storage.addr_len))
return ERR_ADDRESS_INVALID;
local_address_.reset(address.release());
net_log_.AddEvent(NetLog::TYPE_UDP_LOCAL_ADDRESS,
CreateNetLogUDPConnectCallback(local_address_.get()));
}
*address = *local_address_;
return OK;
}
int UDPSocketWin::Read(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
return RecvFrom(buf, buf_len, NULL, callback);
}
int UDPSocketWin::RecvFrom(IOBuffer* buf,
int buf_len,
IPEndPoint* address,
const CompletionCallback& callback) {
DCHECK(CalledOnValidThread());
DCHECK_NE(INVALID_SOCKET, socket_);
DCHECK(read_callback_.is_null());
DCHECK(!recv_from_address_);
DCHECK(!callback.is_null()); // Synchronous operation not supported.
DCHECK_GT(buf_len, 0);
int nread = InternalRecvFrom(buf, buf_len, address);
if (nread != ERR_IO_PENDING)
return nread;
read_callback_ = callback;
recv_from_address_ = address;
return ERR_IO_PENDING;
}
int UDPSocketWin::Write(IOBuffer* buf,
int buf_len,
const CompletionCallback& callback) {
return SendToOrWrite(buf, buf_len, NULL, callback);
}
int UDPSocketWin::SendTo(IOBuffer* buf,
int buf_len,
const IPEndPoint& address,
const CompletionCallback& callback) {
return SendToOrWrite(buf, buf_len, &address, callback);
}
int UDPSocketWin::SendToOrWrite(IOBuffer* buf,
int buf_len,
const IPEndPoint* address,
const CompletionCallback& callback) {
DCHECK(CalledOnValidThread());
DCHECK_NE(INVALID_SOCKET, socket_);
DCHECK(write_callback_.is_null());
DCHECK(!callback.is_null()); // Synchronous operation not supported.
DCHECK_GT(buf_len, 0);
DCHECK(!send_to_address_.get());
int nwrite = InternalSendTo(buf, buf_len, address);
if (nwrite != ERR_IO_PENDING)
return nwrite;
if (address)
send_to_address_.reset(new IPEndPoint(*address));
write_callback_ = callback;
return ERR_IO_PENDING;
}
int UDPSocketWin::Connect(const IPEndPoint& address) {
net_log_.BeginEvent(NetLog::TYPE_UDP_CONNECT,
CreateNetLogUDPConnectCallback(&address));
int rv = InternalConnect(address);
if (rv != OK)
Close();
net_log_.EndEventWithNetErrorCode(NetLog::TYPE_UDP_CONNECT, rv);
return rv;
}
int UDPSocketWin::InternalConnect(const IPEndPoint& address) {
DCHECK(!is_connected());
DCHECK(!remote_address_.get());
int addr_family = address.GetSockAddrFamily();
int rv = CreateSocket(addr_family);
if (rv < 0)
return rv;
if (bind_type_ == DatagramSocket::RANDOM_BIND) {
// Construct IPAddressNumber of appropriate size (IPv4 or IPv6) of 0s,
// representing INADDR_ANY or in6addr_any.
size_t addr_size =
addr_family == AF_INET ? kIPv4AddressSize : kIPv6AddressSize;
IPAddressNumber addr_any(addr_size);
rv = RandomBind(addr_any);
}
// else connect() does the DatagramSocket::DEFAULT_BIND
if (rv < 0) {
UMA_HISTOGRAM_SPARSE_SLOWLY("Net.UdpSocketRandomBindErrorCode", rv);
Close();
return rv;
}
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
rv = connect(socket_, storage.addr, storage.addr_len);
if (rv < 0) {
// Close() may change the last error. Map it beforehand.
