// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/ct_serialization.h"
#include "base/basictypes.h"
#include "base/logging.h"
namespace net {
namespace ct {
namespace {
// Note: length is always specified in bytes.
// Signed Certificate Timestamp (SCT) Version length
const size_t kVersionLength = 1;
// Members of a V1 SCT
const size_t kLogIdLength = 32;
const size_t kTimestampLength = 8;
const size_t kExtensionsLengthBytes = 2;
const size_t kHashAlgorithmLength = 1;
const size_t kSigAlgorithmLength = 1;
const size_t kSignatureLengthBytes = 2;
// Members of the digitally-signed struct of a V1 SCT
const size_t kSignatureTypeLength = 1;
const size_t kLogEntryTypeLength = 2;
const size_t kAsn1CertificateLengthBytes = 3;
const size_t kTbsCertificateLengthBytes = 3;
const size_t kSCTListLengthBytes = 2;
const size_t kSerializedSCTLengthBytes = 2;
enum SignatureType {
SIGNATURE_TYPE_CERTIFICATE_TIMESTAMP = 0,
TREE_HASH = 1,
};
// Reads a TLS-encoded variable length unsigned integer from |in|.
// The integer is expected to be in big-endian order, which is used by TLS.
// The bytes read from |in| are discarded (i.e. |in|'s prefix removed)
// |length| indicates the size (in bytes) of the integer. On success, returns
// true and stores the result in |*out|.
template <typename T>
bool ReadUint(size_t length, base::StringPiece* in, T* out) {
if (in->size() < length)
return false;
DCHECK_LE(length, sizeof(T));
T result = 0;
for (size_t i = 0; i < length; ++i) {
result = (result << 8) | static_cast<unsigned char>((*in)[i]);
}
in->remove_prefix(length);
*out = result;
return true;
}
// Reads a TLS-encoded field length from |in|.
// The bytes read from |in| are discarded (i.e. |in|'s prefix removed)
// |prefix_length| indicates the bytes needed to represent the length (e.g. 3)
// success, returns true and stores the result in |*out|.
bool ReadLength(size_t prefix_length, base::StringPiece* in, size_t* out) {
size_t length;
if (!ReadUint(prefix_length, in, &length))
return false;
*out = length;
return true;
}
// Reads |length| bytes from |*in|. If |*in| is too small, returns false.
// The bytes read from |in| are discarded (i.e. |in|'s prefix removed)
bool ReadFixedBytes(size_t length,
base::StringPiece* in,
base::StringPiece* out) {
if (in->length() < length)
return false;
out->set(in->data(), length);
in->remove_prefix(length);
return true;
}
// Reads a length-prefixed variable amount of bytes from |in|, updating |out|
// on success. |prefix_length| indicates the number of bytes needed to represent
// the length.
// The bytes read from |in| are discarded (i.e. |in|'s prefix removed)
bool ReadVariableBytes(size_t prefix_length,
base::StringPiece* in,
base::StringPiece* out) {
size_t length;
if (!ReadLength(prefix_length, in, &length))
return false;
return ReadFixedBytes(length, in, out);
}
// Reads a variable-length list that has been TLS encoded.
// The bytes read from |in| are discarded (i.e. |in|'s prefix removed)
// |max_list_length| contains the overall length of the encoded list.
// |max_item_length| contains the maximum length of a single item.
// On success, returns true and updates |*out| with the encoded list.
bool ReadList(size_t max_list_length,
size_t max_item_length,
base::StringPiece* in,
std::vector<base::StringPiece>* out) {
std::vector<base::StringPiece> result;
base::StringPiece list_data;
if (!ReadVariableBytes(max_list_length, in, &list_data))
return false;
while (!list_data.empty()) {
base::StringPiece list_item;
if (!ReadVariableBytes(max_item_length, &list_data, &list_item)) {
DVLOG(1) << "Failed to read item in list.";
return false;
}
if (list_item.empty()) {
DVLOG(1) << "Empty item in list";
return false;
}
result.push_back(list_item);
}
result.swap(*out);
return true;
}
// Checks and converts a hash algorithm.
// |in| is the numeric representation of the algorithm.
