/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include <utils/JenkinsHash.h> #include "Caches.h" #include "Debug.h" #include "GradientCache.h" #include "Properties.h" namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Functions /////////////////////////////////////////////////////////////////////////////// template<typename T> static inline T min(T a, T b) { return a < b ? a : b; } /////////////////////////////////////////////////////////////////////////////// // Cache entry /////////////////////////////////////////////////////////////////////////////// hash_t GradientCacheEntry::hash() const { uint32_t hash = JenkinsHashMix(0, count); for (uint32_t i = 0; i < count; i++) { hash = JenkinsHashMix(hash, android::hash_type(colors[i])); hash = JenkinsHashMix(hash, android::hash_type(positions[i])); } return JenkinsHashWhiten(hash); } int GradientCacheEntry::compare(const GradientCacheEntry& lhs, const GradientCacheEntry& rhs) { int deltaInt = int(lhs.count) - int(rhs.count); if (deltaInt != 0) return deltaInt; deltaInt = memcmp(lhs.colors, rhs.colors, lhs.count * sizeof(uint32_t)); if (deltaInt != 0) return deltaInt; return memcmp(lhs.positions, rhs.positions, lhs.count * sizeof(float)); } /////////////////////////////////////////////////////////////////////////////// // Constructors/destructor /////////////////////////////////////////////////////////////////////////////// GradientCache::GradientCache(): mCache(LruCache<GradientCacheEntry, Texture*>::kUnlimitedCapacity), mSize(0), mMaxSize(MB(DEFAULT_GRADIENT_CACHE_SIZE)) { char property[PROPERTY_VALUE_MAX]; if (property_get(PROPERTY_GRADIENT_CACHE_SIZE, property, NULL) > 0) { INIT_LOGD(" Setting gradient cache size to %sMB", property); setMaxSize(MB(atof(property))); } else { INIT_LOGD(" Using default gradient cache size of %.2fMB", DEFAULT_GRADIENT_CACHE_SIZE); } glGetIntegerv(GL_MAX_TEXTURE_SIZE, &mMaxTextureSize); mCache.setOnEntryRemovedListener(this); const Extensions& extensions = Extensions::getInstance(); mUseFloatTexture = extensions.hasFloatTextures(); mHasNpot = extensions.hasNPot(); } GradientCache::GradientCache(uint32_t maxByteSize): mCache(LruCache<GradientCacheEntry, Texture*>::kUnlimitedCapacity), mSize(0), mMaxSize(maxByteSize) { mCache.setOnEntryRemovedListener(this); } GradientCache::~GradientCache() { mCache.clear(); } /////////////////////////////////////////////////////////////////////////////// // Size management /////////////////////////////////////////////////////////////////////////////// uint32_t GradientCache::getSize() { return mSize; } uint32_t GradientCache::getMaxSize() { return mMaxSize; } void GradientCache::setMaxSize(uint32_t maxSize) { mMaxSize = maxSize; while (mSize > mMaxSize) { mCache.removeOldest(); } } /////////////////////////////////////////////////////////////////////////////// // Callbacks /////////////////////////////////////////////////////////////////////////////// void GradientCache::operator()(GradientCacheEntry& shader, Texture*& texture) { if (texture) { const uint32_t size = texture->width * texture->height * bytesPerPixel(); mSize -= size; texture->deleteTexture(); delete texture; } } /////////////////////////////////////////////////////////////////////////////// // Caching /////////////////////////////////////////////////////////////////////////////// Texture* GradientCache::get(uint32_t* colors, float* positions, int count) { GradientCacheEntry gradient(colors, positions, count); Texture* texture = mCache.get(gradient); if (!texture) { texture = addLinearGradient(gradient, colors, positions, count); } return texture; } void GradientCache::clear() { mCache.clear(); } void GradientCache::getGradientInfo(const uint32_t* colors, const int count, GradientInfo& info) { uint32_t width = 256 * (count - 1); // If the npot extension is not supported we cannot use non-clamp // wrap modes. We therefore find the nearest largest power of 2 // unless width is already a power of 2 if (!mHasNpot && (width & (width - 1)) != 0) { width = 1 << (32 - __builtin_clz(width)); } bool hasAlpha = false; for (int i = 0; i < count; i++) { if (((colors[i] >> 24) & 0xff) < 255) { hasAlpha = true; break; } } info.width = min(width, uint32_t(mMaxTextureSize)); info.hasAlpha = hasAlpha; } Texture* GradientCache::addLinearGradient(GradientCacheEntry& gradient, uint32_t* colors, float* positions, int count) { GradientInfo info; getGradientInfo(colors, count, info); Texture* texture = new Texture(); texture->width = info.width; texture->height = 2; texture->blend = info.hasAlpha; texture->generation = 1; // Asume the cache is always big enough const uint32_t size = texture->width * texture->height * bytesPerPixel(); while (getSize() + size > mMaxSize) { mCache.removeOldest(); } generateTexture(colors, positions, count, texture); mSize += size; mCache.put(gradient, texture); return texture; } size_t GradientCache::bytesPerPixel() const { // We use 4 channels (RGBA) return 4 * (mUseFloatTexture ? sizeof(float) : sizeof(uint8_t)); } void GradientCache::splitToBytes(uint32_t inColor, GradientColor& outColor) const { outColor.r = (inColor >> 16) & 0xff; outColor.g = (inColor >> 8) & 0xff; outColor.b = (inColor >> 0) & 0xff; outColor.a = (inColor >> 24) & 0xff; } void GradientCache::splitToFloats(uint32_t inColor, GradientColor& outColor) const { outColor.r = ((inColor >> 16) & 0xff) / 255.0f; outColor.g = ((inColor >> 8) & 0xff) / 255.0f; outColor.b = ((inColor >> 0) & 0xff) / 255.0f; outColor.a = ((inColor >> 24) & 0xff) / 255.0f; } void GradientCache::mixBytes(GradientColor& start, GradientColor& end, float amount, uint8_t*& dst) const { float oppAmount = 1.0f - amount; const float alpha = start.a * oppAmount + end.a * amount; const float a = alpha / 255.0f; *dst++ = uint8_t(a * (start.r * oppAmount + end.r * amount)); *dst++ = uint8_t(a * (start.g * oppAmount + end.g * amount)); *dst++ = uint8_t(a * (start.b * oppAmount + end.b * amount)); *dst++ = uint8_t(alpha); } void GradientCache::mixFloats(GradientColor& start, GradientColor& end, float amount, uint8_t*& dst) const { float oppAmount = 1.0f - amount; const float a = start.a * oppAmount + end.a * amount; float* d = (float*) dst; *d++ = a * (start.r * oppAmount + end.r * amount); *d++ = a * (start.g * oppAmount + end.g * amount); *d++ = a * (start.b * oppAmount + end.b * amount); *d++ = a; dst += 4 * sizeof(float); } void GradientCache::generateTexture(uint32_t* colors, float* positions, int count, Texture* texture) { const uint32_t width = texture->width; const GLsizei rowBytes = width * bytesPerPixel(); uint8_t pixels[rowBytes * texture->height]; static ChannelSplitter gSplitters[] = { &android::uirenderer::GradientCache::splitToBytes, &android::uirenderer::GradientCache::splitToFloats, }; ChannelSplitter split = gSplitters[mUseFloatTexture]; static ChannelMixer gMixers[] = { &android::uirenderer::GradientCache::mixBytes, &android::uirenderer::GradientCache::mixFloats, }; ChannelMixer mix = gMixers[mUseFloatTexture]; GradientColor start; (this->*split)(colors[0], start); GradientColor end; (this->*split)(colors[1], end); int currentPos = 1; float startPos = positions[0]; float distance = positions[1] - startPos; uint8_t* dst = pixels; for (uint32_t x = 0; x < width; x++) { float pos = x / float(width - 1); if (pos > positions[currentPos]) { start = end; startPos = positions[currentPos]; currentPos++; (this->*split)(colors[currentPos], end); distance = positions[currentPos] - startPos; } float amount = (pos - startPos) / distance; (this->*mix)(start, end, amount, dst); } memcpy(pixels + rowBytes, pixels, rowBytes); glGenTextures(1, &texture->id); Caches::getInstance().bindTexture(texture->id); glPixelStorei(GL_UNPACK_ALIGNMENT, 4); if (mUseFloatTexture) { // We have to use GL_RGBA16F because GL_RGBA32F does not support filtering glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, width, texture->height, 0, GL_RGBA, GL_FLOAT, pixels); } else { glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, texture->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, pixels); } texture->setFilter(GL_LINEAR); texture->setWrap(GL_CLAMP_TO_EDGE); } }; // namespace uirenderer }; // namespace android