int result = MapSystemError(WSAGetLastError());
Close();
return result;
}
remote_address_.reset(new IPEndPoint(address));
return rv;
}
int UDPSocketWin::Bind(const IPEndPoint& address) {
DCHECK(!is_connected());
int rv = CreateSocket(address.GetSockAddrFamily());
if (rv < 0)
return rv;
rv = SetSocketOptions();
if (rv < 0) {
Close();
return rv;
}
rv = DoBind(address);
if (rv < 0) {
Close();
return rv;
}
local_address_.reset();
return rv;
}
int UDPSocketWin::CreateSocket(int addr_family) {
addr_family_ = addr_family;
socket_ = CreatePlatformSocket(addr_family_, SOCK_DGRAM, IPPROTO_UDP);
if (socket_ == INVALID_SOCKET)
return MapSystemError(WSAGetLastError());
core_ = new Core(this);
return OK;
}
bool UDPSocketWin::SetReceiveBufferSize(int32 size) {
DCHECK(CalledOnValidThread());
int rv = setsockopt(socket_, SOL_SOCKET, SO_RCVBUF,
reinterpret_cast<const char*>(&size), sizeof(size));
DCHECK(!rv) << "Could not set socket receive buffer size: " << errno;
return rv == 0;
}
bool UDPSocketWin::SetSendBufferSize(int32 size) {
DCHECK(CalledOnValidThread());
int rv = setsockopt(socket_, SOL_SOCKET, SO_SNDBUF,
reinterpret_cast<const char*>(&size), sizeof(size));
DCHECK(!rv) << "Could not set socket send buffer size: " << errno;
return rv == 0;
}
void UDPSocketWin::AllowAddressReuse() {
DCHECK(CalledOnValidThread());
DCHECK(!is_connected());
socket_options_ |= SOCKET_OPTION_REUSE_ADDRESS;
}
void UDPSocketWin::AllowBroadcast() {
DCHECK(CalledOnValidThread());
DCHECK(!is_connected());
socket_options_ |= SOCKET_OPTION_BROADCAST;
}
void UDPSocketWin::DoReadCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!read_callback_.is_null());
// since Run may result in Read being called, clear read_callback_ up front.
CompletionCallback c = read_callback_;
read_callback_.Reset();
c.Run(rv);
}
void UDPSocketWin::DoWriteCallback(int rv) {
DCHECK_NE(rv, ERR_IO_PENDING);
DCHECK(!write_callback_.is_null());
// since Run may result in Write being called, clear write_callback_ up front.
CompletionCallback c = write_callback_;
write_callback_.Reset();
c.Run(rv);
}
void UDPSocketWin::DidCompleteRead() {
DWORD num_bytes, flags;
BOOL ok = WSAGetOverlappedResult(socket_, &core_->read_overlapped_,
&num_bytes, FALSE, &flags);
WSAResetEvent(core_->read_overlapped_.hEvent);
int result = ok ? num_bytes : MapSystemError(WSAGetLastError());
// Convert address.
if (recv_from_address_ && result >= 0) {
if (!ReceiveAddressToIPEndpoint(recv_from_address_))
result = ERR_ADDRESS_INVALID;
}
LogRead(result, core_->read_iobuffer_->data());
core_->read_iobuffer_ = NULL;
recv_from_address_ = NULL;
DoReadCallback(result);
}
void UDPSocketWin::LogRead(int result, const char* bytes) const {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLog::TYPE_UDP_RECEIVE_ERROR, result);
return;
}
if (net_log_.IsLoggingAllEvents()) {
// Get address for logging, if |address| is NULL.
IPEndPoint address;
bool is_address_valid = ReceiveAddressToIPEndpoint(&address);
net_log_.AddEvent(
NetLog::TYPE_UDP_BYTES_RECEIVED,
CreateNetLogUDPDataTranferCallback(
result, bytes,
is_address_valid ? &address : NULL));
}
base::StatsCounter read_bytes("udp.read_bytes");
read_bytes.Add(result);
}
void UDPSocketWin::DidCompleteWrite() {
DWORD num_bytes, flags;
BOOL ok = WSAGetOverlappedResult(socket_, &core_->write_overlapped_,
&num_bytes, FALSE, &flags);
WSAResetEvent(core_->write_overlapped_.hEvent);
int result = ok ? num_bytes : MapSystemError(WSAGetLastError());
LogWrite(result, core_->write_iobuffer_->data(), send_to_address_.get());
send_to_address_.reset();
core_->write_iobuffer_ = NULL;
DoWriteCallback(result);
}
void UDPSocketWin::LogWrite(int result,
const char* bytes,
const IPEndPoint* address) const {
if (result < 0) {
net_log_.AddEventWithNetErrorCode(NetLog::TYPE_UDP_SEND_ERROR, result);
return;
}
if (net_log_.IsLoggingAllEvents()) {
net_log_.AddEvent(
NetLog::TYPE_UDP_BYTES_SENT,
CreateNetLogUDPDataTranferCallback(result, bytes, address));
}
base::StatsCounter write_bytes("udp.write_bytes");
write_bytes.Add(result);
}
int UDPSocketWin::InternalRecvFrom(IOBuffer* buf, int buf_len,
IPEndPoint* address) {
DCHECK(!core_->read_iobuffer_);
SockaddrStorage& storage = core_->recv_addr_storage_;
storage.addr_len = sizeof(storage.addr_storage);
WSABUF read_buffer;
read_buffer.buf = buf->data();
read_buffer.len = buf_len;
DWORD flags = 0;
DWORD num;
CHECK_NE(INVALID_SOCKET, socket_);
AssertEventNotSignaled(core_->read_overlapped_.hEvent);
int rv = WSARecvFrom(socket_, &read_buffer, 1, &num, &flags, storage.addr,
&storage.addr_len, &core_->read_overlapped_, NULL);
if (rv == 0) {
if (ResetEventIfSignaled(core_->read_overlapped_.hEvent)) {
int result = num;
// Convert address.
