C++程序  |  204行  |  7.79 KB

/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_BASE_MACROS_H_
#define ART_RUNTIME_BASE_MACROS_H_

#include <stddef.h>  // for size_t

#define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)

// The COMPILE_ASSERT macro can be used to verify that a compile time
// expression is true. For example, you could use it to verify the
// size of a static array:
//
//   COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES,
//                  content_type_names_incorrect_size);
//
// or to make sure a struct is smaller than a certain size:
//
//   COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large);
//
// The second argument to the macro is the name of the variable. If
// the expression is false, most compilers will issue a warning/error
// containing the name of the variable.

template <bool>
struct CompileAssert {
};

#define COMPILE_ASSERT(expr, msg) \
  typedef CompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1] // NOLINT

// DISALLOW_COPY_AND_ASSIGN disallows the copy and operator= functions.
// It goes in the private: declarations in a class.
#define DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&);               \
  void operator=(const TypeName&)

// A macro to disallow all the implicit constructors, namely the
// default constructor, copy constructor and operator= functions.
//
// This should be used in the private: declarations for a class
// that wants to prevent anyone from instantiating it. This is
// especially useful for classes containing only static methods.
#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
  TypeName();                                    \
  DISALLOW_COPY_AND_ASSIGN(TypeName)

// The arraysize(arr) macro returns the # of elements in an array arr.
// The expression is a compile-time constant, and therefore can be
// used in defining new arrays, for example.  If you use arraysize on
// a pointer by mistake, you will get a compile-time error.
//
// One caveat is that arraysize() doesn't accept any array of an
// anonymous type or a type defined inside a function.  In these rare
// cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below.  This is
// due to a limitation in C++'s template system.  The limitation might
// eventually be removed, but it hasn't happened yet.

// This template function declaration is used in defining arraysize.
// Note that the function doesn't need an implementation, as we only
// use its type.
template <typename T, size_t N>
char (&ArraySizeHelper(T (&array)[N]))[N];

#define arraysize(array) (sizeof(ArraySizeHelper(array)))

// ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
// but can be used on anonymous types or types defined inside
// functions.  It's less safe than arraysize as it accepts some
// (although not all) pointers.  Therefore, you should use arraysize
// whenever possible.
//
// The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
// size_t.
//
// ARRAYSIZE_UNSAFE catches a few type errors.  If you see a compiler error
//
//   "warning: division by zero in ..."
//
// when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
// You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
//
// The following comments are on the implementation details, and can
// be ignored by the users.
//
// ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
// the array) and sizeof(*(arr)) (the # of bytes in one array
// element).  If the former is divisible by the latter, perhaps arr is
// indeed an array, in which case the division result is the # of
// elements in the array.  Otherwise, arr cannot possibly be an array,
// and we generate a compiler error to prevent the code from
// compiling.
//
// Since the size of bool is implementation-defined, we need to cast
// !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
// result has type size_t.
//
// This macro is not perfect as it wrongfully accepts certain
// pointers, namely where the pointer size is divisible by the pointee
// size.  Since all our code has to go through a 32-bit compiler,
// where a pointer is 4 bytes, this means all pointers to a type whose
// size is 3 or greater than 4 will be (righteously) rejected.
#define ARRAYSIZE_UNSAFE(a) \
  ((sizeof(a) / sizeof(*(a))) / static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))

#define SIZEOF_MEMBER(t, f) sizeof((reinterpret_cast<t*>(4096))->f)

#define OFFSETOF_MEMBER(t, f) \
  (reinterpret_cast<const char*>(&reinterpret_cast<t*>(16)->f) - reinterpret_cast<const char*>(16)) // NOLINT

#define OFFSETOF_VOLATILE_MEMBER(t, f) \
  (reinterpret_cast<volatile char*>(&reinterpret_cast<t*>(16)->f) - reinterpret_cast<volatile char*>(16)) // NOLINT

