/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <GLES/gl.h> #include <GLES2/gl2.h> #include <GLES/glext.h> #include <rs_hal.h> #include <rsContext.h> #include <rsMesh.h> #include "rsdAllocation.h" #include "rsdMeshObj.h" #include "rsdGL.h" using namespace android; using namespace android::renderscript; RsdMeshObj::RsdMeshObj(const Context *rsc, const Mesh *rsMesh) { mRSMesh = rsMesh; mAttribs = NULL; mAttribAllocationIndex = NULL; mGLPrimitives = NULL; mAttribCount = 0; } RsdMeshObj::~RsdMeshObj() { if (mAttribs) { delete[] mAttribs; delete[] mAttribAllocationIndex; } if (mGLPrimitives) { delete[] mGLPrimitives; } } bool RsdMeshObj::isValidGLComponent(const Element *elem, uint32_t fieldIdx) { // Only GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_FIXED, GL_FLOAT are accepted. // Filter rs types accordingly RsDataType dt = elem->mHal.state.fields[fieldIdx]->mHal.state.dataType; if (dt != RS_TYPE_FLOAT_32 && dt != RS_TYPE_UNSIGNED_8 && dt != RS_TYPE_UNSIGNED_16 && dt != RS_TYPE_SIGNED_8 && dt != RS_TYPE_SIGNED_16) { return false; } // Now make sure they are not arrays uint32_t arraySize = elem->mHal.state.fieldArraySizes[fieldIdx]; if (arraySize != 1) { return false; } return true; } bool RsdMeshObj::init(const Context *rsc) { updateGLPrimitives(rsc); // Count the number of gl attrs to initialize mAttribCount = 0; for (uint32_t ct=0; ct < mRSMesh->mHal.state.vertexBuffersCount; ct++) { const Element *elem = mRSMesh->mHal.state.vertexBuffers[ct]->getType()->getElement(); for (uint32_t ct=0; ct < elem->mHal.state.fieldsCount; ct++) { if (isValidGLComponent(elem, ct)) { mAttribCount ++; } } } if (mAttribs) { delete [] mAttribs; delete [] mAttribAllocationIndex; mAttribs = NULL; mAttribAllocationIndex = NULL; } if (!mAttribCount) { return false; } mAttribs = new RsdVertexArray::Attrib[mAttribCount]; mAttribAllocationIndex = new uint32_t[mAttribCount]; uint32_t userNum = 0; for (uint32_t ct=0; ct < mRSMesh->mHal.state.vertexBuffersCount; ct++) { const Element *elem = mRSMesh->mHal.state.vertexBuffers[ct]->getType()->getElement(); uint32_t stride = elem->mHal.state.elementSizeBytes; for (uint32_t fieldI=0; fieldI < elem->mHal.state.fieldsCount; fieldI++) { const Element *f = elem->mHal.state.fields[fieldI]; if (!isValidGLComponent(elem, fieldI)) { continue; } mAttribs[userNum].size = f->mHal.state.vectorSize; mAttribs[userNum].offset = elem->mHal.state.fieldOffsetBytes[fieldI]; mAttribs[userNum].type = rsdTypeToGLType(f->mHal.state.dataType); mAttribs[userNum].normalized = f->mHal.state.dataType != RS_TYPE_FLOAT_32; mAttribs[userNum].stride = stride; String8 tmp(RS_SHADER_ATTR); tmp.append(elem->mHal.state.fieldNames[fieldI]); mAttribs[userNum].name.setTo(tmp.string()); // Remember which allocation this attribute came from mAttribAllocationIndex[userNum] = ct; userNum ++; } } return true; } void RsdMeshObj::renderPrimitiveRange(const Context *rsc, uint32_t primIndex, uint32_t start, uint32_t len) const { if (len < 1 || primIndex >= mRSMesh->mHal.state.primitivesCount || mAttribCount == 0) { rsc->setError(RS_ERROR_FATAL_DRIVER, "Invalid mesh or parameters"); return; } for (uint32_t ct=0; ct < mRSMesh->mHal.state.vertexBuffersCount; ct++) { const Allocation *alloc = mRSMesh->mHal.state.vertexBuffers[ct]; DrvAllocation *drv = (DrvAllocation *)alloc->mHal.drv; if (drv->uploadDeferred) { rsdAllocationSyncAll(rsc, alloc, RS_ALLOCATION_USAGE_SCRIPT); } } // update attributes with either buffer information or data ptr based on their current state for (uint32_t ct=0; ct < mAttribCount; ct++) { uint32_t allocIndex = mAttribAllocationIndex[ct]; Allocation *alloc = mRSMesh->mHal.state.vertexBuffers[allocIndex]; DrvAllocation *drvAlloc = (DrvAllocation *)alloc->mHal.drv; if (drvAlloc->bufferID) { mAttribs[ct].buffer = drvAlloc->bufferID; mAttribs[ct].ptr = NULL; } else { mAttribs[ct].buffer = 0; mAttribs[ct].ptr = (const uint8_t*)alloc->mHal.drvState.lod[0].mallocPtr; } } RsdVertexArray va(mAttribs, mAttribCount); va.setup(rsc); const Allocation *idxAlloc = mRSMesh->mHal.state.indexBuffers[primIndex]; if (idxAlloc) { DrvAllocation *drvAlloc = (DrvAllocation *)idxAlloc->mHal.drv; if (drvAlloc->uploadDeferred) { rsdAllocationSyncAll(rsc, idxAlloc, RS_ALLOCATION_USAGE_SCRIPT); } if (drvAlloc->bufferID) { RSD_CALL_GL(glBindBuffer, GL_ELEMENT_ARRAY_BUFFER, drvAlloc->bufferID); RSD_CALL_GL(glDrawElements, mGLPrimitives[primIndex], len, GL_UNSIGNED_SHORT, (uint16_t *)(start * 2)); } else { RSD_CALL_GL(glBindBuffer, GL_ELEMENT_ARRAY_BUFFER, 0); RSD_CALL_GL(glDrawElements, mGLPrimitives[primIndex], len, GL_UNSIGNED_SHORT, idxAlloc->mHal.drvState.lod[0].mallocPtr); } } else { RSD_CALL_GL(glDrawArrays, mGLPrimitives[primIndex], start, len); } rsdGLCheckError(rsc, "Mesh::renderPrimitiveRange"); } void RsdMeshObj::updateGLPrimitives(const Context *rsc) { mGLPrimitives = new uint32_t[mRSMesh->mHal.state.primitivesCount]; for (uint32_t i = 0; i < mRSMesh->mHal.state.primitivesCount; i ++) { switch (mRSMesh->mHal.state.primitives[i]) { case RS_PRIMITIVE_POINT: mGLPrimitives[i] = GL_POINTS; break; case RS_PRIMITIVE_LINE: mGLPrimitives[i] = GL_LINES; break; case RS_PRIMITIVE_LINE_STRIP: mGLPrimitives[i] = GL_LINE_STRIP; break; case RS_PRIMITIVE_TRIANGLE: mGLPrimitives[i] = GL_TRIANGLES; break; case RS_PRIMITIVE_TRIANGLE_STRIP: mGLPrimitives[i] = GL_TRIANGLE_STRIP; break; case RS_PRIMITIVE_TRIANGLE_FAN: mGLPrimitives[i] = GL_TRIANGLE_FAN; break; default: rsc->setError(RS_ERROR_FATAL_DRIVER, "Invalid mesh primitive"); break; } } }