if (address && result >= 0) {
if (!ReceiveAddressToIPEndpoint(address))
result = ERR_FAILED;
}
LogRead(result, buf->data());
return result;
}
} else {
int os_error = WSAGetLastError();
if (os_error != WSA_IO_PENDING) {
int result = MapSystemError(os_error);
LogRead(result, NULL);
return result;
}
}
core_->WatchForRead();
core_->read_iobuffer_ = buf;
return ERR_IO_PENDING;
}
int UDPSocketWin::InternalSendTo(IOBuffer* buf, int buf_len,
const IPEndPoint* address) {
DCHECK(!core_->write_iobuffer_);
SockaddrStorage storage;
struct sockaddr* addr = storage.addr;
// Convert address.
if (!address) {
addr = NULL;
storage.addr_len = 0;
} else {
if (!address->ToSockAddr(addr, &storage.addr_len)) {
int result = ERR_FAILED;
LogWrite(result, NULL, NULL);
return result;
}
}
WSABUF write_buffer;
write_buffer.buf = buf->data();
write_buffer.len = buf_len;
DWORD flags = 0;
DWORD num;
AssertEventNotSignaled(core_->write_overlapped_.hEvent);
int rv = WSASendTo(socket_, &write_buffer, 1, &num, flags,
addr, storage.addr_len, &core_->write_overlapped_, NULL);
if (rv == 0) {
if (ResetEventIfSignaled(core_->write_overlapped_.hEvent)) {
int result = num;
LogWrite(result, buf->data(), address);
return result;
}
} else {
int os_error = WSAGetLastError();
if (os_error != WSA_IO_PENDING) {
int result = MapSystemError(os_error);
LogWrite(result, NULL, NULL);
return result;
}
}
core_->WatchForWrite();
core_->write_iobuffer_ = buf;
return ERR_IO_PENDING;
}
int UDPSocketWin::SetSocketOptions() {
BOOL true_value = 1;
if (socket_options_ & SOCKET_OPTION_REUSE_ADDRESS) {
int rv = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
reinterpret_cast<const char*>(&true_value),
sizeof(true_value));
if (rv < 0)
return MapSystemError(WSAGetLastError());
}
if (socket_options_ & SOCKET_OPTION_BROADCAST) {
int rv = setsockopt(socket_, SOL_SOCKET, SO_BROADCAST,
reinterpret_cast<const char*>(&true_value),
sizeof(true_value));
if (rv < 0)
return MapSystemError(WSAGetLastError());
}
if (!(socket_options_ & SOCKET_OPTION_MULTICAST_LOOP)) {
DWORD loop = 0;
int protocol_level =
addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
int option =
addr_family_ == AF_INET ? IP_MULTICAST_LOOP: IPV6_MULTICAST_LOOP;
int rv = setsockopt(socket_, protocol_level, option,
reinterpret_cast<const char*>(&loop), sizeof(loop));
if (rv < 0)
return MapSystemError(WSAGetLastError());
}
if (multicast_time_to_live_ != 1) {
DWORD hops = multicast_time_to_live_;
int protocol_level =
addr_family_ == AF_INET ? IPPROTO_IP : IPPROTO_IPV6;
int option =
addr_family_ == AF_INET ? IP_MULTICAST_TTL: IPV6_MULTICAST_HOPS;
int rv = setsockopt(socket_, protocol_level, option,
reinterpret_cast<const char*>(&hops), sizeof(hops));
if (rv < 0)
return MapSystemError(WSAGetLastError());
}
if (multicast_interface_ != 0) {
switch (addr_family_) {
case AF_INET: {
in_addr address;
address.s_addr = htonl(multicast_interface_);
int rv = setsockopt(socket_, IPPROTO_IP, IP_MULTICAST_IF,
reinterpret_cast<const char*>(&address),
sizeof(address));
if (rv)
return MapSystemError(WSAGetLastError());
break;
}
case AF_INET6: {
uint32 interface_index = multicast_interface_;
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_MULTICAST_IF,
reinterpret_cast<const char*>(&interface_index),
sizeof(interface_index));
if (rv)
return MapSystemError(WSAGetLastError());
break;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
return OK;
}
int UDPSocketWin::DoBind(const IPEndPoint& address) {
SockaddrStorage storage;
if (!address.ToSockAddr(storage.addr, &storage.addr_len))
return ERR_ADDRESS_INVALID;
int rv = bind(socket_, storage.addr, storage.addr_len);
if (rv == 0)
return OK;
int last_error = WSAGetLastError();
UMA_HISTOGRAM_SPARSE_SLOWLY("Net.UdpSocketBindErrorFromWinOS", last_error);
// Map some codes that are special to bind() separately.
