/* * EAP peer state machines (RFC 4137) * Copyright (c) 2004-2012, Jouni Malinen <j@w1.fi> * * This software may be distributed under the terms of the BSD license. * See README for more details. * * This file implements the Peer State Machine as defined in RFC 4137. The used * states and state transitions match mostly with the RFC. However, there are * couple of additional transitions for working around small issues noticed * during testing. These exceptions are explained in comments within the * functions in this file. The method functions, m.func(), are similar to the * ones used in RFC 4137, but some small changes have used here to optimize * operations and to add functionality needed for fast re-authentication * (session resumption). */ #include "includes.h" #include "common.h" #include "pcsc_funcs.h" #include "state_machine.h" #include "ext_password.h" #include "crypto/crypto.h" #include "crypto/tls.h" #include "common/wpa_ctrl.h" #include "eap_common/eap_wsc_common.h" #include "eap_i.h" #include "eap_config.h" #define STATE_MACHINE_DATA struct eap_sm #define STATE_MACHINE_DEBUG_PREFIX "EAP" #define EAP_MAX_AUTH_ROUNDS 50 #define EAP_CLIENT_TIMEOUT_DEFAULT 60 static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, EapType method); static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id); static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req); static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req); static struct wpabuf * eap_sm_buildNotify(int id); static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req); #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) static const char * eap_sm_method_state_txt(EapMethodState state); static const char * eap_sm_decision_txt(EapDecision decision); #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ static Boolean eapol_get_bool(struct eap_sm *sm, enum eapol_bool_var var) { return sm->eapol_cb->get_bool(sm->eapol_ctx, var); } static void eapol_set_bool(struct eap_sm *sm, enum eapol_bool_var var, Boolean value) { sm->eapol_cb->set_bool(sm->eapol_ctx, var, value); } static unsigned int eapol_get_int(struct eap_sm *sm, enum eapol_int_var var) { return sm->eapol_cb->get_int(sm->eapol_ctx, var); } static void eapol_set_int(struct eap_sm *sm, enum eapol_int_var var, unsigned int value) { sm->eapol_cb->set_int(sm->eapol_ctx, var, value); } static struct wpabuf * eapol_get_eapReqData(struct eap_sm *sm) { return sm->eapol_cb->get_eapReqData(sm->eapol_ctx); } static void eap_notify_status(struct eap_sm *sm, const char *status, const char *parameter) { wpa_printf(MSG_DEBUG, "EAP: Status notification: %s (param=%s)", status, parameter); if (sm->eapol_cb->notify_status) sm->eapol_cb->notify_status(sm->eapol_ctx, status, parameter); } static void eap_deinit_prev_method(struct eap_sm *sm, const char *txt) { ext_password_free(sm->ext_pw_buf); sm->ext_pw_buf = NULL; if (sm->m == NULL || sm->eap_method_priv == NULL) return; wpa_printf(MSG_DEBUG, "EAP: deinitialize previously used EAP method " "(%d, %s) at %s", sm->selectedMethod, sm->m->name, txt); sm->m->deinit(sm, sm->eap_method_priv); sm->eap_method_priv = NULL; sm->m = NULL; } /** * eap_allowed_method - Check whether EAP method is allowed * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @vendor: Vendor-Id for expanded types or 0 = IETF for legacy types * @method: EAP type * Returns: 1 = allowed EAP method, 0 = not allowed */ int eap_allowed_method(struct eap_sm *sm, int vendor, u32 method) { struct eap_peer_config *config = eap_get_config(sm); int i; struct eap_method_type *m; if (config == NULL || config->eap_methods == NULL) return 1; m = config->eap_methods; for (i = 0; m[i].vendor != EAP_VENDOR_IETF || m[i].method != EAP_TYPE_NONE; i++) { if (m[i].vendor == vendor && m[i].method == method) return 1; } return 0; } /* * This state initializes state machine variables when the machine is * activated (portEnabled = TRUE). This is also used when re-starting * authentication (eapRestart == TRUE). */ SM_STATE(EAP, INITIALIZE) { SM_ENTRY(EAP, INITIALIZE); if (sm->fast_reauth && sm->m && sm->m->has_reauth_data && sm->m->has_reauth_data(sm, sm->eap_method_priv) && !sm->prev_failure) { wpa_printf(MSG_DEBUG, "EAP: maintaining EAP method data for " "fast reauthentication"); sm->m->deinit_for_reauth(sm, sm->eap_method_priv); } else { eap_deinit_prev_method(sm, "INITIALIZE"); } sm->selectedMethod = EAP_TYPE_NONE; sm->methodState = METHOD_NONE; sm->allowNotifications = TRUE; sm->decision = DECISION_FAIL; sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); eapol_set_bool(sm, EAPOL_eapFail, FALSE); os_free(sm->eapKeyData); sm->eapKeyData = NULL; os_free(sm->eapSessionId); sm->eapSessionId = NULL; sm->eapKeyAvailable = FALSE; eapol_set_bool(sm, EAPOL_eapRestart, FALSE); sm->lastId = -1; /* new session - make sure this does not match with * the first EAP-Packet */ /* * RFC 4137 does not reset eapResp and eapNoResp here. However, this * seemed to be able to trigger cases where both were set and if EAPOL * state machine uses eapNoResp first, it may end up not sending a real * reply correctly. This occurred when the workaround in FAIL state set * eapNoResp = TRUE.. Maybe that workaround needs to be fixed to do * something else(?) */ eapol_set_bool(sm, EAPOL_eapResp, FALSE); eapol_set_bool(sm, EAPOL_eapNoResp, FALSE); sm->num_rounds = 0; sm->prev_failure = 0; } /* * This state is reached whenever service from the lower layer is interrupted * or unavailable (portEnabled == FALSE). Immediate transition to INITIALIZE * occurs when the port becomes enabled. */ SM_STATE(EAP, DISABLED) { SM_ENTRY(EAP, DISABLED); sm->num_rounds = 0; /* * RFC 4137 does not describe clearing of idleWhile here, but doing so * allows the timer tick to be stopped more quickly when EAP is not in * use. */ eapol_set_int(sm, EAPOL_idleWhile, 0); } /* * The state machine spends most of its time here, waiting for something to * happen. This state is entered unconditionally from INITIALIZE, DISCARD, and * SEND_RESPONSE states. */ SM_STATE(EAP, IDLE) { SM_ENTRY(EAP, IDLE); } /* * This state is entered when an EAP packet is received (eapReq == TRUE) to * parse the packet header. */ SM_STATE(EAP, RECEIVED) { const struct wpabuf *eapReqData; SM_ENTRY(EAP, RECEIVED); eapReqData = eapol_get_eapReqData(sm); /* parse rxReq, rxSuccess, rxFailure, reqId, reqMethod */ eap_sm_parseEapReq(sm, eapReqData); sm->num_rounds++; } /* * This state is entered when a request for a new type comes in. Either the * correct method is started, or a Nak response is built. */ SM_STATE(EAP, GET_METHOD) { int reinit; EapType method; const struct eap_method *eap_method; SM_ENTRY(EAP, GET_METHOD); if (sm->reqMethod == EAP_TYPE_EXPANDED) method = sm->reqVendorMethod; else method = sm->reqMethod; eap_method = eap_peer_get_eap_method(sm->reqVendor, method); if (!eap_sm_allowMethod(sm, sm->reqVendor, method)) { wpa_printf(MSG_DEBUG, "EAP: vendor %u method %u not allowed", sm->reqVendor, method); wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD "vendor=%u method=%u -> NAK", sm->reqVendor, method); eap_notify_status(sm, "refuse proposed method", eap_method ? eap_method->name : "unknown"); goto nak; } wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_PROPOSED_METHOD "vendor=%u method=%u", sm->reqVendor, method); eap_notify_status(sm, "accept proposed method", eap_method ? eap_method->name : "unknown"); /* * RFC 4137 does not define specific operation for fast * re-authentication (session resumption). The design here is to allow * the previously used method data to be maintained for * re-authentication if the method support session resumption. * Otherwise, the previously used method data is freed and a new method * is allocated here. */ if (sm->fast_reauth && sm->m && sm->m->vendor == sm->reqVendor && sm->m->method == method && sm->m->has_reauth_data && sm->m->has_reauth_data(sm, sm->eap_method_priv)) { wpa_printf(MSG_DEBUG, "EAP: Using previous method data" " for fast re-authentication"); reinit = 1; } else { eap_deinit_prev_method(sm, "GET_METHOD"); reinit = 0; } sm->selectedMethod = sm->reqMethod; if (sm->m == NULL) sm->m = eap_method; if (!sm->m) { wpa_printf(MSG_DEBUG, "EAP: Could not find selected method: " "vendor %d method %d", sm->reqVendor, method); goto nak; } sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; wpa_printf(MSG_DEBUG, "EAP: Initialize selected EAP method: " "vendor %u method %u (%s)", sm->reqVendor, method, sm->m->name); if (reinit) sm->eap_method_priv = sm->m->init_for_reauth( sm, sm->eap_method_priv); else sm->eap_method_priv = sm->m->init(sm); if (sm->eap_method_priv == NULL) { struct eap_peer_config *config = eap_get_config(sm); wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: Failed to initialize EAP method: vendor %u " "method %u (%s)", sm->reqVendor, method, sm->m->name); sm->m = NULL; sm->methodState = METHOD_NONE; sm->selectedMethod = EAP_TYPE_NONE; if (sm->reqMethod == EAP_TYPE_TLS && config && (config->pending_req_pin || config->pending_req_passphrase)) { /* * Return without generating Nak in order to allow * entering of PIN code or passphrase to retry the * current EAP packet. */ wpa_printf(MSG_DEBUG, "EAP: Pending PIN/passphrase " "request - skip Nak"); return; } goto nak; } sm->methodState = METHOD_INIT; wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_METHOD "EAP vendor %u method %u (%s) selected", sm->reqVendor, method, sm->m->name); return; nak: wpabuf_free(sm->eapRespData); sm->eapRespData = NULL; sm->eapRespData = eap_sm_buildNak(sm, sm->reqId); } /* * The method processing happens here. The request from the authenticator is * processed, and an appropriate response packet is built. */ SM_STATE(EAP, METHOD) { struct wpabuf *eapReqData; struct eap_method_ret ret; int min_len = 1; SM_ENTRY(EAP, METHOD); if (sm->m == NULL) { wpa_printf(MSG_WARNING, "EAP::METHOD - method not selected"); return; } eapReqData = eapol_get_eapReqData(sm); if (sm->m->vendor == EAP_VENDOR_IETF && sm->m->method == EAP_TYPE_LEAP) min_len = 0; /* LEAP uses EAP-Success without payload */ if (!eap_hdr_len_valid(eapReqData, min_len)) return; /* * Get ignore, methodState, decision, allowNotifications, and * eapRespData. RFC 4137 uses three separate method procedure (check, * process, and buildResp) in this state. These have been combined into * a single function call to m->process() in order to optimize EAP * method implementation interface a bit. These procedures are only * used from within this METHOD state, so there is no need to keep * these as separate C functions. * * The RFC 4137 procedures return values as follows: * ignore = m.check(eapReqData) * (methodState, decision, allowNotifications) = m.process(eapReqData) * eapRespData = m.buildResp(reqId) */ os_memset(&ret, 0, sizeof(ret)); ret.ignore = sm->ignore; ret.methodState = sm->methodState; ret.decision = sm->decision; ret.allowNotifications = sm->allowNotifications; wpabuf_free(sm->eapRespData); sm->eapRespData = NULL; sm->eapRespData = sm->m->process(sm, sm->eap_method_priv, &ret, eapReqData); wpa_printf(MSG_DEBUG, "EAP: method process -> ignore=%s " "methodState=%s decision=%s", ret.ignore ? "TRUE" : "FALSE", eap_sm_method_state_txt(ret.methodState), eap_sm_decision_txt(ret.decision)); sm->ignore = ret.ignore; if (sm->ignore) return; sm->methodState = ret.methodState; sm->decision = ret.decision; sm->allowNotifications = ret.allowNotifications; if (sm->m->isKeyAvailable && sm->m->getKey && sm->m->isKeyAvailable(sm, sm->eap_method_priv)) { os_free(sm->eapKeyData); sm->eapKeyData = sm->m->getKey(sm, sm->eap_method_priv, &sm->eapKeyDataLen); os_free(sm->eapSessionId); sm->eapSessionId = NULL; if (sm->m->getSessionId) { sm->eapSessionId = sm->m->getSessionId( sm, sm->eap_method_priv, &sm->eapSessionIdLen); wpa_hexdump(MSG_DEBUG, "EAP: Session-Id", sm->eapSessionId, sm->eapSessionIdLen); } } } /* * This state signals the lower layer that a response packet is ready to be * sent. */ SM_STATE(EAP, SEND_RESPONSE) { SM_ENTRY(EAP, SEND_RESPONSE); wpabuf_free(sm->lastRespData); if (sm->eapRespData) { if (sm->workaround) os_memcpy(sm->last_md5, sm->req_md5, 16); sm->lastId = sm->reqId; sm->lastRespData = wpabuf_dup(sm->eapRespData); eapol_set_bool(sm, EAPOL_eapResp, TRUE); } else sm->lastRespData = NULL; eapol_set_bool(sm, EAPOL_eapReq, FALSE); eapol_set_int(sm, EAPOL_idleWhile, sm->ClientTimeout); } /* * This state signals the lower layer that the request was discarded, and no * response packet will be sent at this time. */ SM_STATE(EAP, DISCARD) { SM_ENTRY(EAP, DISCARD); eapol_set_bool(sm, EAPOL_eapReq, FALSE); eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); } /* * Handles requests for Identity method and builds a response. */ SM_STATE(EAP, IDENTITY) { const struct wpabuf *eapReqData; SM_ENTRY(EAP, IDENTITY); eapReqData = eapol_get_eapReqData(sm); if (!eap_hdr_len_valid(eapReqData, 1)) return; eap_sm_processIdentity(sm, eapReqData); wpabuf_free(sm->eapRespData); sm->eapRespData = NULL; sm->eapRespData = eap_sm_buildIdentity(sm, sm->reqId, 0); } /* * Handles requests for Notification method and builds a response. */ SM_STATE(EAP, NOTIFICATION) { const struct wpabuf *eapReqData; SM_ENTRY(EAP, NOTIFICATION); eapReqData = eapol_get_eapReqData(sm); if (!eap_hdr_len_valid(eapReqData, 1)) return; eap_sm_processNotify(sm, eapReqData); wpabuf_free(sm->eapRespData); sm->eapRespData = NULL; sm->eapRespData = eap_sm_buildNotify(sm->reqId); } /* * This state retransmits the previous response packet. */ SM_STATE(EAP, RETRANSMIT) { SM_ENTRY(EAP, RETRANSMIT); wpabuf_free(sm->eapRespData); if (sm->lastRespData) sm->eapRespData = wpabuf_dup(sm->lastRespData); else sm->eapRespData = NULL; } /* * This state is entered in case of a successful completion of authentication * and state machine waits here until port is disabled or EAP authentication is * restarted. */ SM_STATE(EAP, SUCCESS) { SM_ENTRY(EAP, SUCCESS); if (sm->eapKeyData != NULL) sm->eapKeyAvailable = TRUE; eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); /* * RFC 4137 does not clear eapReq here, but this seems to be required * to avoid processing the same request twice when state machine is * initialized. */ eapol_set_bool(sm, EAPOL_eapReq, FALSE); /* * RFC 4137 does not set eapNoResp here, but this seems to be required * to get EAPOL Supplicant backend state machine into SUCCESS state. In * addition, either eapResp or eapNoResp is required to be set after * processing the received EAP frame. */ eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS "EAP authentication completed successfully"); } /* * This state is entered in case of a failure and state machine waits here * until port is disabled or EAP authentication is restarted. */ SM_STATE(EAP, FAILURE) { SM_ENTRY(EAP, FAILURE); eapol_set_bool(sm, EAPOL_eapFail, TRUE); /* * RFC 4137 does not clear eapReq here, but this seems to be required * to avoid processing the same request twice when state machine is * initialized. */ eapol_set_bool(sm, EAPOL_eapReq, FALSE); /* * RFC 4137 does not set eapNoResp here. However, either eapResp or * eapNoResp is required to be set after processing the received EAP * frame. */ eapol_set_bool(sm, EAPOL_eapNoResp, TRUE); wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_FAILURE "EAP authentication failed"); sm->prev_failure = 1; } static int eap_success_workaround(struct eap_sm *sm, int reqId, int lastId) { /* * At least Microsoft IAS and Meetinghouse Aegis seem to be sending * EAP-Success/Failure with lastId + 1 even though RFC 3748 and * RFC 4137 