#!/bin/sh # # Copyright (C) 2012 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Rebuild the host GCC toolchain binaries from sources. # # NOTE: this script does not rebuild gdb, see build-host-gdb.sh for this. # # include common function and variable definitions . `dirname $0`/prebuilt-common.sh PROGRAM_PARAMETERS="[<toolchain-name>+]" PROGRAM_DESCRIPTION="\ This program is used to rebuild one or more NDK cross-toolchains from scratch. To use it, you will first need to call download-toolchain-sources.sh to download the toolchain sources, then pass the corresponding directory with the --toolchain-src-dir=<path> option. If you don't pass any parameter, the script will rebuild all NDK toolchains for the current host system [$HOST_TAG]. You can otherwise give a list of toolchains among the following names: arm-linux-androideabi-4.4.3 arm-linux-androideabi-4.6 x64-4.4.3 x86-4.6 mipsel-linux-android-4.4.3 mipsel-linux-android-4.6 By default, the script rebuilds the toolchain(s) for you host system [$HOST_TAG], but you can use --systems=<tag1>,<tag2>,.. to ask binaries that can run on several distinct systems. Each <tag> value in the list can be one of the following: linux-x86 linux-x86_64 windows windows-x86 (equivalent to 'windows') windows-x86_64 darwin-x86 darwin-x86_64 For example, here's how to rebuild the ARM toolchains on Linux for four different systems: $PROGNAME --toolchain-src-dir=/path/to/toolchain/src \ --systems=linux-x86,linux-x86_64,windows,windows-x86_64 \ arm-linux-androideabi-4.4.3 \ arm-linux-androideabi-4.6 You can build Windows binaries on Linux if you have a Windows-targetting cross-toolchain installed and in your path. Note that the script named 'build-mingw64-toolchain.sh' can be used to rebuild such a toolchain (x86_64-w64-mingw32) from sources if you don't have one available. Building the toolchains directly under Cygwin/MSys has not be tested and is not recommended (it will be *extremely* slow, if it ever works). On Darwin, the script will try to probe any compatibility SDK installed on your development machine and will use the first it finds among a list of well-known names. You can however force a specific usage with the --darwin-sdk-version=<version> name, where <version> can be one of 10.4, 10.5, 10.6, 10.7, etc. The generated binaries should run on 10.5 or higher. You can force a different compatibility minimum with --darwin-min-version. If you want to build Darwin binaries on a non-Darwin machine, you will have to define DARWIN_TOOLCHAIN / DARWIN_SYSROOT in your environment first (note: this feature is highly experimental). The script is sufficiently clever to minimize all build steps, especially if you try to build several toolchains for several distinct host systems. Note however that generating a canadian-cross toolchain (e.g. building on Linux a Windows toolchain that targets Android ARM binaries) will force the generation of a host toolchain as well, in case it is not listed in your --systems list. This is required to generate proper target GCC libraries. The toolchain binaries are installed under \$NDK_DIR/toolchains by default, but you can use --ndk-dir=<path> to specify a different NDK installation path. The script will try to build the Gold linker for host/target combination that are well supported (Gold doesn't build / is buggy for some of them). However, the BFD linker is still the default used by the generated toolchain. You can change this behaviour with two options: --default-ld=<name> Changes the default toolchain linker. <name> can be one of 'default', 'bfd' and 'gold'. For now, 'default' is an alias for 'bfd', but we plan to map it to 'gold' for some combos in the future, once we're confident it works reliably --force-gold-build Force the build of the Gold linker, even if it is known to fail or generate a buggy linker. Only use this for experimentation (e.g. with your own patched toolchain sources). " BINUTILS_VERSION=$DEFAULT_BINUTILS_VERSION register_var_option "--binutils-version=<version>" BINUTILS_VERSION "Select binutils version" GMP_VERSION=$DEFAULT_GMP_VERSION register_var_option "--gmp-version=<version>" GMP_VERSION "Select gmp version" MPFR_VERSION=$DEFAULT_MPFR_VERSION register_var_option "--mpfr-version=<version>" MPFR_VERSION "Select mpfr version" MPC_VERSION=$DEFAULT_MPC_VERSION register_var_option "--mpc-version=<version>" MPC_VERSION "Select mpc version" TOOLCHAIN_SRC_DIR= register_var_option "--toolchain-src-dir=<path>" TOOLCHAIN_SRC_DIR "Select toolchain source directory" NDK_DIR=$ANDROID_NDK_ROOT register_var_option "--ndk-dir=<path>" NDK_DIR "Select NDK install directory" BUILD_DIR= register_var_option "--build-dir=<path>" BUILD_DIR "Build GCC into directory" PACKAGE_DIR= register_var_option "--package-dir=<path>" PACKAGE_DIR "Package prebuilt tarballs into directory" HOST_SYSTEMS="$HOST_TAG" register_var_option "--systems=<list>" HOST_SYSTEMS "Build binaries for these host systems" FORCE= register_var_option "--force" FORCE "Force full rebuild" NO_TARGET_LIBS= register_var_option "--no-target-libs" NO_TARGET_LIBS "Don't build gcc target libs." NO_STRIP= register_var_option "--no-strip" NO_STRIP "Don't strip generated binaries." NO_COLOR= register_var_option "--no-color" NO_COLOR "Don't output colored text." if [ "$HOST_OS" = darwin ]; then DARWIN_SDK_VERSION= register_var_option "--darwin-sdk-version=<version>" DARWIN_SDK "Select Darwin SDK version." DARWIN_MIN_VERSION= register_var_option "--darwin-min-version=<version>" DARWIN_MIN_VERSION "Select minimum OS X version of generated host toolchains." fi DEFAULT_LD= register_var_option "--default-ld=<name>" DEFAULT_LD "Select default linker ('bfd' or 'gold')." FORCE_GOLD_BUILD= register_var_option "--force-gold-build" FORCE_GOLD_BUILD "Always try to build