// If the hash algorithm value is in a set of known values, fills in |out| and
// returns true. Otherwise, returns false.
bool ConvertHashAlgorithm(unsigned in, DigitallySigned::HashAlgorithm* out) {
switch (in) {
case DigitallySigned::HASH_ALGO_NONE:
case DigitallySigned::HASH_ALGO_MD5:
case DigitallySigned::HASH_ALGO_SHA1:
case DigitallySigned::HASH_ALGO_SHA224:
case DigitallySigned::HASH_ALGO_SHA256:
case DigitallySigned::HASH_ALGO_SHA384:
case DigitallySigned::HASH_ALGO_SHA512:
break;
default:
return false;
}
*out = static_cast<DigitallySigned::HashAlgorithm>(in);
return true;
}
// Checks and converts a signing algorithm.
// |in| is the numeric representation of the algorithm.
// If the signing algorithm value is in a set of known values, fills in |out|
// and returns true. Otherwise, returns false.
bool ConvertSignatureAlgorithm(
unsigned in,
DigitallySigned::SignatureAlgorithm* out) {
switch (in) {
case DigitallySigned::SIG_ALGO_ANONYMOUS:
case DigitallySigned::SIG_ALGO_RSA:
case DigitallySigned::SIG_ALGO_DSA:
case DigitallySigned::SIG_ALGO_ECDSA:
break;
default:
return false;
}
*out = static_cast<DigitallySigned::SignatureAlgorithm>(in);
return true;
}
// Writes a TLS-encoded variable length unsigned integer to |output|.
// |length| indicates the size (in bytes) of the integer.
// |value| the value itself to be written.
template <typename T>
void WriteUint(size_t length, T value, std::string* output) {
DCHECK_LE(length, sizeof(T));
DCHECK(length == sizeof(T) || value >> (length * 8) == 0);
for (; length > 0; --length) {
output->push_back((value >> ((length - 1)* 8)) & 0xFF);
}
}
// Writes an array to |output| from |input|.
// Should be used in one of two cases:
// * The length of |input| has already been encoded into the |output| stream.
// * The length of |input| is fixed and the reader is expected to specify that
// length when reading.
// If the length of |input| is dynamic and data is expected to follow it,
// WriteVariableBytes must be used.
void WriteEncodedBytes(const base::StringPiece& input, std::string* output) {
input.AppendToString(output);
}
// Writes a variable-length array to |output|.
// |prefix_length| indicates the number of bytes needed to represnt the length.
// |input| is the array itself.
// If the size of |input| is less than 2^|prefix_length| - 1, encode the
// length and data and return true. Otherwise, return false.
bool WriteVariableBytes(size_t prefix_length,
const base::StringPiece& input,
std::string* output) {
size_t input_size = input.size();
size_t max_allowed_input_size =
static_cast<size_t>(((1 << (prefix_length * 8)) - 1));
if (input_size > max_allowed_input_size)
return false;
WriteUint(prefix_length, input.size(), output);
WriteEncodedBytes(input, output);
return true;
}
// Writes a LogEntry of type X.509 cert to |output|.
// |input| is the LogEntry containing the certificate.
// Returns true if the leaf_certificate in the LogEntry does not exceed
// kMaxAsn1CertificateLength and so can be written to |output|.
bool EncodeAsn1CertLogEntry(const LogEntry& input, std::string* output) {
return WriteVariableBytes(kAsn1CertificateLengthBytes,
input.leaf_certificate, output);
}
// Writes a LogEntry of type PreCertificate to |output|.
// |input| is the LogEntry containing the TBSCertificate and issuer key hash.
// Returns true if the TBSCertificate component in the LogEntry does not
// exceed kMaxTbsCertificateLength and so can be written to |output|.