require that reqId == lastId. In addition, it looks like * Ringmaster v2.1.2.0 would be using lastId + 2 in EAP-Success. * * Accept this kind of Id if EAP workarounds are enabled. These are * unauthenticated plaintext messages, so this should have minimal * security implications (bit easier to fake EAP-Success/Failure). */ if (sm->workaround && (reqId == ((lastId + 1) & 0xff) || reqId == ((lastId + 2) & 0xff))) { wpa_printf(MSG_DEBUG, "EAP: Workaround for unexpected " "identifier field in EAP Success: " "reqId=%d lastId=%d (these are supposed to be " "same)", reqId, lastId); return 1; } wpa_printf(MSG_DEBUG, "EAP: EAP-Success Id mismatch - reqId=%d " "lastId=%d", reqId, lastId); return 0; } /* * RFC 4137 - Appendix A.1: EAP Peer State Machine - State transitions */ static void eap_peer_sm_step_idle(struct eap_sm *sm) { /* * The first three transitions are from RFC 4137. The last two are * local additions to handle special cases with LEAP and PEAP server * not sending EAP-Success in some cases. */ if (eapol_get_bool(sm, EAPOL_eapReq)) SM_ENTER(EAP, RECEIVED); else if ((eapol_get_bool(sm, EAPOL_altAccept) && sm->decision != DECISION_FAIL) || (eapol_get_int(sm, EAPOL_idleWhile) == 0 && sm->decision == DECISION_UNCOND_SUCC)) SM_ENTER(EAP, SUCCESS); else if (eapol_get_bool(sm, EAPOL_altReject) || (eapol_get_int(sm, EAPOL_idleWhile) == 0 && sm->decision != DECISION_UNCOND_SUCC) || (eapol_get_bool(sm, EAPOL_altAccept) && sm->methodState != METHOD_CONT && sm->decision == DECISION_FAIL)) SM_ENTER(EAP, FAILURE); else if (sm->selectedMethod == EAP_TYPE_LEAP && sm->leap_done && sm->decision != DECISION_FAIL && sm->methodState == METHOD_DONE) SM_ENTER(EAP, SUCCESS); else if (sm->selectedMethod == EAP_TYPE_PEAP && sm->peap_done && sm->decision != DECISION_FAIL && sm->methodState == METHOD_DONE) SM_ENTER(EAP, SUCCESS); } static int eap_peer_req_is_duplicate(struct eap_sm *sm) { int duplicate; duplicate = (sm->reqId == sm->lastId) && sm->rxReq; if (sm->workaround && duplicate && os_memcmp(sm->req_md5, sm->last_md5, 16) != 0) { /* * RFC 4137 uses (reqId == lastId) as the only verification for * duplicate EAP requests. However, this misses cases where the * AS is incorrectly using the same id again; and * unfortunately, such implementations exist. Use MD5 hash as * an extra verification for the packets being duplicate to * workaround these issues. */ wpa_printf(MSG_DEBUG, "EAP: AS used the same Id again, but " "EAP packets were not identical"); wpa_printf(MSG_DEBUG, "EAP: workaround - assume this is not a " "duplicate packet"); duplicate = 0; } return duplicate; } static void eap_peer_sm_step_received(struct eap_sm *sm) { int duplicate = eap_peer_req_is_duplicate(sm); /* * Two special cases below for LEAP are local additions to work around * odd LEAP behavior (EAP-Success in the middle of authentication and * then swapped roles). Other transitions are based on RFC 4137. */ if (sm->rxSuccess && sm->decision != DECISION_FAIL && (sm->reqId == sm->lastId || eap_success_workaround(sm, sm->reqId, sm->lastId))) SM_ENTER(EAP, SUCCESS); else if (sm->methodState != METHOD_CONT && ((sm->rxFailure && sm->decision != DECISION_UNCOND_SUCC) || (sm->rxSuccess && sm->decision == DECISION_FAIL && (sm->selectedMethod != EAP_TYPE_LEAP || sm->methodState != METHOD_MAY_CONT))) && (sm->reqId == sm->lastId || eap_success_workaround(sm, sm->reqId, sm->lastId))) SM_ENTER(EAP, FAILURE); else if (sm->rxReq && duplicate) SM_ENTER(EAP, RETRANSMIT); else if (sm->rxReq && !duplicate && sm->reqMethod == EAP_TYPE_NOTIFICATION && sm->allowNotifications) SM_ENTER(EAP, NOTIFICATION); else if (sm->rxReq && !duplicate && sm->selectedMethod == EAP_TYPE_NONE && sm->reqMethod == EAP_TYPE_IDENTITY) SM_ENTER(EAP, IDENTITY); else if (sm->rxReq && !duplicate && sm->selectedMethod == EAP_TYPE_NONE && sm->reqMethod != EAP_TYPE_IDENTITY && sm->reqMethod != EAP_TYPE_NOTIFICATION) SM_ENTER(EAP, GET_METHOD); else if (sm->rxReq && !duplicate && sm->reqMethod == sm->selectedMethod && sm->methodState != METHOD_DONE) SM_ENTER(EAP, METHOD); else if (sm->selectedMethod == EAP_TYPE_LEAP && (sm->rxSuccess || sm->rxResp)) SM_ENTER(EAP, METHOD); else SM_ENTER(EAP, DISCARD); } static void eap_peer_sm_step_local(struct eap_sm *sm) { switch (sm->EAP_state) { case EAP_INITIALIZE: SM_ENTER(EAP, IDLE); break; case EAP_DISABLED: if (eapol_get_bool(sm, EAPOL_portEnabled) && !sm->force_disabled) SM_ENTER(EAP, INITIALIZE); break; case EAP_IDLE: eap_peer_sm_step_idle(sm); break; case EAP_RECEIVED: eap_peer_sm_step_received(sm); break; case EAP_GET_METHOD: if (sm->selectedMethod == sm->reqMethod) SM_ENTER(EAP, METHOD); else SM_ENTER(EAP, SEND_RESPONSE); break; case EAP_METHOD: if (sm->ignore) SM_ENTER(EAP, DISCARD); else SM_ENTER(EAP, SEND_RESPONSE); break; case EAP_SEND_RESPONSE: SM_ENTER(EAP, IDLE); break; case EAP_DISCARD: SM_ENTER(EAP, IDLE); break; case EAP_IDENTITY: SM_ENTER(EAP, SEND_RESPONSE); break; case EAP_NOTIFICATION: SM_ENTER(EAP, SEND_RESPONSE); break; case EAP_RETRANSMIT: SM_ENTER(EAP, SEND_RESPONSE); break; case EAP_SUCCESS: break; case EAP_FAILURE: break; } } SM_STEP(EAP) { /* Global transitions */ if (eapol_get_bool(sm, EAPOL_eapRestart) && eapol_get_bool(sm, EAPOL_portEnabled)) SM_ENTER_GLOBAL(EAP, INITIALIZE); else if (!eapol_get_bool(sm, EAPOL_portEnabled) || sm->force_disabled) SM_ENTER_GLOBAL(EAP, DISABLED); else if (sm->num_rounds > EAP_MAX_AUTH_ROUNDS) { /* RFC 4137 does not place any limit on number of EAP messages * in an authentication session. However, some error cases have * ended up in a state were EAP messages were sent between the * peer and server in a loop (e.g., TLS ACK frame in both * direction). Since this is quite undesired outcome, limit the * total number of EAP round-trips and abort authentication if * this limit is exceeded. */ if (sm->num_rounds == EAP_MAX_AUTH_ROUNDS + 1) { wpa_msg(sm->msg_ctx, MSG_INFO, "EAP: more than %d " "authentication rounds - abort", EAP_MAX_AUTH_ROUNDS); sm->num_rounds++; SM_ENTER_GLOBAL(EAP, FAILURE); } } else { /* Local transitions */ eap_peer_sm_step_local(sm); } } static Boolean eap_sm_allowMethod(struct eap_sm *sm, int vendor, EapType method) { if (!eap_allowed_method(sm, vendor, method)) { wpa_printf(MSG_DEBUG, "EAP: configuration does not allow: " "vendor %u method %u", vendor, method); return FALSE; } if (eap_peer_get_eap_method(vendor, method)) return TRUE; wpa_printf(MSG_DEBUG, "EAP: not included in build: " "vendor %u method %u", vendor, method); return FALSE; } static struct wpabuf * eap_sm_build_expanded_nak( struct eap_sm *sm, int id, const struct eap_method *methods, size_t count) { struct wpabuf *resp; int found = 0; const struct eap_method *m; wpa_printf(MSG_DEBUG, "EAP: Building expanded EAP-Nak"); /* RFC 3748 - 5.3.2: Expanded Nak */ resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_EXPANDED, 8 + 8 * (count + 1), EAP_CODE_RESPONSE, id); if (resp == NULL) return NULL; wpabuf_put_be24(resp, EAP_VENDOR_IETF); wpabuf_put_be32(resp, EAP_TYPE_NAK); for (m = methods; m; m = m->next) { if (sm->reqVendor == m->vendor && sm->reqVendorMethod == m->method) continue; /* do not allow the current method again */ if (eap_allowed_method(sm, m->vendor, m->method)) { wpa_printf(MSG_DEBUG, "EAP: allowed type: " "vendor=%u method=%u", m->vendor, m->method); wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); wpabuf_put_be24(resp, m->vendor); wpabuf_put_be32(resp, m->method); found++; } } if (!found) { wpa_printf(MSG_DEBUG, "EAP: no more allowed methods"); wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); wpabuf_put_be24(resp, EAP_VENDOR_IETF); wpabuf_put_be32(resp, EAP_TYPE_NONE); } eap_update_len(resp); return resp; } static struct wpabuf * eap_sm_buildNak(struct eap_sm *sm, int id) { struct wpabuf *resp; u8 *start; int found = 0, expanded_found = 0; size_t count; const struct eap_method *methods, *m; wpa_printf(MSG_DEBUG, "EAP: Building EAP-Nak (requested type %u " "vendor=%u method=%u not allowed)", sm->reqMethod, sm->reqVendor, sm->reqVendorMethod); methods = eap_peer_get_methods(&count); if (methods == NULL) return NULL; if (sm->reqMethod == EAP_TYPE_EXPANDED) return eap_sm_build_expanded_nak(sm, id, methods, count); /* RFC 3748 - 5.3.1: Legacy Nak */ resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NAK, sizeof(struct eap_hdr) + 1 + count + 1, EAP_CODE_RESPONSE, id); if (resp == NULL) return NULL; start = wpabuf_put(resp, 0); for (m = methods; m; m = m->next) { if (m->vendor == EAP_VENDOR_IETF && m->method == sm->reqMethod) continue; /* do not allow the current method again */ if (eap_allowed_method(sm, m->vendor, m->method)) { if (m->vendor != EAP_VENDOR_IETF) { if (expanded_found) continue; expanded_found = 1; wpabuf_put_u8(resp, EAP_TYPE_EXPANDED); } else wpabuf_put_u8(resp, m->method); found++; } } if (!found) wpabuf_put_u8(resp, EAP_TYPE_NONE); wpa_hexdump(MSG_DEBUG, "EAP: allowed methods", start, found); eap_update_len(resp); return resp; } static void eap_sm_processIdentity(struct eap_sm *sm, const struct wpabuf *req) { const u8 *pos; size_t msg_len; wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_STARTED "EAP authentication started"); eap_notify_status(sm, "started", ""); pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, req, &msg_len); if (pos == NULL) return; /* * RFC 3748 - 5.1: Identity * Data field may contain a displayable message in UTF-8. If this * includes NUL-character, only the data before that should be * displayed. Some EAP implementasitons may piggy-back additional * options after the NUL. */ /* TODO: could save displayable message so that it can be shown to the * user in case of interaction is required */ wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Identity data", pos, msg_len); } #ifdef PCSC_FUNCS /* * Rules for figuring out MNC length based on IMSI for SIM cards that do not * include MNC length field. */ static int mnc_len_from_imsi(const char *imsi) { char mcc_str[4]; unsigned int mcc; os_memcpy(mcc_str, imsi, 3); mcc_str[3] = '\0'; mcc = atoi(mcc_str); if (mcc == 228) return 2; /* Networks in Switzerland use 2-digit MNC */ if (mcc == 244) return 2; /* Networks in Finland use 2-digit MNC */ return -1; } static int eap_sm_append_3gpp_realm(struct eap_sm *sm, char *imsi, size_t max_len, size_t *imsi_len) { int mnc_len; char *pos, mnc[4]; if (*imsi_len + 36 > max_len) { wpa_printf(MSG_WARNING, "No room for realm in IMSI buffer"); return -1; } /* MNC (2 or 3 digits) */ mnc_len = scard_get_mnc_len(sm->scard_ctx); if (mnc_len < 0) mnc_len = mnc_len_from_imsi(imsi); if (mnc_len < 0) { wpa_printf(MSG_INFO, "Failed to get MNC length from (U)SIM " "assuming 3"); mnc_len = 3; } if (mnc_len == 2) { mnc[0] = '0'; mnc[1] = imsi[3]; mnc[2] = imsi[4]; } else if (mnc_len == 3) { mnc[0] = imsi[3]; mnc[1] = imsi[4]; mnc[2] = imsi[5]; } mnc[3] = '\0'; pos = imsi + *imsi_len; pos += os_snprintf(pos, imsi + max_len - pos, "@wlan.mnc%s.mcc%c%c%c.3gppnetwork.org", mnc, imsi[0], imsi[1], imsi[2]); *imsi_len = pos - imsi; return 0; } static int eap_sm_imsi_identity(struct eap_sm *sm, struct eap_peer_config *conf) { enum { EAP_SM_SIM, EAP_SM_AKA, EAP_SM_AKA_PRIME } method = EAP_SM_SIM; char imsi[100]; size_t imsi_len; struct eap_method_type *m = conf->eap_methods; int i; imsi_len = sizeof(imsi); if (scard_get_imsi(sm->scard_ctx, imsi, &imsi_len)) { wpa_printf(MSG_WARNING, "Failed to get IMSI from SIM"); return -1; } wpa_hexdump_ascii(MSG_DEBUG, "IMSI", (u8 *) imsi, imsi_len); if (imsi_len < 7) { wpa_printf(MSG_WARNING, "Too short IMSI for SIM identity"); return -1; } if (eap_sm_append_3gpp_realm(sm, imsi, sizeof(imsi), &imsi_len) < 0) { wpa_printf(MSG_WARNING, "Could not add realm to SIM identity"); return -1; } wpa_hexdump_ascii(MSG_DEBUG, "IMSI + realm", (u8 *) imsi, imsi_len); for (i = 0; m && (m[i].vendor != EAP_VENDOR_IETF || m[i].method != EAP_TYPE_NONE); i++) { if (m[i].vendor == EAP_VENDOR_IETF && m[i].method == EAP_TYPE_AKA_PRIME) { method = EAP_SM_AKA_PRIME; break; } if (m[i].vendor == EAP_VENDOR_IETF && m[i].method == EAP_TYPE_AKA) { method = EAP_SM_AKA; break; } } os_free(conf->identity); conf->identity = os_malloc(1 + imsi_len); if (conf->identity == NULL) { wpa_printf(MSG_WARNING, "Failed to allocate buffer for " "IMSI-based identity"); return -1; } switch (method) { case EAP_SM_SIM: conf->identity[0] = '1'; break; case EAP_SM_AKA: conf->identity[0] = '0'; break; case EAP_SM_AKA_PRIME: conf->identity[0] = '6'; break; } os_memcpy(conf->identity + 1, imsi, imsi_len); conf->identity_len = 1 + imsi_len; return 0; } #endif /* PCSC_FUNCS */ static int eap_sm_set_scard_pin(struct eap_sm *sm, struct eap_peer_config *conf) { #ifdef PCSC_FUNCS if (scard_set_pin(sm->scard_ctx, conf->pin)) { /* * Make sure the same PIN is not tried again in order to avoid * blocking SIM. */ os_free(conf->pin); conf->pin = NULL; wpa_printf(MSG_WARNING, "PIN validation failed"); eap_sm_request_pin(sm); return -1; } return 0; #else /* PCSC_FUNCS */ return -1; #endif /* PCSC_FUNCS */ } static int eap_sm_get_scard_identity(struct eap_sm *sm, struct eap_peer_config *conf) { #ifdef PCSC_FUNCS if (eap_sm_set_scard_pin(sm, conf)) return -1; return eap_sm_imsi_identity(sm, conf); #else /* PCSC_FUNCS */ return -1; #endif /* PCSC_FUNCS */ } /** * eap_sm_buildIdentity - Build EAP-Identity/Response for the current network * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @id: EAP identifier for the packet * @encrypted: Whether the packet is for encrypted tunnel (EAP phase 2) * Returns: Pointer to the allocated EAP-Identity/Response packet or %NULL on * failure * * This function allocates and builds an EAP-Identity/Response packet for the * current network. The caller is responsible for freeing the returned data. */ struct wpabuf * eap_sm_buildIdentity(struct eap_sm *sm, int id, int encrypted) { struct eap_peer_config *config = eap_get_config(sm); struct wpabuf *resp; const u8 *identity; size_t identity_len; if (config == NULL) { wpa_printf(MSG_WARNING, "EAP: buildIdentity: configuration " "was not available"); return NULL; } if (sm->m && sm->m->get_identity && (identity = sm->m->get_identity(sm, sm->eap_method_priv, &identity_len)) != NULL) { wpa_hexdump_ascii(MSG_DEBUG, "EAP: using method re-auth " "identity", identity, identity_len); } else if (!encrypted && config->anonymous_identity) { identity = config->anonymous_identity; identity_len = config->anonymous_identity_len; wpa_hexdump_ascii(MSG_DEBUG, "EAP: using anonymous identity", identity, identity_len); } else { identity = config->identity; identity_len = config->identity_len; wpa_hexdump_ascii(MSG_DEBUG, "EAP: using real identity", identity, identity_len); } if (identity == NULL) { wpa_printf(MSG_WARNING, "EAP: buildIdentity: identity " "configuration was not available"); if (config->pcsc) { if (eap_sm_get_scard_identity(sm, config) < 0) return NULL; identity = config->identity; identity_len = config->identity_len; wpa_hexdump_ascii(MSG_DEBUG, "permanent identity from " "IMSI", identity, identity_len); } else { eap_sm_request_identity(sm); return NULL; } } else if (config->pcsc) { if (eap_sm_set_scard_pin(sm, config) < 0) return NULL; } resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_IDENTITY, identity_len, EAP_CODE_RESPONSE, id); if (resp == NULL) return NULL; wpabuf_put_data(resp, identity, identity_len); return resp; } static void eap_sm_processNotify(struct eap_sm *sm, const struct wpabuf *req) { const u8 *pos; char *msg; size_t i, msg_len; pos = eap_hdr_validate(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, req, &msg_len); if (pos == NULL) return; wpa_hexdump_ascii(MSG_DEBUG, "EAP: EAP-Request Notification data", pos, msg_len); msg = os_malloc(msg_len + 1); if (msg == NULL) return; for (i = 0; i < msg_len; i++) msg[i] = isprint(pos[i]) ? (char) pos[i] : '_'; msg[msg_len] = '\0'; wpa_msg(sm->msg_ctx, MSG_INFO, "%s%s", WPA_EVENT_EAP_NOTIFICATION, msg); os_free(msg); } static struct wpabuf * eap_sm_buildNotify(int id) { struct wpabuf *resp; wpa_printf(MSG_DEBUG, "EAP: Generating EAP-Response Notification"); resp = eap_msg_alloc(EAP_VENDOR_IETF, EAP_TYPE_NOTIFICATION, 0, EAP_CODE_RESPONSE, id); if (resp == NULL) return NULL; return resp; } static void eap_sm_parseEapReq(struct eap_sm *sm, const struct wpabuf *req) { const struct eap_hdr *hdr; size_t plen; const u8 *pos; sm->rxReq = sm->rxResp = sm->rxSuccess = sm->rxFailure = FALSE; sm->reqId = 0; sm->reqMethod = EAP_TYPE_NONE; sm->reqVendor = EAP_VENDOR_IETF; sm->reqVendorMethod = EAP_TYPE_NONE; if (req == NULL || wpabuf_len(req) < sizeof(*hdr)) return; hdr = wpabuf_head(req); plen = be_to_host16(hdr->length); if (plen > wpabuf_len(req)) { wpa_printf(MSG_DEBUG, "EAP: Ignored truncated EAP-Packet " "(len=%lu plen=%lu)", (unsigned long) wpabuf_len(req), (unsigned long) plen); return; } sm->reqId = hdr->identifier; if (sm->workaround) { const u8 *addr[1]; addr[0] = wpabuf_head(req); md5_vector(1, addr, &plen, sm->req_md5); } switch (hdr->code) { case EAP_CODE_REQUEST: if (plen < sizeof(*hdr) + 1) { wpa_printf(MSG_DEBUG, "EAP: Too short EAP-Request - " "no Type field"); return; } sm->rxReq = TRUE; pos = (const u8 *) (hdr + 1); sm->reqMethod = *pos++; if (sm->reqMethod == EAP_TYPE_EXPANDED) { if (plen < sizeof(*hdr) + 8) { wpa_printf(MSG_DEBUG, "EAP: Ignored truncated " "expanded EAP-Packet (plen=%lu)", (unsigned long) plen); return; } sm->reqVendor = WPA_GET_BE24(pos); pos += 3; sm->reqVendorMethod = WPA_GET_BE32(pos); } wpa_printf(MSG_DEBUG, "EAP: Received EAP-Request id=%d " "method=%u vendor=%u vendorMethod=%u", sm->reqId, sm->reqMethod, sm->reqVendor, sm->reqVendorMethod); break; case EAP_CODE_RESPONSE: if (sm->selectedMethod == EAP_TYPE_LEAP) { /* * LEAP differs from RFC 4137 by using reversed roles * for mutual authentication and because of this, we * need to accept EAP-Response frames if LEAP is used. */ if (plen < sizeof(*hdr) + 1) { wpa_printf(MSG_DEBUG, "EAP: Too short " "EAP-Response - no Type field"); return; } sm->rxResp = TRUE; pos = (const u8 *) (hdr + 1); sm->reqMethod = *pos; wpa_printf(MSG_DEBUG, "EAP: Received EAP-Response for " "LEAP method=%d id=%d", sm->reqMethod, sm->reqId); break; } wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Response"); break; case EAP_CODE_SUCCESS: wpa_printf(MSG_DEBUG, "EAP: Received EAP-Success"); eap_notify_status(sm, "completion", "success"); sm->rxSuccess = TRUE; break; case EAP_CODE_FAILURE: wpa_printf(MSG_DEBUG, "EAP: Received EAP-Failure"); eap_notify_status(sm, "completion", "failure"); sm->rxFailure = TRUE; break; default: wpa_printf(MSG_DEBUG, "EAP: Ignored EAP-Packet with unknown " "code %d", hdr->code); break; } } static void eap_peer_sm_tls_event(void *ctx, enum tls_event ev, union tls_event_data *data) { struct eap_sm *sm = ctx; char *hash_hex = NULL; switch (ev) { case TLS_CERT_CHAIN_SUCCESS: eap_notify_status(sm, "remote certificate verification", "success"); break; case TLS_CERT_CHAIN_FAILURE: wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_TLS_CERT_ERROR "reason=%d depth=%d subject='%s' err='%s'", data->cert_fail.reason, data->cert_fail.depth, data->cert_fail.subject, data->cert_fail.reason_txt); eap_notify_status(sm, "remote certificate verification", data->cert_fail.reason_txt); break; case TLS_PEER_CERTIFICATE: if (!sm->eapol_cb->notify_cert) break; if (data->peer_cert.hash) { size_t len = data->peer_cert.hash_len * 2 + 1; hash_hex = os_malloc(len); if (hash_hex) { wpa_snprintf_hex(hash_hex, len, data->peer_cert.hash, data->peer_cert.hash_len); } } sm->eapol_cb->notify_cert(sm->eapol_ctx, data->peer_cert.depth, data->peer_cert.subject, hash_hex, data->peer_cert.cert); break; case TLS_ALERT: if (data->alert.is_local) eap_notify_status(sm, "local TLS alert", data->alert.description); else eap_notify_status(sm, "remote TLS alert", data->alert.description); break; } os_free(hash_hex); } /** * eap_peer_sm_init - Allocate and initialize EAP peer state machine * @eapol_ctx: Context data to be used with eapol_cb calls * @eapol_cb: Pointer to EAPOL callback functions * @msg_ctx: Context data for wpa_msg() calls * @conf: EAP configuration * Returns: Pointer to the allocated EAP state machine or %NULL on failure * * This function allocates and initializes an EAP state machine. In addition, * this initializes TLS library for the new EAP state machine. eapol_cb pointer * will be in use until eap_peer_sm_deinit() is used to deinitialize this EAP * state machine. Consequently, the caller must make sure that this data * structure remains alive while the EAP state machine is active. */ struct eap_sm * eap_peer_sm_init(void *eapol_ctx, struct eapol_callbacks *eapol_cb, void *msg_ctx, struct eap_config *conf) { struct eap_sm *sm; struct tls_config tlsconf; sm = os_zalloc(sizeof(*sm)); if (sm == NULL) return NULL; sm->eapol_ctx = eapol_ctx; sm->eapol_cb = eapol_cb; sm->msg_ctx = msg_ctx; sm->ClientTimeout = EAP_CLIENT_TIMEOUT_DEFAULT; sm->wps = conf->wps; os_memset(&tlsconf, 0, sizeof(tlsconf)); tlsconf.opensc_engine_path = conf->opensc_engine_path; tlsconf.pkcs11_engine_path = conf->pkcs11_engine_path; tlsconf.pkcs11_module_path = conf->pkcs11_module_path; #ifdef CONFIG_FIPS tlsconf.fips_mode = 1; #endif /* CONFIG_FIPS */ tlsconf.event_cb = eap_peer_sm_tls_event; tlsconf.cb_ctx = sm; tlsconf.cert_in_cb = conf->cert_in_cb; sm->ssl_ctx = tls_init(&tlsconf); if (sm->ssl_ctx == NULL) { wpa_printf(MSG_WARNING, "SSL: Failed to initialize TLS " "context."); os_free(sm); return NULL; } sm->ssl_ctx2 = tls_init(&tlsconf); if (sm->ssl_ctx2 == NULL) { wpa_printf(MSG_INFO, "SSL: Failed to initialize TLS " "context (2)."); /* Run without separate TLS context within TLS tunnel */ } return sm; } /** * eap_peer_sm_deinit - Deinitialize and free an EAP peer state machine * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * This function deinitializes EAP state machine and frees all allocated * resources. */ void eap_peer_sm_deinit(struct eap_sm *sm) { if (sm == NULL) return; eap_deinit_prev_method(sm, "EAP deinit"); eap_sm_abort(sm); if (sm->ssl_ctx2) tls_deinit(sm->ssl_ctx2); tls_deinit(sm->ssl_ctx); os_free(sm); } /** * eap_peer_sm_step - Step EAP peer state machine * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * Returns: 1 if EAP state was changed or 0 if not * * This function advances EAP state machine to a new state to match with the * current variables. This should be called whenever variables used by the EAP * state machine have changed. */ int eap_peer_sm_step(struct eap_sm *sm) { int res = 0; do { sm->changed = FALSE; SM_STEP_RUN(EAP); if (sm->changed) res = 1; } while (sm->changed); return res; } /** * eap_sm_abort - Abort EAP authentication * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * Release system resources that have been allocated for the authentication * session without fully deinitializing the EAP state machine. */ void eap_sm_abort(struct eap_sm *sm) { wpabuf_free(sm->lastRespData); sm->lastRespData = NULL; wpabuf_free(sm->eapRespData); sm->eapRespData = NULL; os_free(sm->eapKeyData); sm->eapKeyData = NULL; os_free(sm->eapSessionId); sm->eapSessionId = NULL; /* This is not clearly specified in the EAP statemachines draft, but * it seems necessary to make sure that some of the EAPOL variables get * cleared for the next authentication. */ eapol_set_bool(sm, EAPOL_eapSuccess, FALSE); } #ifdef CONFIG_CTRL_IFACE static