Gold (experimental)." register_jobs_option extract_parameters "$@" TOOLCHAINS=$PARAMETERS if [ -z "$TOOLCHAINS" ]; then TOOLCHAINS="arm-linux-androideabi-4.6,x86-4.6,mipsel-linux-android-4.6" dump "Auto-config: $TOOLCHAINS" fi if [ -z "$TOOLCHAIN_SRC_DIR" ]; then panic "Please use --toolchain-src-dir=<path> to select toolchain source directory." fi if [ -z "$BUILD_DIR" ]; then BUILD_DIR=/tmp/ndk-$USER/build/host-gcc fi case $DEFAULT_LD in gold|bfd) ;; "") # We always use the default gold linker. # bfd is used for some of the older toolchains or archs not supported by gold. DEFAULT_LD=gold ;; *) panic "Invalid --default-ld name '$DEFAULT_LD', valid values are: bfd gold" ;; esac HOST_SYSTEMS=$(commas_to_spaces $HOST_SYSTEMS) TOOLCHAINS=$(commas_to_spaces $TOOLCHAINS) # The values of HOST_OS/ARCH/TAG will be redefined during the build to # match those of the system the generated compiler binaries will run on. # # Save the original ones into BUILD_XXX variants, corresponding to the # machine where the build happens. # BUILD_OS=$HOST_OS BUILD_ARCH=$HOST_ARCH BUILD_TAG=$HOST_TAG # Important note: When identifying a build or host system, there is # a difference between 'NDK system tags' and "GNU configuration triplet'. # # A "system tag" is specific to the NDK and identifies a given host # system for the toolchain binaries, valid values: # # linux-x86 # linux-x86_64 # windows (historical alias to windows-x86) # windows-x86 # windows-x86_64 # darwin-x86 # darwin-x86_64 # # A GNU configuration triplet identifies a system too, but it used by # configure scripts, not the NDK. They vary a lot too and some of the # scripts are *very* picky about the exact values being used. # # Typical values that are known to work properly: # # i686-linux-gnu (Linux x86 system, with GNU libc) # x86_64-linux-gnu (Same, with x86_64 CPU) # i586-mingw32msvc (Windows 32-bits, MSVCRT.DLL) # i586-pc-mingw32msvc (same) # i686-w64-mingw32 (same, slightly different sources) # x86_64-w64-mingw32 (Windows 64-bits, MSVCRT.DLL) # i686-apple-darwin (OS X / Darwin, x86 CPU) # x86_64-apple-darwin (OS X / Darwin, x86_64 CPU) # # A cross-toolchain will typically use the GNU configuration triplet as # a prefix for all its binaries, but not always. For example, the 'mingw32' # package on Ubuntu provides a Windows cross-toolchain that uses the # i586-mingw32msvc prefix, but if you try to use it as a configuration # triplet when configuring binutils-2.21, the build will fail. You need to # pass i586-pc-mingw32msvc instead (binutils-2.19 accepts both). # # Another issue is that some toolchains need to use additional compiler # flags to deal with backwards-compatibility SDKs (Darwin) or 32/64 bit # code generation. Note all build scripts accept the same mix of # '--with-cflags=...' or 'export CFLAGS' configuration, which makes # things pretty difficult to manage. # # To work-around these issues, the script will generate "wrapper toolchains" # with the prefix that the configure scripts expects. I.e. small scripts that # redirect to the correct toolchain, eventually adding hidden extra compiler # flags. This seems to completely get rid of the problems described above. # # $1: system tag (e.g. linux-x86) tag_to_os () { local RET case $1 in linux-*) RET="linux";; darwin-*) RET="darwin";; windows|windows-*) RET="windows";; esac echo $RET } # $1: system tag (e.g. linux-x86) tag_to_arch () { local RET case $1 in windows|*-x86) RET=x86;; *-x86_64) RET=x86_64;; esac echo $RET } # $1: system tag (e.g. linux-x86) tag_to_bits () { local RET case $1 in windows|*-x86) RET=32;; *-x86_64) RET=64;; esac echo $RET } if [ "$NO_COLOR" ]; then COLOR_GREEN= COLOR_PURPLE= COLOR_CYAN= COLOR_END= else COLOR_GREEN="\e[32m" COLOR_PURPLE="\e[35m" COLOR_CYAN="\e[36m" COLOR_END="\e[0m" fi # Pretty printing with colors! host_text () { printf "[${COLOR_GREEN}${HOST}${COLOR_END}]" } toolchain_text () { printf "[${COLOR_PURPLE}${TOOLCHAIN}${COLOR_END}]" } target_text () { printf "[${COLOR_CYAN}${TARGET}${COLOR_END}]" } arch_text () { # Print arch name in cyan printf "[${COLOR_CYAN}${ARCH}${COLOR_END}]" } # We're going to cheat a little here. If we're only building a linux-x86 # on a linux-x86_64 machine, we want to change the value of BUILD_TAG # to linux-x86 instead to speed-up the build. # # More generally speaking, we need to verify that if: # - we build a $BUILD_OS-x86 toolchain on a $BUILD_OS-x86_64 machine # - we don't want to build $BUILD_OS-x86_64 either. # # Then we can change our BUILD values to $BUILD_OS-x86 # This assumes that the build machine's toolchain can generate both # 32-bit and 64-bit binaries with either -m32 or -m64 # BUILD_BUILD_32= BUILD_BUILD_64= for SYSTEM in $HOST_SYSTEMS; do if [ "$(tag_to_os $SYSTEM)" = "$BUILD_OS" ]; then BUILD_BUILD_OS=true case $(tag_to_bits $SYSTEM) in 32) BUILD_BUILD_32=true;; 64) BUILD_BUILD_64=true;; esac fi done case $(tag_to_bits $BUILD_TAG) in 64) # Building on a 64-bit machine if [ "$BUILD_BUILD_32" -a -z "$BUILD_BUILD_64" ]; then # Ok, we want to build a 32-bit toolchain on a 64-bit machine # So cheat a little now :-) BUILD_ARCH=x86 BUILD_TAG=$BUILD_OS-$BUILD_ARCH dump "Forcing build config: $BUILD_TAG" fi ;; esac BUILD_BITS=$(tag_to_bits $BUILD_TAG) # On Darwin, parallel installs of certain libraries do not work on # some multi-core machines. So define NUM_BUILD_JOBS as 1 on this # platform. case $BUILD_OS in darwin) NUM_INSTALL_JOBS=1;; *) NUM_INSTALL_JOBS=$NUM_JOBS;; esac extract_version () { echo $1 | tr '-' '\n' | tail -1 } # Given an input string of the form <foo>-<bar>-<version>, where # <version> can be <major>.