#define PACKED(x) __attribute__ ((__aligned__(x), __packed__))

#define LIKELY(x)       __builtin_expect((x), true)
#define UNLIKELY(x)     __builtin_expect((x), false)

#ifndef NDEBUG
#define ALWAYS_INLINE
#else
#define ALWAYS_INLINE  __attribute__ ((always_inline))
#endif

#if defined (__APPLE__)
#define HOT_ATTR
#else
#define HOT_ATTR __attribute__ ((hot))
#endif

#define PURE __attribute__ ((__pure__))

// bionic and glibc both have TEMP_FAILURE_RETRY, but Mac OS' libc doesn't.
#ifndef TEMP_FAILURE_RETRY
#define TEMP_FAILURE_RETRY(exp) ({ \
  typeof(exp) _rc; \
  do { \
    _rc = (exp); \
  } while (_rc == -1 && errno == EINTR); \
  _rc; })
#endif

template<typename T> void UNUSED(const T&) {}

#if defined(__SUPPORT_TS_ANNOTATION__)

#define ACQUIRED_AFTER(...) __attribute__ ((acquired_after(__VA_ARGS__)))
#define ACQUIRED_BEFORE(...) __attribute__ ((acquired_before(__VA_ARGS__)))
#define EXCLUSIVE_LOCK_FUNCTION(...) __attribute__ ((exclusive_lock(__VA_ARGS__)))
#define EXCLUSIVE_LOCKS_REQUIRED(...) __attribute__ ((exclusive_locks_required(__VA_ARGS__)))
#define EXCLUSIVE_TRYLOCK_FUNCTION(...) __attribute__ ((exclusive_trylock(__VA_ARGS__)))
#define GUARDED_BY(x) __attribute__ ((guarded_by(x)))
#define GUARDED_VAR __attribute__ ((guarded))
#define LOCKABLE __attribute__ ((lockable))
#define LOCK_RETURNED(x) __attribute__ ((lock_returned(x)))
#define LOCKS_EXCLUDED(...) __attribute__ ((locks_excluded(__VA_ARGS__)))
#define NO_THREAD_SAFETY_ANALYSIS __attribute__ ((no_thread_safety_analysis))
#define PT_GUARDED_BY(x) __attribute__ ((point_to_guarded_by(x)))
#define PT_GUARDED_VAR __attribute__ ((point_to_guarded))
#define SCOPED_LOCKABLE __attribute__ ((scoped_lockable))
#define SHARED_LOCK_FUNCTION(...) __attribute__ ((shared_lock(__VA_ARGS__)))
#define SHARED_LOCKS_REQUIRED(...) __attribute__ ((shared_locks_required(__VA_ARGS__)))
#define SHARED_TRYLOCK_FUNCTION(...) __attribute__ ((shared_trylock(__VA_ARGS__)))
#define UNLOCK_FUNCTION(...) __attribute__ ((unlock(__VA_ARGS__)))

#else

#define ACQUIRED_AFTER(...)
#define ACQUIRED_BEFORE(...)
#define EXCLUSIVE_LOCK_FUNCTION(...)
#define EXCLUSIVE_LOCKS_REQUIRED(...)
#define EXCLUSIVE_TRYLOCK_FUNCTION(...)
#define GUARDED_BY(x)
#define GUARDED_VAR
#define LOCKABLE
#define LOCK_RETURNED(x)
#define LOCKS_EXCLUDED(...)
#define NO_THREAD_SAFETY_ANALYSIS
#define PT_GUARDED_BY(x)
#define PT_GUARDED_VAR
#define SCOPED_LOCKABLE
#define SHARED_LOCK_FUNCTION(...)
#define SHARED_LOCKS_REQUIRED(...)
#define SHARED_TRYLOCK_FUNCTION(...)
#define UNLOCK_FUNCTION(...)

#endif  // defined(__SUPPORT_TS_ANNOTATION__)

#endif  // ART_RUNTIME_BASE_MACROS_H_