const char * eap_sm_state_txt(int state) { switch (state) { case EAP_INITIALIZE: return "INITIALIZE"; case EAP_DISABLED: return "DISABLED"; case EAP_IDLE: return "IDLE"; case EAP_RECEIVED: return "RECEIVED"; case EAP_GET_METHOD: return "GET_METHOD"; case EAP_METHOD: return "METHOD"; case EAP_SEND_RESPONSE: return "SEND_RESPONSE"; case EAP_DISCARD: return "DISCARD"; case EAP_IDENTITY: return "IDENTITY"; case EAP_NOTIFICATION: return "NOTIFICATION"; case EAP_RETRANSMIT: return "RETRANSMIT"; case EAP_SUCCESS: return "SUCCESS"; case EAP_FAILURE: return "FAILURE"; default: return "UNKNOWN"; } } #endif /* CONFIG_CTRL_IFACE */ #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) static const char * eap_sm_method_state_txt(EapMethodState state) { switch (state) { case METHOD_NONE: return "NONE"; case METHOD_INIT: return "INIT"; case METHOD_CONT: return "CONT"; case METHOD_MAY_CONT: return "MAY_CONT"; case METHOD_DONE: return "DONE"; default: return "UNKNOWN"; } } static const char * eap_sm_decision_txt(EapDecision decision) { switch (decision) { case DECISION_FAIL: return "FAIL"; case DECISION_COND_SUCC: return "COND_SUCC"; case DECISION_UNCOND_SUCC: return "UNCOND_SUCC"; default: return "UNKNOWN"; } } #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ #ifdef CONFIG_CTRL_IFACE /** * eap_sm_get_status - Get EAP state machine status * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @buf: Buffer for status information * @buflen: Maximum buffer length * @verbose: Whether to include verbose status information * Returns: Number of bytes written to buf. * * Query EAP state machine for status information. This function fills in a * text area with current status information from the EAPOL state machine. If * the buffer (buf) is not large enough, status information will be truncated * to fit the buffer. */ int eap_sm_get_status(struct eap_sm *sm, char *buf, size_t buflen, int verbose) { int len, ret; if (sm == NULL) return 0; len = os_snprintf(buf, buflen, "EAP state=%s\n", eap_sm_state_txt(sm->EAP_state)); if (len < 0 || (size_t) len >= buflen) return 0; if (sm->selectedMethod != EAP_TYPE_NONE) { const char *name; if (sm->m) { name = sm->m->name; } else { const struct eap_method *m = eap_peer_get_eap_method(EAP_VENDOR_IETF, sm->selectedMethod); if (m) name = m->name; else name = "?"; } ret = os_snprintf(buf + len, buflen - len, "selectedMethod=%d (EAP-%s)\n", sm->selectedMethod, name); if (ret < 0 || (size_t) ret >= buflen - len) return len; len += ret; if (sm->m && sm->m->get_status) { len += sm->m->get_status(sm, sm->eap_method_priv, buf + len, buflen - len, verbose); } } if (verbose) { ret = os_snprintf(buf + len, buflen - len, "reqMethod=%d\n" "methodState=%s\n" "decision=%s\n" "ClientTimeout=%d\n", sm->reqMethod, eap_sm_method_state_txt(sm->methodState), eap_sm_decision_txt(sm->decision), sm->ClientTimeout); if (ret < 0 || (size_t) ret >= buflen - len) return len; len += ret; } return len; } #endif /* CONFIG_CTRL_IFACE */ #if defined(CONFIG_CTRL_IFACE) || !defined(CONFIG_NO_STDOUT_DEBUG) static void eap_sm_request(struct eap_sm *sm, enum wpa_ctrl_req_type field, const char *msg, size_t msglen) { struct eap_peer_config *config; char *txt = NULL, *tmp; if (sm == NULL) return; config = eap_get_config(sm); if (config == NULL) return; switch (field) { case WPA_CTRL_REQ_EAP_IDENTITY: config->pending_req_identity++; break; case WPA_CTRL_REQ_EAP_PASSWORD: config->pending_req_password++; break; case WPA_CTRL_REQ_EAP_NEW_PASSWORD: config->pending_req_new_password++; break; case WPA_CTRL_REQ_EAP_PIN: config->pending_req_pin++; break; case WPA_CTRL_REQ_EAP_OTP: if (msg) { tmp = os_malloc(msglen + 3); if (tmp == NULL) return; tmp[0] = '['; os_memcpy(tmp + 1, msg, msglen); tmp[msglen + 1] = ']'; tmp[msglen + 2] = '\0'; txt = tmp; os_free(config->pending_req_otp); config->pending_req_otp = tmp; config->pending_req_otp_len = msglen + 3; } else { if (config->pending_req_otp == NULL) return; txt = config->pending_req_otp; } break; case WPA_CTRL_REQ_EAP_PASSPHRASE: config->pending_req_passphrase++; break; default: return; } if (sm->eapol_cb->eap_param_needed) sm->eapol_cb->eap_param_needed(sm->eapol_ctx, field, txt); } #else /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ #define eap_sm_request(sm, type, msg, msglen) do { } while (0) #endif /* CONFIG_CTRL_IFACE || !CONFIG_NO_STDOUT_DEBUG */ const char * eap_sm_get_method_name(struct eap_sm *sm) { if (sm->m == NULL) return "UNKNOWN"; return sm->m->name; } /** * eap_sm_request_identity - Request identity from user (ctrl_iface) * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * EAP methods can call this function to request identity information for the * current network. This is normally called when the identity is not included * in the network configuration. The request will be sent to monitor programs * through the control interface. */ void eap_sm_request_identity(struct eap_sm *sm) { eap_sm_request(sm, WPA_CTRL_REQ_EAP_IDENTITY, NULL, 0); } /** * eap_sm_request_password - Request password from user (ctrl_iface) * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * EAP methods can call this function to request password information for the * current network. This is normally called when the password is not included * in the network configuration. The request will be sent to monitor programs * through the control interface. */ void eap_sm_request_password(struct eap_sm *sm) { eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSWORD, NULL, 0); } /** * eap_sm_request_new_password - Request new password from user (ctrl_iface) * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * EAP methods can call this function to request new password information for * the current network. This is normally called when the EAP method indicates * that the current password has expired and password change is required. The * request will be sent to monitor programs through the control interface. */ void eap_sm_request_new_password(struct eap_sm *sm) { eap_sm_request(sm, WPA_CTRL_REQ_EAP_NEW_PASSWORD, NULL, 0); } /** * eap_sm_request_pin - Request SIM or smart card PIN from user (ctrl_iface) * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * EAP methods can call this function to request SIM or smart card PIN * information for the current network. This is normally called when the PIN is * not included in the network configuration. The request will be sent to * monitor programs through the control interface. */ void eap_sm_request_pin(struct eap_sm *sm) { eap_sm_request(sm, WPA_CTRL_REQ_EAP_PIN, NULL, 0); } /** * eap_sm_request_otp - Request one time password from user (ctrl_iface) * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @msg: Message to be displayed to the user when asking for OTP * @msg_len: Length of the user displayable message * * EAP methods can call this function to request open time password (OTP) for * the current network. The request will be sent to monitor programs through * the control interface. */ void eap_sm_request_otp(struct eap_sm *sm, const char *msg, size_t msg_len) { eap_sm_request(sm, WPA_CTRL_REQ_EAP_OTP, msg, msg_len); } /** * eap_sm_request_passphrase - Request passphrase from user (ctrl_iface) * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * EAP methods can call this function to request passphrase for a private key * for the current network. This is normally called when the passphrase is not * included in the network configuration. The request will be sent to monitor * programs through the control interface. */ void eap_sm_request_passphrase(struct eap_sm *sm) { eap_sm_request(sm, WPA_CTRL_REQ_EAP_PASSPHRASE, NULL, 0); } /** * eap_sm_notify_ctrl_attached - Notification of attached monitor * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * Notify