<minor>, extract <major> # # $1: versioned name (e.g. arm-linux-androideabi-4.6) # Out: major version (e.g. 4) # # Examples: arm-linux-androideabi-4.4.3 -> 4 # gmp-0.81 -> 0 # extract_major_version () { local RET=$(extract_version $1 | cut -d . -f 1) RET=${RET:-0} echo $RET } # Same as extract_major_version, but for the minor version number # $1: versioned named # Out: minor version # extract_minor_version () { local RET=$(extract_version $1 | cut -d . -f 2) RET=${RET:-0} echo $RET } # Compare two version numbers and only succeeds if the first one is # greather or equal than the second one. # # $1: first version (e.g. 4.4.3) # $2: second version (e.g. 4.6) # # Example: version_is_greater_than 4.6 4.4.3 --> success # version_is_greater_than () { local A_MAJOR A_MINOR B_MAJOR B_MINOR A_MAJOR=$(extract_major_version $1) B_MAJOR=$(extract_major_version $2) if [ $A_MAJOR -lt $B_MAJOR ]; then return 1 elif [ $A_MAJOR -gt $B_MAJOR ]; then return 0 fi # We have A_MAJOR == B_MAJOR here A_MINOR=$(extract_minor_version $1) B_MINOR=$(extract_minor_version $2) if [ $A_MINOR -lt $B_MINOR ]; then return 1 else return 0 fi } tag_to_config_triplet () { local RET case $1 in linux-x86) RET=i686-linux-gnu;; linux-x86_64) RET=x86_64-linux-gnu;; darwin-x86) RET=i686-apple-darwin;; darwin-x86_64) RET=x86_64-apple-darwin;; windows|windows-x86) RET=i586-pc-mingw32msvc;; windows-x86_64) RET=x86_64-w64-mingw32;; esac echo "$RET" } run_on_setup () { if [ "$PHASE" = setup ]; then run "$@" fi } setup_build () { run_on_setup mkdir -p "$BUILD_DIR" if [ -n "$FORCE" ]; then rm -rf "$BUILD_DIR"/* fi TOP_BUILD_DIR=$BUILD_DIR setup_default_log_file $BUILD_DIR/build.log WRAPPERS_DIR="$BUILD_DIR/toolchain-wrappers" run_on_setup mkdir -p "$WRAPPERS_DIR" && run_on_setup rm -rf "$WRAPPERS_DIR/*" STAMPS_DIR="$BUILD_DIR/timestamps" run_on_setup mkdir -p "$STAMPS_DIR" if [ -n "$FORCE" ]; then run_on_setup rm -f "$STAMPS_DIR"/* fi if [ "$PACKAGE_DIR" ]; then mkdir -p "$PACKAGE_DIR" fail_panic "Can't create packaging directory: $PACKAGE_DIR" fi BUILD=$(tag_to_config_triplet $BUILD_TAG) } stamps_do () { local NAME=$1 shift if [ ! -f "$STAMPS_DIR/$NAME" ]; then "$@" fail_panic mkdir -p "$STAMPS_DIR" && touch "$STAMPS_DIR/$NAME" fi } # Check that a given compiler generates code correctly # # This is to detect bad/broken toolchains, e.g. amd64-mingw32msvc # is totally broken on Ubuntu 10.10 and 11.04 # # $1: compiler # $2: optional extra flags # check_compiler () { local CC="$1" local TMPC=/tmp/build-host-gcc-$USER-$$.c local TMPE=${TMPC%%.c} local TMPL=$TMPC.log local RET shift cat > $TMPC <<EOF int main(void) { return 0; } EOF log_n "Checking compiler code generation ($CC)... " $CC -o $TMPE $TMPC "$@" >$TMPL 2>&1 RET=$? rm -f $TMPC $TMPE $TMPL if [ "$RET" = 0 ]; then log "yes" else log "no" fi return $RET } # $1: toolchain install dir # $2: toolchain prefix, no trailing dash (e.g. arm-linux-androideabi) # $3: optional -m32 or -m64. try_host_fullprefix () { local PREFIX="$1/bin/$2" shift; shift; if [ -z "$HOST_FULLPREFIX" ]; then local GCC="$PREFIX-gcc" if [ -f "$GCC" ]; then if check_compiler "$GCC" "$@"; then HOST_FULLPREFIX="${GCC%%gcc}" dump "$(host_text) Using host gcc: $GCC $@" else dump "$(host_text) Ignoring broken host gcc: $GCC $@" fi fi fi } # $1: host prefix, no trailing slash (e.g. i686-linux-android) # $2: optional compiler args (should be empty, -m32 or -m64) try_host_prefix () { local PREFIX="$1" shift if [ -z "$HOST_FULLPREFIX" ]; then local GCC="$(which $PREFIX-gcc 2>/dev/null)" if [ "$GCC" -a -e "$GCC" ]; then if check_compiler "$GCC" "$@"; then HOST_FULLPREFIX=${GCC%%gcc} dump "$(host_text) Using host gcc: ${HOST_FULLPREFIX}gcc $@" else dump "$(host_text) Ignoring broken host gcc: $GCC $@" fi fi fi } # Used to determine the minimum possible Darwin version that a Darwin SDK # can target. This actually depends from the host architecture. # $1: Host architecture name # out: SDK version number (e.g. 10.4 or 10.5) darwin_arch_to_min_version () { if [ "$DARWIN_MIN_VERSION" ]; then echo "$DARWIN_MIN_VERSION" elif [ "$1" = "x86" ]; then echo "10.4" else echo "10.5" fi } # Use the check for the availability of a compatibility SDK in Darwin # this can be used to generate binaries compatible with either Tiger or # Leopard. # # $1: SDK root path # $2: Darwin architecture check_darwin_sdk () { if [ -d "$1" -a -z "$HOST_CFLAGS" ] ; then local MINVER=$(darwin_arch_to_min_version $2) HOST_CFLAGS="-isysroot $1 -mmacosx-version-min=$MINVER -DMAXOSX_DEPLOYEMENT_TARGET=$MINVER" HOST_CXXFLAGS=$HOST_CFLAGS HOST_LDFLAGS="-syslibroot $1 -mmacosx-version-min=$MINVER" dump "Generating $MINVER-compatible binaries." return 0 # success fi return 1 } # Check that a given compiler generates 32 or 64 bit code. # $1: compiler full path (.e.g /path/to/fullprefix-gcc) # $2: 32 or 64 # $3: extract compiler flags # Return: success iff the compiler generates $2-bits code check_compiler_bitness () { local CC="$1" local BITS="$2" local TMPC=/tmp/build-host-gcc-bits-$USER-$$.c local TMPL=$TMPC.log local RET shift; shift; cat > $TMPC <<EOF /* this program will fail to compile if the compiler doesn't generate BITS-bits code */ int tab[1-2*(sizeof(void*)*8 != BITS)]; EOF dump_n "$(host_text) Checking that the compiler generates $BITS-bits code ($@)... " $CC -c -DBITS=$BITS -o /dev/null $TMPC $HOST_CFLAGS "$@" > $TMPL 2>&1 RET=$? rm -f $TMPC $TMPL if [ "$RET" = 0 ]; then dump "yes" else dump "no" fi return $RET } # This function probes the system to find the best toolchain or cross-toolchain # to build binaries that run on a given host system. After that, it generates # a wrapper toolchain under $WRAPPERS_DIR with a prefix of ${HOST}- # where $HOST is a GNU configuration name. # # Important: this script might redefine $HOST to a different value! # Important: must be called after setup_build. # # $1: NDK system tag (e.g. linux-x86) # select_toolchain_for_host () { local HOST_CFLAGS HOST_CXXFLAGS HOST_LDFLAGS HOST_FULLPREFIX DARWIN_ARCH # We do all the complex auto-detection magic in the setup phase, # then save the result in host-specific global variables. # # In the build phase, we will simply restore the values into the # global HOST_FULLPREFIX / HOST_BUILD_DIR # variables. # # Try to find the best toolchain to do that job, assuming we are in # a full Android platform source checkout, we can look at the prebuilts/ # directory. case $1 in linux-x86) # If possible, automatically use our custom toolchain to generate # 32-bit executables that work on Ubuntu 8.04 and higher. try_host_fullprefix "$(dirname $ANDROID_NDK_ROOT)/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.6" i686-linux try_host_fullprefix "$(dirname $ANDROID_NDK_ROOT)/prebuilts/gcc/linux-x86/host/i686-linux-glibc2.7-4.4.3" i686-linux try_host_fullprefix "$(dirname $ANDROID_NDK_ROOT)/prebuilt/linux-x86/toolchain/i686-linux-glibc2.7-4.4.3" i686-linux try_host_prefix i686-linux-gnu try_host_prefix i686-linux try_host_prefix x86_64-linux-gnu -m32 try_host_prefix x86_64-linux -m32 ;; linux-x86_64) # If possible, automaticaly use our custom toolchain to generate # 64-bit executables that work on Ubuntu 8.04 and higher. try_host_fullprefix "$(dirname $ANDROID_NDK_ROOT)/prebuilts/gcc/linux-x86/host/x86_64-linux-glibc2.7-4.6" x86_64-linux try_host_prefix x86_64-linux-gnu try_host_prefix x84_64-linux try_host_prefix i686-linux-gnu -m64 try_host_prefix i686-linux -m64 ;; darwin-*) DARWIN_ARCH=$(tag_to_arch $1) case $BUILD_OS in darwin) if [ "$DARWIN_SDK_VERSION" ]; then # Compute SDK subdirectory name case $DARWIN_SDK_VERSION in 10.4) DARWIN_SDK_SUBDIR=$DARWIN_SDK.sdku;; *) DARWIN_SDK_SUBDIR=$DARWIN_SDK.sdk;; esac # Since xCode moved to the App Store the SDKs have been 'sandboxed' into the Xcode.app folder. check_darwin_sdk /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX$DARWIN_SDK_SUBDIR $DARWIN_ARCH check_darwin_sdk /Developer/SDKs/MacOSX$DARWIN_SDK_SUBDIR $DARWIN_ARCH else # Since xCode moved to the App Store the SDKs have been 'sandboxed' into the Xcode.app folder. check_darwin_sdk /Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.7.sdk $DARWIN_ARCH check_darwin_sdk /Developer/SDKs/MacOSX10.7.sdk $DARWIN_ARCH check_darwin_sdk /Developer/SDKs/MacOSX10.6.sdk $DARWIN_ARCH # NOTE: The 10.5.sdk on Lion is buggy and cannot build basic C++ programs #check_darwin_sdk /Developer/SDKs/MacOSX10.5.sdk $DARWIN_ARCH # NOTE: The 10.4.sdku is not available anymore and could not be tested. #check_darwin_sdk /Developer/SDKs/MacOSX10.4.sdku $DARWIN_ARCH fi if [ -z "$HOST_CFLAGS" ]; then local version="$(sw_vers -productVersion)" log "Generating $version-compatible binaries!" fi ;; *) if [ -z "$DARWIN_TOOLCHAIN" -o -z "$DARWIN_SYSROOT" ]; then dump "If you want to build Darwin binaries on a non-Darwin machine," dump "Please define DARWIN_TOOLCHAIN to name it, and DARWIN_SYSROOT to point" dump "to the SDK. For example:" dump "" dump " DARWIN_TOOLCHAIN=\"i686-apple-darwin11\"" dump " DARWIN_SYSROOT=\"~/darwin-cross/MacOSX10.7.sdk\"" dump " export DARWIN_TOOLCHAIN DARWIN_SYSROOT" dump "" exit 1 fi local DARWINMINVER=$(darwin_arch_to_min_version $2) check_darwin_sdk $DARWIN_SYSROOT $DARWINARCH try_host_prefix "$DARWIN_TOOLCHAIN" -m$(tag_to_bits $1) --sysroot "$DARWIN_SYSROOT" if [ -z "$HOST_FULLPREFIX" ]; then dump "It looks like $DARWIN_TOOLCHAIN-gcc is not in your path, or does not work correctly!" exit 1 fi dump "Using darwin cross-toolchain: ${HOST_FULLPREFIX}gcc" ;; esac ;; windows|windows-x86) case $BUILD_OS in linux) # We favor these because they are more recent, and because # we have a script to rebuild them from scratch. See # build-mingw64-toolchain.sh. try_host_prefix x86_64-w64-mingw32 -m32 try_host_prefix i686-w64-mingw32 # Typically provided by the 'mingw32' package on Debian # and Ubuntu systems. try_host_prefix i586-mingw32msvc # Special note for Fedora: this distribution used # to have a mingw32-gcc package that provided a 32-bit # only cross-toolchain named i686-pc-mingw32. # Later versions of the distro now provide a new package # named mingw-gcc which provides i686-w64-mingw32 and # x86_64-w64-mingw32 instead. try_host_prefix i686-pc-mingw32 if [ -z "$HOST_FULLPREFIX" ]; then dump "There is no Windows cross-compiler. Ensure that you" dump "have one of these installed and in your path:" dump " x86_64-w64-mingw32-gcc (see build-mingw64-toolchain.sh)" dump " i686-w64-mingw32-gcc (see build-mingw64-toolchain.sh)" dump " i586-mingw32msvc-gcc ('mingw32' Debian/Ubuntu package)" dump " i686-pc-mingw32 (on Fedora)" dump "" exit 1 fi # Adjust $HOST to match the toolchain to ensure proper builds. # I.e. chose configuration triplets that are known to work # with the gmp/mpfr/mpc/binutils/gcc configure scripts. case $HOST_FULLPREFIX in *-mingw32msvc-*|i686-pc-mingw32) HOST=i586-pc-mingw32msvc ;; *) HOST=i686-w64-mingw32msvc ;; esac ;; *) panic "Sorry, this script only supports building windows binaries on Linux." ;; esac ;; windows-x86_64) # Sanity check for GMP which doesn't build with x86_64-w64-mingw32-gcc # before 5.0. We already have 5.0.5 in AOSP toolchain source tree, so # suggest it here. if ! version_is_greater_than $GMP_VERSION 5.0; then dump "You cannot build a 64-bit Windows toolchain with this version of libgmp." dump "Please use --gmp-version=5.0.5 to fix this." exit 1 fi case $BUILD_OS in linux) # See comments above for windows-x86 try_host_prefix x86_64-w64-mingw32 try_host_prefix i686-w64-mingw32 -m64 # Beware that this package is completely broken on many # versions of no vinegar Ubuntu (i.e. it fails at building trivial # programs). try_host_prefix amd64-mingw32msvc # There is no x86_64-pc-mingw32 toolchain on Fedora. if [ -z "$HOST_FULLPREFIX" ]; then dump "There is no Windows cross-compiler in your path. Ensure you" dump "have