bool EncodePrecertLogEntry(const LogEntry& input, std::string* output) {
WriteEncodedBytes(
base::StringPiece(
reinterpret_cast<const char*>(input.issuer_key_hash.data),
kLogIdLength),
output);
return WriteVariableBytes(kTbsCertificateLengthBytes,
input.tbs_certificate, output);
}
} // namespace
bool EncodeDigitallySigned(const DigitallySigned& input,
std::string* output) {
WriteUint(kHashAlgorithmLength, input.hash_algorithm, output);
WriteUint(kSigAlgorithmLength, input.signature_algorithm,
output);
return WriteVariableBytes(kSignatureLengthBytes, input.signature_data,
output);
}
bool DecodeDigitallySigned(base::StringPiece* input,
DigitallySigned* output) {
unsigned hash_algo;
unsigned sig_algo;
base::StringPiece sig_data;
if (!ReadUint(kHashAlgorithmLength, input, &hash_algo) ||
!ReadUint(kSigAlgorithmLength, input, &sig_algo) ||
!ReadVariableBytes(kSignatureLengthBytes, input, &sig_data)) {
return false;
}
DigitallySigned result;
if (!ConvertHashAlgorithm(hash_algo, &result.hash_algorithm)) {
DVLOG(1) << "Invalid hash algorithm " << hash_algo;
return false;
}
if (!ConvertSignatureAlgorithm(sig_algo, &result.signature_algorithm)) {
DVLOG(1) << "Invalid signature algorithm " << sig_algo;
return false;
}
sig_data.CopyToString(&result.signature_data);
*output = result;
return true;
}
bool EncodeLogEntry(const LogEntry& input, std::string* output) {
WriteUint(kLogEntryTypeLength, input.type, output);
switch (input.type) {
case LogEntry::LOG_ENTRY_TYPE_X509:
return EncodeAsn1CertLogEntry(input, output);
case LogEntry::LOG_ENTRY_TYPE_PRECERT:
return EncodePrecertLogEntry(input, output);
}
return false;
}
bool EncodeV1SCTSignedData(const base::Time& timestamp,
const std::string& serialized_log_entry,
const std::string& extensions,
std::string* output) {
WriteUint(kVersionLength, SignedCertificateTimestamp::SCT_VERSION_1,
output);
WriteUint(kSignatureTypeLength, SIGNATURE_TYPE_CERTIFICATE_TIMESTAMP,
output);
base::TimeDelta time_since_epoch = timestamp - base::Time::UnixEpoch();
WriteUint(kTimestampLength, time_since_epoch.InMilliseconds(),
output);
// NOTE: serialized_log_entry must already be serialized and contain the
// length as the prefix.
WriteEncodedBytes(serialized_log_entry, output);
return WriteVariableBytes(kExtensionsLengthBytes, extensions, output);
}
bool DecodeSCTList(base::StringPiece* input,
std::vector<base::StringPiece>* output) {
std::vector<base::StringPiece> result;
if (!ReadList(kSCTListLengthBytes, kSerializedSCTLengthBytes,
input, &result)) {
return false;
}
if (!input->empty() || result.empty())
return false;
output->swap(result);
return true;
}
bool DecodeSignedCertificateTimestamp(
base::StringPiece* input,
scoped_refptr<SignedCertificateTimestamp>* output) {
scoped_refptr<SignedCertificateTimestamp> result(
new SignedCertificateTimestamp());
unsigned version;
if (!ReadUint(kVersionLength, input, &version))
return false;
if (version != SignedCertificateTimestamp::SCT_VERSION_1) {
DVLOG(1) << "Unsupported/invalid version " << version;
return false;
}
result->version = SignedCertificateTimestamp::SCT_VERSION_1;
uint64 timestamp;
base::StringPiece log_id;
base::StringPiece extensions;
if (!ReadFixedBytes(kLogIdLength, input, &log_id) ||
!ReadUint(kTimestampLength, input, ×tamp) ||
!ReadVariableBytes(kExtensionsLengthBytes, input,
&extensions) ||
!DecodeDigitallySigned(input, &result->signature)) {
return false;
}
if (timestamp > static_cast<uint64>(kint64max)) {
DVLOG(1) << "Timestamp value too big to cast to int64: " << timestamp;
return false;
}
log_id.CopyToString(&result->log_id);
extensions.CopyToString(&result->extensions);
result->timestamp =
base::Time::UnixEpoch() +
base::TimeDelta::FromMilliseconds(static_cast<int64>(timestamp));
output->swap(result);
return true;
}
bool EncodeSCTListForTesting(const base::StringPiece& sct,
std::string* output) {
std::string encoded_sct;
return WriteVariableBytes(kSerializedSCTLengthBytes, sct, &encoded_sct) &&
WriteVariableBytes(kSCTListLengthBytes, encoded_sct, output);
}
} // namespace ct
} // namespace net