EAP state machines that a monitor was attached to the control * interface to trigger re-sending of pending requests for user input. */ void eap_sm_notify_ctrl_attached(struct eap_sm *sm) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return; /* Re-send any pending requests for user data since a new control * interface was added. This handles cases where the EAP authentication * starts immediately after system startup when the user interface is * not yet running. */ if (config->pending_req_identity) eap_sm_request_identity(sm); if (config->pending_req_password) eap_sm_request_password(sm); if (config->pending_req_new_password) eap_sm_request_new_password(sm); if (config->pending_req_otp) eap_sm_request_otp(sm, NULL, 0); if (config->pending_req_pin) eap_sm_request_pin(sm); if (config->pending_req_passphrase) eap_sm_request_passphrase(sm); } static int eap_allowed_phase2_type(int vendor, int type) { if (vendor != EAP_VENDOR_IETF) return 0; return type != EAP_TYPE_PEAP && type != EAP_TYPE_TTLS && type != EAP_TYPE_FAST; } /** * eap_get_phase2_type - Get EAP type for the given EAP phase 2 method name * @name: EAP method name, e.g., MD5 * @vendor: Buffer for returning EAP Vendor-Id * Returns: EAP method type or %EAP_TYPE_NONE if not found * * This function maps EAP type names into EAP type numbers that are allowed for * Phase 2, i.e., for tunneled authentication. Phase 2 is used, e.g., with * EAP-PEAP, EAP-TTLS, and EAP-FAST. */ u32 eap_get_phase2_type(const char *name, int *vendor) { int v; u8 type = eap_peer_get_type(name, &v); if (eap_allowed_phase2_type(v, type)) { *vendor = v; return type; } *vendor = EAP_VENDOR_IETF; return EAP_TYPE_NONE; } /** * eap_get_phase2_types - Get list of allowed EAP phase 2 types * @config: Pointer to a network configuration * @count: Pointer to a variable to be filled with number of returned EAP types * Returns: Pointer to allocated type list or %NULL on failure * * This function generates an array of allowed EAP phase 2 (tunneled) types for * the given network configuration. */ struct eap_method_type * eap_get_phase2_types(struct eap_peer_config *config, size_t *count) { struct eap_method_type *buf; u32 method; int vendor; size_t mcount; const struct eap_method *methods, *m; methods = eap_peer_get_methods(&mcount); if (methods == NULL) return NULL; *count = 0; buf = os_malloc(mcount * sizeof(struct eap_method_type)); if (buf == NULL) return NULL; for (m = methods; m; m = m->next) { vendor = m->vendor; method = m->method; if (eap_allowed_phase2_type(vendor, method)) { if (vendor == EAP_VENDOR_IETF && method == EAP_TYPE_TLS && config && config->private_key2 == NULL) continue; buf[*count].vendor = vendor; buf[*count].method = method; (*count)++; } } return buf; } /** * eap_set_fast_reauth - Update fast_reauth setting * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @enabled: 1 = Fast reauthentication is enabled, 0 = Disabled */ void eap_set_fast_reauth(struct eap_sm *sm, int enabled) { sm->fast_reauth = enabled; } /** * eap_set_workaround - Update EAP workarounds setting * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @workaround: 1 = Enable EAP workarounds, 0 = Disable EAP workarounds */ void eap_set_workaround(struct eap_sm *sm, unsigned int workaround) { sm->workaround = workaround; } /** * eap_get_config - Get current network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * Returns: Pointer to the current network configuration or %NULL if not found * * EAP peer methods should avoid using this function if they can use other * access functions, like eap_get_config_identity() and * eap_get_config_password(), that do not require direct access to * struct eap_peer_config. */ struct eap_peer_config * eap_get_config(struct eap_sm *sm) { return sm->eapol_cb->get_config(sm->eapol_ctx); } /** * eap_get_config_identity - Get identity from the network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @len: Buffer for the length of the identity * Returns: Pointer to the identity or %NULL if not found */ const u8 * eap_get_config_identity(struct eap_sm *sm, size_t *len) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return NULL; *len = config->identity_len; return config->identity; } static int eap_get_ext_password(struct eap_sm *sm, struct eap_peer_config *config) { char *name; if (config->password == NULL) return -1; name = os_zalloc(config->password_len + 1); if (name == NULL) return -1; os_memcpy(name, config->password, config->password_len); ext_password_free(sm->ext_pw_buf); sm->ext_pw_buf = ext_password_get(sm->ext_pw, name); os_free(name); return sm->ext_pw_buf == NULL ? -1 : 0; } /** * eap_get_config_password - Get password from the network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @len: Buffer for the length of the password * Returns: Pointer to the password or %NULL if not found */ const u8 * eap_get_config_password(struct eap_sm *sm, size_t *len) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return NULL; if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) { if (eap_get_ext_password(sm, config) < 0) return NULL; *len = wpabuf_len(sm->ext_pw_buf); return wpabuf_head(sm->ext_pw_buf); } *len = config->password_len; return config->password; } /** * eap_get_config_password2 - Get password from the network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @len: Buffer for the length of the password * @hash: Buffer for returning whether the password is stored as a * NtPasswordHash instead of plaintext password; can be %NULL if this * information is not needed * Returns: Pointer to the password or %NULL if not found */ const u8 * eap_get_config_password2(struct eap_sm *sm, size_t *len, int *hash) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return NULL; if (config->flags & EAP_CONFIG_FLAGS_EXT_PASSWORD) { if (eap_get_ext_password(sm, config) < 0) return NULL; *len = wpabuf_len(sm->ext_pw_buf); return wpabuf_head(sm->ext_pw_buf); } *len = config->password_len; if (hash) *hash = !!(config->flags & EAP_CONFIG_FLAGS_PASSWORD_NTHASH); return config->password; } /** * eap_get_config_new_password - Get new password from network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @len: Buffer for the length of the new password * Returns: Pointer to the new password or %NULL if not found */ const u8 * eap_get_config_new_password(struct eap_sm *sm, size_t *len) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return NULL; *len = config->new_password_len; return config->new_password; } /** * eap_get_config_otp - Get one-time password from the network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @len: Buffer for the length of the one-time password * Returns: Pointer to the one-time password or %NULL if not found */ const u8 * eap_get_config_otp(struct eap_sm *sm, size_t *len) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return NULL; *len = config->otp_len; return config->otp; } /** * eap_clear_config_otp - Clear used one-time password * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * This function clears a used one-time password (OTP) from the current network * configuration. This should be called when the OTP has been used and is not * needed anymore. */ void eap_clear_config_otp(struct eap_sm *sm) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return; os_memset(config->otp, 0, config->otp_len); os_free(config->otp); config->otp = NULL; config->otp_len = 0; } /** * eap_get_config_phase1 - Get phase1 data from the network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * Returns: Pointer to the phase1 data or %NULL if not found */ const char * eap_get_config_phase1(struct eap_sm *sm) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return NULL; return config->phase1; } /** * eap_get_config_phase2 - Get