one of these installed and in your path:" dump " x86_64-w64-mingw32-gcc (see build-mingw64-toolchain.sh)" dump " i686-w64-mingw32-gcc (see build-mingw64-toolchain.sh)" dump " amd64-mingw32msvc-gcc (Debian/Ubuntu - broken until Ubuntu 11.10)" dump "" exit 1 fi # See comment above for windows-x86 case $HOST_FULLPREFIX in *-mingw32msvc*) # Actually, this has never been tested. HOST=amd64-pc-mingw32msvc ;; *) HOST=x86_64-w64-mingw32 ;; esac ;; *) panic "Sorry, this script only supports building windows binaries on Linux." ;; esac ;; esac mkdir -p "$(host_build_dir)" if [ "$FORCE" ]; then rm -rf "$(host_build_dir)"/* fi # Determine the default bitness of our compiler. It it doesn't match # HOST_BITS, tries to see if it supports -m32 or -m64 to change it. if ! check_compiler_bitness ${HOST_FULLPREFIX}gcc $HOST_BITS; then TRY_CFLAGS= case $HOST_BITS in 32) TRY_CFLAGS=-m32;; 64) TRY_CFLAGS=-m64;; esac if ! check_compiler_bitness ${HOST_FULLPREFIX}gcc $HOST_BITS $TRY_CFLAGS; then panic "Can't find a way to generate $HOST_BITS binaries with this compiler: ${HOST_FULLPREFIX}gcc" fi HOST_CFLAGS=$HOST_CFLAGS" "$TRY_CFLAGS HOST_CXXFLAGS=$HOST_CXXFLAGS" "$TRY_CFLAGS fi # Support for ccache, to speed up rebuilds. DST_PREFIX=$HOST_FULLPREFIX if [ "$NDK_CCACHE" ]; then DST_PREFIX="$NDK_CCACHE $HOST_FULLPREFIX" fi # We're going to generate a wrapper toolchain with the $HOST prefix # i.e. if $HOST is 'i686-linux-gnu', then we're going to generate a # wrapper toolchain named 'i686-linux-gnu-gcc' that will redirect # to whatever HOST_FULLPREFIX points to, with appropriate modifier # compiler/linker flags. # # This helps tremendously getting stuff to compile with the GCC # configure scripts. # run $NDK_BUILDTOOLS_PATH/gen-toolchain-wrapper.sh "$WRAPPERS_DIR" \ --src-prefix="$HOST-" \ --dst-prefix="$DST_PREFIX" \ --cflags="$HOST_CFLAGS" \ --cxxflags="$HOST_CXXFLAGS" \ --ldflags="$HOST_LDFLAGS" } # Call this before anything else to setup a few important variables that are # used consistently to build any host-specific binaries. # # $1: Host system name (e.g. linux-x86), this is the name of the host system # where the generated GCC binaries will run, not the current machine's # type (this one is in $ORIGINAL_HOST_TAG instead). # setup_build_for_host () { local HOST_VARNAME=$(dashes_to_underscores $1) local HOST_VAR=_HOST_${HOST_VARNAME} # Determine the host configuration triplet in $HOST HOST=$(tag_to_config_triplet $1) HOST_OS=$(tag_to_os $1) HOST_ARCH=$(tag_to_arch $1) HOST_BITS=$(tag_to_bits $1) HOST_TAG=$1 # Note: since select_toolchain_for_host can change the value of $HOST # we need to save it in a variable to later get the correct one when # this function is called again. if [ -z "$(var_value ${HOST_VAR}_SETUP)" ]; then select_toolchain_for_host $1 var_assign ${HOST_VAR}_CONFIG $HOST var_assign ${HOST_VAR}_SETUP true else HOST=$(var_value ${HOST_VAR}_CONFIG) fi } # Returns the location of all $HOST specific files (build and install) host_build_dir () { echo "$TOP_BUILD_DIR/$HOST" } # Return the location of the build directory for a specific component # $1: component name (e.g. gmp-4.2.4) host_build_dir_for () { echo "$(host_build_dir)/build-$1" } # Returns the install location of the $HOST pre-reqs libraries host_prereqs_install_dir () { echo "$(host_build_dir)/temp-prereqs" } # Returns the install location of the $HOST binutils cross-toolchain host_binutils_install_dir () { echo "$(host_build_dir)/temp-binutils-$BINUTILS_VERSION-$TARGET" } # Returns the install location of the $HOST binutils cross-toolchain build_binutils_install_dir () { echo "$TOP_BUILD_DIR/$BUILD/temp-binutils-$BINUTILS_VERSION-$TARGET" } # Returns the install location of the $HOST gcc cross-toolchain host_gcc_install_dir () { echo "$(host_build_dir)/temp-$TOOLCHAIN" } # Returns the install location of the $BUILD gcc cross-toolchain build_gcc_install_dir () { echo "$TOP_BUILD_DIR/$BUILD/temp-$TOOLCHAIN" } # Location of the host sysroot used during the build host_sysroot () { # This must be a sub-directory of $(host_gcc_install_dir) # to generate relocatable binaries that are used by # standalone versions of the toolchain. # # If you change this, you will need to modify make-standalone-toolchain.sh # as well. # echo "$(host_gcc_install_dir)/sysroot" } # Returns the final install location of the $HOST toolchain # This ones contains the binutils binaries, the gcc ones, # the target libraries, but does *not* include the sysroot # and other stuff (e.g. documentation like info or man files). # host_gcc_final_dir () { echo "$(host_build_dir)/final-$TOOLCHAIN" } setup_build_for_toolchain () { GCC_VERSION=$(extract_version $1) BINUTILS_VERSION=$(get_default_binutils_version_for_gcc $1) TARGET_ARCH=$(echo $1 | cut -d - -f 1) # NOTE: The 'mipsel' toolchain architecture name maps to the 'mips' # NDK architecture name. case $TARGET_ARCH in arm) TARGET=arm-linux-androideabi;; x86) TARGET=i686-linux-android;; x86_64) TARGET=x86_64-linux-android;; mips|mipsel) TARGET=mipsel-linux-android; TARGET_ARCH=mips;; *) panic "Unknown target toolchain architecture: $TARGET_ARCH" esac # MPC is only needed starting with GCC 4.5 HOST_NEED_MPC= if version_is_greater_than $GCC_VERSION 4.5; then HOST_NEED_MPC=true fi # TODO: We will need to place these under # $NDK_DIR/prebuilts/$HOST/android-$TARGET_ARCH-gcc-$GCC_VERSION/ # in a future patch. TOOLCHAIN_SUB_DIR=toolchains/$TOOLCHAIN/prebuilt/$HOST_TAG TOOLCHAIN_INSTALL_DIR=$NDK_DIR/$TOOLCHAIN_SUB_DIR # These will go into CFLAGS_FOR_TARGET and others during the build # of GCC target libraries. if [ -z "$NO_STRIP" ]; then TARGET_CFLAGS="-O2 -s" else TARGET_CFLAGS="-Os -g" fi TARGET_CXXFLAGS=$TARGET_CFLAGS TARGET_LDFLAGS="" case $TARGET_ARCH in mips) # Enable C++ exceptions, RTTI and GNU libstdc++ at the same