if (last_error == WSAEACCES || last_error == WSAEINVAL)
return ERR_ADDRESS_IN_USE;
return MapSystemError(last_error);
}
int UDPSocketWin::RandomBind(const IPAddressNumber& address) {
DCHECK(bind_type_ == DatagramSocket::RANDOM_BIND && !rand_int_cb_.is_null());
for (int i = 0; i < kBindRetries; ++i) {
int rv = DoBind(IPEndPoint(address,
rand_int_cb_.Run(kPortStart, kPortEnd)));
if (rv == OK || rv != ERR_ADDRESS_IN_USE)
return rv;
}
return DoBind(IPEndPoint(address, 0));
}
bool UDPSocketWin::ReceiveAddressToIPEndpoint(IPEndPoint* address) const {
SockaddrStorage& storage = core_->recv_addr_storage_;
return address->FromSockAddr(storage.addr, storage.addr_len);
}
int UDPSocketWin::JoinGroup(
const IPAddressNumber& group_address) const {
DCHECK(CalledOnValidThread());
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
switch (group_address.size()) {
case kIPv4AddressSize: {
if (addr_family_ != AF_INET)
return ERR_ADDRESS_INVALID;
ip_mreq mreq;
mreq.imr_interface.s_addr = htonl(multicast_interface_);
memcpy(&mreq.imr_multiaddr, &group_address[0], kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_ADD_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq),
sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
case kIPv6AddressSize: {
if (addr_family_ != AF_INET6)
return ERR_ADDRESS_INVALID;
ipv6_mreq mreq;
mreq.ipv6mr_interface = multicast_interface_;
memcpy(&mreq.ipv6mr_multiaddr, &group_address[0], kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IPV6_ADD_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq),
sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketWin::LeaveGroup(
const IPAddressNumber& group_address) const {
DCHECK(CalledOnValidThread());
if (!is_connected())
return ERR_SOCKET_NOT_CONNECTED;
switch (group_address.size()) {
case kIPv4AddressSize: {
if (addr_family_ != AF_INET)
return ERR_ADDRESS_INVALID;
ip_mreq mreq;
mreq.imr_interface.s_addr = htonl(multicast_interface_);
memcpy(&mreq.imr_multiaddr, &group_address[0], kIPv4AddressSize);
int rv = setsockopt(socket_, IPPROTO_IP, IP_DROP_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
case kIPv6AddressSize: {
if (addr_family_ != AF_INET6)
return ERR_ADDRESS_INVALID;
ipv6_mreq mreq;
mreq.ipv6mr_interface = multicast_interface_;
memcpy(&mreq.ipv6mr_multiaddr, &group_address[0], kIPv6AddressSize);
int rv = setsockopt(socket_, IPPROTO_IPV6, IP_DROP_MEMBERSHIP,
reinterpret_cast<const char*>(&mreq), sizeof(mreq));
if (rv)
return MapSystemError(WSAGetLastError());
return OK;
}
default:
NOTREACHED() << "Invalid address family";
return ERR_ADDRESS_INVALID;
}
}
int UDPSocketWin::SetMulticastInterface(uint32 interface_index) {
DCHECK(CalledOnValidThread());
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
multicast_interface_ = interface_index;
return OK;
}
int UDPSocketWin::SetMulticastTimeToLive(int time_to_live) {
DCHECK(CalledOnValidThread());
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
if (time_to_live < 0 || time_to_live > 255)
return ERR_INVALID_ARGUMENT;
multicast_time_to_live_ = time_to_live;
return OK;
}
int UDPSocketWin::SetMulticastLoopbackMode(bool loopback) {
DCHECK(CalledOnValidThread());
if (is_connected())
return ERR_SOCKET_IS_CONNECTED;
if (loopback)
socket_options_ |= SOCKET_OPTION_MULTICAST_LOOP;
else
socket_options_ &= ~SOCKET_OPTION_MULTICAST_LOOP;
return OK;
}
// TODO(hubbe): Implement differentiated services for windows.
// Note: setsockopt(IP_TOS) does not work on windows XP and later.
int UDPSocketWin::SetDiffServCodePoint(DiffServCodePoint dscp) {
return ERR_NOT_IMPLEMENTED;
}
} // namespace net