phase2 data from the network configuration * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * Returns: Pointer to the phase1 data or %NULL if not found */ const char * eap_get_config_phase2(struct eap_sm *sm) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return NULL; return config->phase2; } int eap_get_config_fragment_size(struct eap_sm *sm) { struct eap_peer_config *config = eap_get_config(sm); if (config == NULL) return -1; return config->fragment_size; } /** * eap_key_available - Get key availability (eapKeyAvailable variable) * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * Returns: 1 if EAP keying material is available, 0 if not */ int eap_key_available(struct eap_sm *sm) { return sm ? sm->eapKeyAvailable : 0; } /** * eap_notify_success - Notify EAP state machine about external success trigger * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * This function is called when external event, e.g., successful completion of * WPA-PSK key handshake, is indicating that EAP state machine should move to * success state. This is mainly used with security modes that do not use EAP * state machine (e.g., WPA-PSK). */ void eap_notify_success(struct eap_sm *sm) { if (sm) { sm->decision = DECISION_COND_SUCC; sm->EAP_state = EAP_SUCCESS; } } /** * eap_notify_lower_layer_success - Notification of lower layer success * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * Notify EAP state machines that a lower layer has detected a successful * authentication. This is used to recover from dropped EAP-Success messages. */ void eap_notify_lower_layer_success(struct eap_sm *sm) { if (sm == NULL) return; if (eapol_get_bool(sm, EAPOL_eapSuccess) || sm->decision == DECISION_FAIL || (sm->methodState != METHOD_MAY_CONT && sm->methodState != METHOD_DONE)) return; if (sm->eapKeyData != NULL) sm->eapKeyAvailable = TRUE; eapol_set_bool(sm, EAPOL_eapSuccess, TRUE); wpa_msg(sm->msg_ctx, MSG_INFO, WPA_EVENT_EAP_SUCCESS "EAP authentication completed successfully (based on lower " "layer success)"); } /** * eap_get_eapSessionId - Get Session-Id from EAP state machine * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @len: Pointer to variable that will be set to number of bytes in the session * Returns: Pointer to the EAP Session-Id or %NULL on failure * * Fetch EAP Session-Id from the EAP state machine. The Session-Id is available * only after a successful authentication. EAP state machine continues to manage * the Session-Id and the caller must not change or free the returned data. */ const u8 * eap_get_eapSessionId(struct eap_sm *sm, size_t *len) { if (sm == NULL || sm->eapSessionId == NULL) { *len = 0; return NULL; } *len = sm->eapSessionIdLen; return sm->eapSessionId; } /** * eap_get_eapKeyData - Get master session key (MSK) from EAP state machine * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @len: Pointer to variable that will be set to number of bytes in the key * Returns: Pointer to the EAP keying data or %NULL on failure * * Fetch EAP keying material (MSK, eapKeyData) from the EAP state machine. The * key is available only after a successful authentication. EAP state machine * continues to manage the key data and the caller must not change or free the * returned data. */ const u8 * eap_get_eapKeyData(struct eap_sm *sm, size_t *len) { if (sm == NULL || sm->eapKeyData == NULL) { *len = 0; return NULL; } *len = sm->eapKeyDataLen; return sm->eapKeyData; } /** * eap_get_eapKeyData - Get EAP response data * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * Returns: Pointer to the EAP response (eapRespData) or %NULL on failure * * Fetch EAP response (eapRespData) from the EAP state machine. This data is * available when EAP state machine has processed an incoming EAP request. The * EAP state machine does not maintain a reference to the response after this * function is called and the caller is responsible for freeing the data. */ struct wpabuf * eap_get_eapRespData(struct eap_sm *sm) { struct wpabuf *resp; if (sm == NULL || sm->eapRespData == NULL) return NULL; resp = sm->eapRespData; sm->eapRespData = NULL; return resp; } /** * eap_sm_register_scard_ctx - Notification of smart card context * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @ctx: Context data for smart card operations * * Notify EAP state machines of context data for smart card operations. This * context data will be used as a parameter for scard_*() functions. */ void eap_register_scard_ctx(struct eap_sm *sm, void *ctx) { if (sm) sm->scard_ctx = ctx; } /** * eap_set_config_blob - Set or add a named configuration blob * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @blob: New value for the blob * * Adds a new configuration blob or replaces the current value of an existing * blob. */ void eap_set_config_blob(struct eap_sm *sm, struct wpa_config_blob *blob) { #ifndef CONFIG_NO_CONFIG_BLOBS sm->eapol_cb->set_config_blob(sm->eapol_ctx, blob); #endif /* CONFIG_NO_CONFIG_BLOBS */ } /** * eap_get_config_blob - Get a named configuration blob * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @name: Name of the blob * Returns: Pointer to blob data or %NULL if not found */ const struct wpa_config_blob * eap_get_config_blob(struct eap_sm *sm, const char *name) { #ifndef CONFIG_NO_CONFIG_BLOBS return sm->eapol_cb->get_config_blob(sm->eapol_ctx, name); #else /* CONFIG_NO_CONFIG_BLOBS */ return NULL; #endif /* CONFIG_NO_CONFIG_BLOBS */ } /** * eap_set_force_disabled - Set force_disabled flag * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @disabled: 1 = EAP disabled, 0 = EAP enabled * * This function is used to force EAP state machine to be disabled when it is * not in use (e.g., with WPA-PSK or plaintext connections). */ void eap_set_force_disabled(struct eap_sm *sm, int disabled) { sm->force_disabled = disabled; } /** * eap_notify_pending - Notify that EAP method is ready to re-process a request * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * * An EAP method can perform a pending operation (e.g., to get a response from * an external process). Once the response is available, this function can be * used to request EAPOL state machine to retry delivering the previously * received (and still unanswered) EAP request to EAP state machine. */ void eap_notify_pending(struct eap_sm *sm) { sm->eapol_cb->notify_pending(sm->eapol_ctx); } /** * eap_invalidate_cached_session - Mark cached session data invalid * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() */ void eap_invalidate_cached_session(struct eap_sm *sm) { if (sm) eap_deinit_prev_method(sm, "invalidate"); } int eap_is_wps_pbc_enrollee(struct eap_peer_config *conf) { if (conf->identity_len != WSC_ID_ENROLLEE_LEN || os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) return 0; /* Not a WPS Enrollee */ if (conf->phase1 == NULL || os_strstr(conf->phase1, "pbc=1") == NULL) return 0; /* Not using PBC */ return 1; } int eap_is_wps_pin_enrollee(struct eap_peer_config *conf) { if (conf->identity_len != WSC_ID_ENROLLEE_LEN || os_memcmp(conf->identity, WSC_ID_ENROLLEE, WSC_ID_ENROLLEE_LEN)) return 0; /* Not a WPS Enrollee */ if (conf->phase1 == NULL || os_strstr(conf->phase1, "pin=") == NULL) return 0; /* Not using PIN */ return 1; } void eap_sm_set_ext_pw_ctx(struct eap_sm *sm, struct ext_password_data *ext) { ext_password_free(sm->ext_pw_buf); sm->ext_pw_buf = NULL; sm->ext_pw = ext; } /** * eap_set_anon_id - Set or add anonymous identity * @sm: Pointer to EAP state machine allocated with eap_peer_sm_init() * @id: Anonymous identity (e.g., EAP-SIM pseudonym) or %NULL to clear * @len: Length of anonymous identity in octets */ void eap_set_anon_id(struct eap_sm *sm, const u8 *id, size_t len) { if (sm->eapol_cb->set_anon_id) sm->eapol_cb->set_anon_id(sm->eapol_ctx, id, len); }