time # You can't really build these separately at the moment. # Add -fpic, because MIPS NDK will need to link .a into .so. TARGET_CFLAGS=$TARGET_CFLAGS" -fexceptions -fpic" TARGET_CXXFLAGS=$TARGET_CXXFLAGS" -frtti -fpic" ;; esac } # This function is used to setup the build environment whenever we # generate host-specific binaries. # setup_host_env () { CC=$HOST-gcc CXX=$HOST-g++ LD=$HOST-ld AR=$HOST-ar AS=$HOST-as RANLIB=$HOST-ranlib NM=$HOST-nm STRIP=$HOST-strip STRINGS=$HOST-strings export CC CXX AS LD AR RANLIB STRIP STRINGS NM CFLAGS= CXXFLAGS= LDFLAGS= if [ -z "$NO_STRIP" ]; then CFLAGS="-O2 -Os -fomit-frame-pointer -s" CXXFLAGS=$CFLAGS fi # This should only used when building the target GCC libraries CFLAGS_FOR_TARGET=$TARGET_CFLAGS CXXFLAGS_FOR_TARGET=$TARGET_CXXFLAGS LDFLAGS_FOR_TARGET=$TARGET_LDFLAGS export CFLAGS CXXFLAGS LDFLAGS CFLAGS_FOR_TARGET CXXFLAGS_FOR_TARGET LDFLAGS_FOR_TARGET PATH=$WRAPPERS_DIR:$PATH } # $1: NDK architecture name (e.g. 'arm') arch_sysroot_install_dir () { echo "$BUILD_DIR/arch-$1/sysroot" } # $1: NDK architecture name (e.g. 'arm') arch_sysroot_dir () { echo "$(arch_sysroot_install_dir $1)/$(get_default_platform_sysroot_for_arch $1)" } # $1: architecture name gen_minimal_sysroot () { local ARCH=$1 local INSTALL_DIR=$(arch_sysroot_install_dir $ARCH) dump "$(arch_text) Generating minimal sysroot." run2 $NDK_BUILDTOOLS_PATH/gen-platforms.sh --minimal --arch=$ARCH --dst-dir="$INSTALL_DIR" } # $1: gmp version extract_gmp_sources () { local SRC_DIR="$TOP_BUILD_DIR/temp-src" dump "Extracting gmp-$1" run2 mkdir -p "$SRC_DIR" && run2 tar xjf "$TOOLCHAIN_SRC_DIR/gmp/gmp-$1.tar.bz2" -C "$SRC_DIR" } # $1: gmp version build_gmp () { local SRC_DIR="$TOP_BUILD_DIR/temp-src/gmp-$1" local INSTALL_DIR="$(host_prereqs_install_dir)" local BUILD_DIR stamps_do extract-gmp-$1 extract_gmp_sources $1 dump "$(host_text) Building gmp-$1" ( setup_host_env && BUILD_DIR="$(host_build_dir_for gmp-$GMP_VERSION)" && run2 mkdir -p "$BUILD_DIR" && run2 rm -rf "$BUILD_DIR"/* && cd "$BUILD_DIR" && run2 "$SRC_DIR"/configure \ --prefix=$INSTALL_DIR \ --build=$BUILD \ --host=$HOST \ --disable-shared && run2 make -j$NUM_JOBS && run2 make install -j$NUM_INSTALL_JOBS ) return $? } extract_mpfr_sources () { local SRC_DIR="$TOP_BUILD_DIR/temp-src" dump "Extracting mpfr-$1" run2 mkdir -p "$SRC_DIR" && run2 tar xjf "$TOOLCHAIN_SRC_DIR/mpfr/mpfr-$1.tar.bz2" -C "$SRC_DIR" } # $1: mpfr-version build_mpfr () { local SRC_DIR="$TOP_BUILD_DIR/temp-src/mpfr-$1" local INSTALL_DIR="$(host_prereqs_install_dir)" local BUILD_DIR stamps_do extract-mpfr-$MPFR_VERSION extract_mpfr_sources $1 stamps_do build-gmp-$GMP_VERSION-$HOST build_gmp $GMP_VERSION dump "$(host_text) Building mpfr-$1" ( setup_host_env && BUILD_DIR="$(host_build_dir_for mpfr-$MPFR_VERSION)" && run2 mkdir -p "$BUILD_DIR" && run2 rm -rf "$BUILD_DIR"/* && cd $BUILD_DIR && run2 "$SRC_DIR"/configure \ --prefix=$INSTALL_DIR \ --build=$BUILD \ --host=$HOST \ --disable-shared \ --with-gmp=$INSTALL_DIR && run2 make -j$NUM_JOBS && run2 make -j$NUM_INSTALL_JOBS install ) return $? } # $1: mpc-version extract_mpc_sources () { local SRC_DIR="$TOP_BUILD_DIR/temp-src" dump "Extracting mpc-$1" run2 mkdir -p "$SRC_DIR" && run2 tar xzf "$TOOLCHAIN_SRC_DIR/mpc/mpc-$1.tar.gz" -C "$SRC_DIR" } # $1: mpc-version build_mpc () { local SRC_DIR="$TOP_BUILD_DIR/temp-src/mpc-$1" local INSTALL_DIR="$(host_prereqs_install_dir)" local BUILD_DIR stamps_do extract-mpc-$1 extract_mpc_sources $1 stamps_do build-mpfr-$MPFR_VERSION-$HOST build_mpfr $MPFR_VERSION dump "$(host_text) Building mpc-$1" ( setup_host_env && BUILD_DIR="$(host_build_dir_for mpc-$MPC_VERSION)" && run2 mkdir -p "$BUILD_DIR" && run2 rm -rf "$BUILD_DIR"/* && cd $BUILD_DIR && run2 "$SRC_DIR"/configure \ --prefix=$INSTALL_DIR \ --build=$BUILD \ --host=$HOST \ --disable-shared \ --with-gmp=$INSTALL_DIR \ --with-mpfr=$INSTALL_DIR && run2 make -j$NUM_JOBS && run2 make -j$NUM_INSTALL_JOBS install ) return $? } # Build all pre-required host libraries (gmp, mpfr, etc...) that are needed # by binutils and gcc, as static libraries that will be placed under # $HOST_BUILD_DIR/temp-install # # $1: toolchain source directory # build_host_prereqs () { local INSTALL_DIR="$(host_prereqs_install_dir)" local ARGS ARGS=" --with-gmp=$INSTALL_DIR --with-mpfr=$INSTALL_DIR" # Only build MPC when we need it. if [ "$HOST_NEED_MPC" ]; then ARGS=$ARGS" --with-mpc=$INSTALL_DIR" stamps_do build-mpc-$MPC_VERSION-$HOST build_mpc $MPC_VERSION else stamps_do build-mpfr-$MPFR_VERSION-$HOST build_mpfr $MPFR_VERSION fi # This gets used by build_host_binutils and others. HOST_PREREQS_ARGS=$ARGS } build_host_binutils () { local SRC_DIR="$TOOLCHAIN_SRC_DIR/binutils/binutils-$BINUTILS_VERSION" local INSTALL_DIR="$(host_binutils_install_dir)" local PREREQS_INSTALL_DIR="$(host_prereqs_install_dir)" local ARGS build_host_prereqs ARGS=" --with-gmp=$PREREQS_INSTALL_DIR --with-mpfr=$PREREQS_INSTALL_DIR" if [ "$HOST_NEED_MPC" ]; then ARGS=$ARGS" --with-mpc=$PREREQS_INSTALL_DIR" fi LD_NAME=$DEFAULT_LD # Enable Gold globally. It can be built for all hosts. BUILD_GOLD=true # Special case, gold is not ready for mips yet. if [ "$TARGET" = "mipsel-linux-android" ]; then BUILD_GOLD= fi # Another special case, gold in binutils-2.21 for arch-x86 is buggy # (i.e. when building the platform with it, the system doesn't boot) # if [ "$BINUTILS_VERSION" = "2.21" -a "$TARGET" = "i686-linux-android" ]; then USE_LD_DEFAULT=true BUILD_GOLD= fi # Another special case, for arch-x86_64 gold supports x32 starting from 2.23 # if [ "$TARGET" = "x86_64-linux-android" ]; then if ! version_is_greater_than $BINUTILS_VERSION 2.23; then USE_LD_DEFAULT=true BUILD_GOLD= fi fi # Another special case. Not or 2.19, it wasn't ready if [ "$BINUTILS_VERSION" = "2.19" ]; then BUILD_GOLD= fi if [ "$DEFAULT_LD" = "gold" -a -z "$BUILD_GOLD" ]; then dump "$(host_text)$(target_text): Cannot build Gold for this toolchain!" BUILD_GOLD= fi # Ok, if the user *really* wants it, we're going to build Gold anyway. # There are no guarantees about the correctness of the resulting binary. # --default-ld still determines the default linker to use by the toolchain. # if [ "$FORCE_GOLD_BUILD" -a -z "$BUILD_GOLD" ]; then dump "$(host_text)$(target_text): Warning: forcing build of potentially buggy Gold linker!" BUILD_GOLD=true fi # The BFD linker is always built, but to build Gold, we need a specific # option for the binutils configure script. Note that its format has # changed during development. export host_configargs= if [ "$BUILD_GOLD" ]; then # The syntax of the --enable-gold option has changed. if version_is_greater_than $BINUTILS_VERSION 2.20; then if [ "$DEFAULT_LD" = "bfd" ]; then ARGS=$ARGS" --enable-gold --enable-ld=default" else ARGS=$ARGS" --enable-gold=default --enable-ld" fi else if [ "$DEFAULT_LD" = "bfd" ]; then ARGS=$ARGS" --enable-gold=both" else ARGS=$ARGS" --enable-gold=both/gold" fi fi # This ARG needs quoting when passed to run2. GOLD_LDFLAGS_ARG= if [ "$HOST_OS" = 'windows' ]; then # gold may have runtime dependency on libgcc_sjlj_1.dll and # libstdc++-6.dll when built by newer versions of mingw. # Link them statically to avoid that. if version_is_greater_than $BINUTILS_VERSION 2.22; then export host_configargs="--with-gold-ldflags='-static-libgcc -static-libstdc++'" elif version_is_greater_than $BINUTILS_VERSION 2.21; then GOLD_LDFLAGS_ARG="--with-gold-ldflags=-static-libgcc -static-libstdc++" else export LDFLAGS=$LDFLAGS" -static-libgcc -static-libstdc++" fi fi fi # This is used to install libbfd which is later used to compile # oprofile for the platform. This is not technically required for # the NDK, but allows us to use the same toolchain for the platform # build. TODO: Probably want to move this step to its own script # like build-host-libbfd.sh in the future. ARGS=$ARGS" --enable-install-libbfd" # Enable plugins support for binutils-2.21+ # This is common feature for binutils and gcc case "$BINUTILS_VERSION" in 2.19) # Add nothing ;; *) ARGS=$ARGS" --enable-plugins" ;; esac dump "$(host_text)$(target_text) Building binutils-$BINUTILS_VERSION" ( setup_host_env && BUILD_DIR="$(host_build_dir_for binutils-$BINUTILS_VERSION-$TARGET)" && run2 mkdir -p "$BUILD_DIR" && run2 rm -rf "$BUILD_DIR"/* && cd "$BUILD_DIR" && run2 "$SRC_DIR"/configure \ --prefix="$INSTALL_DIR" \ --disable-shared \ --disable-werror \ --disable-nls \ --build=$BUILD \ --host=$HOST \ --target=$TARGET \ --with-sysroot="$INSTALL_DIR/sysroot" \ $ARGS && run2 make -j$NUM_JOBS && run2 make -j$NUM_INSTALL_JOBS install && # We need to take care of something weird, binutils-2.21 on mips # doesn't seem to build gold, and the Makefile script forgets to # copy it to $INSTALL/bin/mipsel-linux-android-ld. Take care of this # here with a symlink, which will be enough for now. if [ ! -f "$INSTALL_DIR/bin/$TARGET-ld" ]; then run2 ln -s "$TARGET-ld.bfd" "$INSTALL_DIR/bin/$TARGET-ld" fi ) return $? } copy_target_sysroot () { local SRC_SYSROOT=$(arch_sysroot_dir $TARGET_ARCH) local SYSROOT=$(host_sysroot) # We need the arch-specific minimal sysroot stamps_do sysroot-arch-$TARGET_ARCH gen_minimal_sysroot $TARGET_ARCH dump "$(host_text)$(toolchain_text) Copying $TARGET_ARCH sysroot" run2 rm -rf "$SYSROOT" && run2 copy_directory "$SRC_SYSROOT" "$SYSROOT" } build_host_gcc_core () { local SRC_DIR="$TOOLCHAIN_SRC_DIR/gcc/gcc-$GCC_VERSION" local INSTALL_DIR="$(host_gcc_install_dir)" local ARGS NEW_PATH stamps_do build-binutils-$BINUTILS_VERSION-$HOST-$TARGET build_host_binutils stamps_do sysroot-gcc-$SYSTEM-$TOOLCHAIN copy_target_sysroot build_host_prereqs NEW_PATH=$(host_gcc_install_dir)/bin:$(host_binutils_install_dir)/bin if [ "$HOST" != "$BUILD" ]; then NEW_PATH=$(build_gcc_install_dir)/bin:$(build_binutils_install_dir)/bin fi ARGS=$HOST_PREREQS_ARGS case "$GCC_VERSION" in 4.4.3) ARGS=$ARGS" --disable-plugin" ;; esac ARGS=$ARGS" --with-gnu-as --with-gnu-ld" ARGS=$ARGS" --enable-threads --disable-libssp --disable-libmudflap" ARGS=$ARGS" --disable-libstdc__-v3 --disable-sjlj-exceptions" ARGS=$ARGS" --disable-tls" ARGS=$ARGS" --disable-libquadmath --disable-libitm --disable-bootstrap" ARGS=$ARGS" --enable-languages=c,c++" ARGS=$ARGS" --disable-shared" ARGS=$ARGS" --disable-nls" ARGS=$ARGS" --disable-werror" ARGS=$ARGS" --enable-target-optspace" ARGS=$ARGS" --enable-eh-frame-hdr-for-static" # TODO: Build fails for libsanitizer which appears in 4.8. Disable for now. ARGS=$ARGS" --disable-libsanitizer" case "$GCC_VERSION" in 4.4.3) ARGS=$ARGS" --disable-libgomp" ;; *) case $TARGET_ARCH in arm) ARGS=$ARGS" --enable-libgomp";; x86*) ARGS=$ARGS" --enable-libgomp";; mips|mipsel) ARGS=$ARGS" --disable-libgomp";; esac ;; esac # Place constructors/destructors in .init_array/.fini_array, not in # .ctors/.dtors on Android. Note that upstream Linux GLibc is now doing # the same. ARGS=$ARGS" --enable-initfini-array" case $TARGET_ARCH in arm) ARGS=$ARGS" --with-arch=armv5te --with-float=soft --with-fpu=vfpv3-d16" ;; x86) ARGS=$ARGS" --with-arch=i686 --with-tune=atom --with-fpmath=sse" ;; x86_64) ARGS=$ARGS" --with-arch=x86-64 --with-tune=atom --with-fpmath=sse --with-multilib-list=m32,m64,mx32" ;; mips) # Add --disable-fixed-point to disable fixed-point support ARGS=$ARGS" --with-arch=mips32 --disable-fixed-point" ;; esac dump "$(host_text)$(toolchain_text) Building gcc-core" ( setup_host_env && BUILD_DIR="$(host_build_dir_for gcc-$GCC_VERSION-$TARGET)" && run2 mkdir -p "$BUILD_DIR" && run2 rm -rf "$BUILD_DIR"/* && cd "$BUILD_DIR" && PATH=$NEW_PATH:$PATH && run2 "$SRC_DIR"/configure \ --prefix="$INSTALL_DIR" \ --build=$BUILD \ --host=$HOST \ --target=$TARGET \ --with-sysroot="$INSTALL_DIR/sysroot" \ $HOST_PREREQS_ARGS $ARGS && run2 make -j$NUM_JOBS all-gcc && run2 make -j$NUM_INSTALL_JOBS install-gcc ) return $? } build_target_gcc_libs () { local SRC_DIR="$TOOLCHAIN_SRC_DIR/gcc/gcc-$GCC_VERSION" local INSTALL_DIR="$(host_gcc_install_dir)" local ARGS NEW_PATH stamps_do gcc-core-$GCC_VERSION-$SYSTEM-$TOOLCHAIN build_host_gcc_core NEW_PATH=$(host_gcc_install_dir)/bin:$(host_binutils_install_dir)/bin dump "$(host_text)$(toolchain_text) Building target libraries" ( setup_host_env && BUILD_DIR="$(host_build_dir_for gcc-$GCC_VERSION-$TARGET)" && cd "$BUILD_DIR" && PATH=$NEW_PATH:$PATH && run2 make -j$NUM_JOBS all && run2 make -j$NUM_INSTALL_JOBS install ) return $? } copy_target_gcc_libs () { local SRC_DIR DST_DIR dump "$(host_text)$(toolchain_text) Copying target GCC libraries" SRC_DIR="$(build_gcc_install_dir)/$TARGET" DST_DIR="$(host_gcc_install_dir)/$TARGET" run2 copy_directory "$SRC_DIR" "$DST_DIR" } build_host_gcc () { if [ "$SYSTEM" = "$BUILD_TAG" -a -z "$NO_TARGET_LIBS" ]; then # This is a regular-cross build, and we need to build the target GCC libraries. stamps_do gcc-all-$GCC_VERSION-$SYSTEM-$TOOLCHAIN build_target_gcc_libs else # This is a canadian-cross build, or we don't need the target GCC libraries. stamps_do gcc-core-$GCC_VERSION-$SYSTEM-$TOOLCHAIN build_host_gcc_core fi } # $1: host system tag (e.g. linux-x86) # $2: toolchain name (e.g. x86-4.4.3) build_gcc () { local SYSTEM=$1 local TOOLCHAIN=$2 # When performing canadian-cross builds, ensure we generate the # host toolchain first (even if we don't need target GCC libraries) if [ "$SYSTEM" != "$BUILD_TAG" ]; then build_gcc $BUILD_TAG $TOOLCHAIN fi # We do this both in the setup and build phase to ensure we perform # as many checks as possible before launching the (long) build procedure. setup_build_for_host $SYSTEM setup_build_for_toolchain $TOOLCHAIN if [ "$PHASE" = build ]; then stamps_do build-gcc-$SYSTEM-$TOOLCHAIN build_host_gcc fi } do_relink () { log "Relink $1 --> $2" local BASENAME DIRNAME DIRNAME=$(dirname "$1") BASENAME=$(basename "$1") ( cd "$DIRNAME" && rm -f "$BASENAME" && ln -s "$2" "$BASENAME" ) } # $1: host system tag (e.g. linux-x86) # $2: toolchain name (e.g. x86-4.4.3) install_gcc () { local SYSTEM=$1 local TOOLCHAIN=$2 local BINUTILS_DIR GCC_DIR TARGET_LIBS_DIR INSTALL_DIR PROG build_gcc $SYSTEM $TOOLCHAIN dump "$(host_text)$(toolchain_text) Installing to NDK." BINUTILS_DIR=$(host_binutils_install_dir) GCC_DIR=$(host_gcc_install_dir) TARGET_LIBS_DIR=$(build_gcc_install_dir) INSTALL_DIR=$TOOLCHAIN_INSTALL_DIR # Copy binutils binaries run2 copy_directory "$BINUTILS_DIR/bin" "$INSTALL_DIR/bin" && run2 copy_directory "$BINUTILS_DIR/$TARGET/lib" "$INSTALL_DIR/$TARGET/lib" && # The following is used to copy the libbfd. See --enable-install-libbfd # which is set in build_host_binutils above. run2 copy_directory "$BINUTILS_DIR/$HOST/$TARGET/include" "$INSTALL_DIR/include" && run2 copy_directory "$BINUTILS_DIR/$HOST/$TARGET/lib" "$INSTALL_DIR/lib$(tag_to_bits $SYSTEM)" && # Copy gcc core binaries run2 copy_directory "$GCC_DIR/bin" "$INSTALL_DIR/bin" && run2 copy_directory "$GCC_DIR/lib/gcc/$TARGET" "$INSTALL_DIR/lib/gcc/$TARGET" && run2 copy_directory "$GCC_DIR/libexec/gcc/$TARGET" "$INSTALL_DIR/libexec/gcc/$TARGET" && # Copy target gcc libraries run2 copy_directory "$TARGET_LIBS_DIR/lib/gcc/$TARGET" "$INSTALL_DIR/lib/gcc/$TARGET" run2 copy_directory "$TARGET_LIBS_DIR/$TARGET/lib" "$INSTALL_DIR/$TARGET/lib" # Multilib compiler should have these if [ -d "$TARGET_LIBS_DIR/$TARGET/libx32" ]; then run2 copy_directory "$TARGET_LIBS_DIR/$TARGET/libx32" "$INSTALL_DIR/$TARGET/libx32" fi if [ -d "$TARGET_LIBS_DIR/$TARGET/lib64" ]; then run2 copy_directory "$TARGET_LIBS_DIR/$TARGET/lib64" "$INSTALL_DIR/$TARGET/lib64" fi # We need to generate symlinks for the binutils binaries from # $INSTALL_DIR/$TARGET/bin/$PROG to $INSTALL_DIR/bin/$TARGET-$PROG mkdir -p "$INSTALL_DIR/$TARGET/bin" && for PROG in $(cd $INSTALL_DIR/$TARGET/bin && ls * 2>/dev/null); do do_relink "$INSTALL_DIR/$TARGET/bin/$PROG" ../../bin/$TARGET-$PROG fail_panic done # Also relink a few files under $INSTALL_DIR/bin/ do_relink "$INSTALL_DIR"/bin/$TARGET-c++ $TARGET-g++ && do_relink "$INSTALL_DIR"/bin/$TARGET-gcc-$GCC_VERSION $TARGET-gcc && if [ -f "$INSTALL_DIR"/bin/$TARGET-ld.gold ]; then do_relink "$INSTALL_DIR"/bin/$TARGET-ld $TARGET-ld.gold else do_relink "$INSTALL_DIR"/bin/$TARGET-ld $TARGET-ld.bfd fi fail_panic # Remove unwanted $TARGET-run simulator to save about 800 KB. run2 rm -f "$INSTALL_DIR"/bin/$TARGET-run # Copy the license files local TOOLCHAIN_LICENSES="$ANDROID_NDK_ROOT"/build/tools/toolchain-licenses run cp -f "$TOOLCHAIN_LICENSES"/COPYING "$TOOLCHAIN_LICENSES"/COPYING.LIB "$INSTALL_DIR" } # $1: host system tag (e.g. linux-x86) # $2: toolchain name (e.g. x86-4.4.3) # $3: package directory. package_gcc () { local SYSTEM=$1 local TOOLCHAIN=$2 local PACKAGE_DIR="$3" local PACKAGE_NAME="$TOOLCHAIN-$SYSTEM.tar.bz2" local PACKAGE_FILE="$PACKAGE_DIR/$PACKAGE_NAME" setup_build_for_toolchain $TOOLCHAIN dump "Packaging $PACKAGE_NAME." pack_archive "$PACKAGE_FILE" "$NDK_DIR" "$TOOLCHAIN_SUB_DIR" } setup_build for PHASE in setup build; do for SYSTEM in $HOST_SYSTEMS; do setup_build_for_host $SYSTEM for TOOLCHAIN in $TOOLCHAINS; do build_gcc $SYSTEM $TOOLCHAIN done done done for SYSTEM in $HOST_SYSTEMS; do setup_build_for_host $SYSTEM for TOOLCHAIN in $TOOLCHAINS; do install_gcc $SYSTEM $TOOLCHAIN done done if [ "$PACKAGE_DIR" ]; then for SYSTEM in $HOST_SYSTEMS; do setup_build_for_host $SYSTEM for TOOLCHAIN in $TOOLCHAINS; do package_gcc $SYSTEM $TOOLCHAIN "$PACKAGE_DIR" done done echo "Done. See the content of $PACKAGE_DIR:" ls -l "$PACKAGE_DIR" echo "" fi