//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits information about intrinsic functions. // //===----------------------------------------------------------------------===// #include "CodeGenIntrinsics.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "llvm/ADT/StringExtras.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringMatcher.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> using namespace llvm; namespace { class IntrinsicEmitter { RecordKeeper &Records; bool TargetOnly; std::string TargetPrefix; public: IntrinsicEmitter(RecordKeeper &R, bool T) : Records(R), TargetOnly(T) {} void run(raw_ostream &OS); void EmitPrefix(raw_ostream &OS); void EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitVerifier(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS); void EmitSuffix(raw_ostream &OS); }; } // End anonymous namespace //===----------------------------------------------------------------------===// // IntrinsicEmitter Implementation //===----------------------------------------------------------------------===// void IntrinsicEmitter::run(raw_ostream &OS) { emitSourceFileHeader("Intrinsic Function Source Fragment", OS); std::vector<CodeGenIntrinsic> Ints = LoadIntrinsics(Records, TargetOnly); if (TargetOnly && !Ints.empty()) TargetPrefix = Ints[0].TargetPrefix; EmitPrefix(OS); // Emit the enum information. EmitEnumInfo(Ints, OS); // Emit the intrinsic ID -> name table. EmitIntrinsicToNameTable(Ints, OS); // Emit the intrinsic ID -> overload table. EmitIntrinsicToOverloadTable(Ints, OS); // Emit the function name recognizer. EmitFnNameRecognizer(Ints, OS); // Emit the intrinsic declaration generator. EmitGenerator(Ints, OS); // Emit the intrinsic parameter attributes. EmitAttributes(Ints, OS); // Emit intrinsic alias analysis mod/ref behavior. EmitModRefBehavior(Ints, OS); // Emit code to translate GCC builtins into LLVM intrinsics. EmitIntrinsicToGCCBuiltinMap(Ints, OS); EmitSuffix(OS); } void IntrinsicEmitter::EmitPrefix(raw_ostream &OS) { OS << "// VisualStudio defines setjmp as _setjmp\n" "#if defined(_MSC_VER) && defined(setjmp) && \\\n" " !defined(setjmp_undefined_for_msvc)\n" "# pragma push_macro(\"setjmp\")\n" "# undef setjmp\n" "# define setjmp_undefined_for_msvc\n" "#endif\n\n"; } void IntrinsicEmitter::EmitSuffix(raw_ostream &OS) { OS << "#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)\n" "// let's return it to _setjmp state\n" "# pragma pop_macro(\"setjmp\")\n" "# undef setjmp_undefined_for_msvc\n" "#endif\n\n"; } void IntrinsicEmitter::EmitEnumInfo(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Enum values for Intrinsics.h\n"; OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { OS << " " << Ints[i].EnumName; OS << ((i != e-1) ? ", " : " "); OS << std::string(40-Ints[i].EnumName.size(), ' ') << "// " << Ints[i].Name << "\n"; } OS << "#endif\n\n"; } struct IntrinsicNameSorter { IntrinsicNameSorter(const std::vector<CodeGenIntrinsic> &I) : Ints(I) {} // Sort in reverse order of intrinsic name so "abc.def" appears after // "abd.def.ghi" in the overridden name matcher bool operator()(unsigned i, unsigned j) { return Ints[i].Name > Ints[j].Name; } private: const std::vector<CodeGenIntrinsic> &Ints; }; void IntrinsicEmitter:: EmitFnNameRecognizer(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { // Build a 'first character of function name' -> intrinsic # mapping. std::map<char, std::vector<unsigned> > IntMapping; for (unsigned i = 0, e = Ints.size(); i != e; ++i) IntMapping[Ints[i].Name[5]].push_back(i); OS << "// Function name -> enum value recognizer code.\n"; OS << "#ifdef GET_FUNCTION_RECOGNIZER\n"; OS << " StringRef NameR(Name+6, Len-6); // Skip over 'llvm.'\n"; OS << " switch (Name[5]) { // Dispatch on first letter.\n"; OS << " default: break;\n"; IntrinsicNameSorter Sorter(Ints); // Emit the intrinsic matching stuff by first letter. for (std::map<char, std::vector<unsigned> >::iterator I = IntMapping.begin(), E = IntMapping.end(); I != E; ++I) { OS << " case '" << I->first << "':\n"; std::vector<unsigned> &IntList = I->second; // Sort intrinsics in reverse order of their names std::sort(IntList.begin(), IntList.end(), Sorter); // Emit all the overloaded intrinsics first, build a table of the // non-overloaded ones. std::vector<StringMatcher::StringPair> MatchTable; for (unsigned i = 0, e = IntList.size(); i != e; ++i) { unsigned IntNo = IntList[i]; std::string Result = "return " + TargetPrefix + "Intrinsic::" + Ints[IntNo].EnumName + ";"; if (!Ints[IntNo].isOverloaded) { MatchTable.push_back(std::make_pair(Ints[IntNo].Name.substr(6),Result)); continue; } // For overloaded intrinsics, only the prefix needs to match std::string TheStr = Ints[IntNo].Name.substr(6); TheStr += '.'; // Require "bswap." instead of bswap. OS << " if (NameR.startswith(\"" << TheStr << "\")) " << Result << '\n'; } // Emit the matcher logic for the fixed length strings. StringMatcher("NameR", MatchTable, OS).Emit(1); OS << " break; // end of '" << I->first << "' case.\n"; } OS << " }\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToNameTable(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to name table\n"; OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) OS << " \"" << Ints[i].Name << "\",\n"; OS << "#endif\n\n"; } void IntrinsicEmitter:: EmitIntrinsicToOverloadTable(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to overload bitset\n"; OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; OS << "static const uint8_t OTable[] = {\n"; OS << " 0"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { // Add one to the index so we emit a null bit for the invalid #0 intrinsic. if ((i+1)%8 == 0) OS << ",\n 0"; if (Ints[i].isOverloaded) OS << " | (1<<" << (i+1)%8 << ')'; } OS << "\n};\n\n"; // OTable contains a true bit at the position if the intrinsic is overloaded. OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; OS << "#endif\n\n"; } // NOTE: This must be kept in synch with the copy in lib/VMCore/Function.cpp! enum IIT_Info { // Common values should be encoded with 0-15. IIT_Done = 0, IIT_I1 = 1, IIT_I8 = 2, IIT_I16 = 3, IIT_I32 = 4, IIT_I64 = 5, IIT_F16 = 6, IIT_F32 = 7, IIT_F64 = 8, IIT_V2 = 9, IIT_V4 = 10, IIT_V8 = 11, IIT_V16 = 12, IIT_V32 = 13, IIT_PTR = 14, IIT_ARG = 15, // Values from 16+ are only encodable with the inefficient encoding. IIT_MMX = 16, IIT_METADATA = 17, IIT_EMPTYSTRUCT = 18, IIT_STRUCT2 = 19, IIT_STRUCT3 = 20, IIT_STRUCT4 = 21, IIT_STRUCT5 = 22, IIT_EXTEND_VEC_ARG = 23, IIT_TRUNC_VEC_ARG = 24, IIT_ANYPTR = 25 }; static void EncodeFixedValueType(MVT::SimpleValueType VT, std::vector<unsigned char> &Sig) { if (EVT(VT).isInteger()) { unsigned BitWidth = EVT(VT).getSizeInBits(); switch (BitWidth) { default: PrintFatalError("unhandled integer type width in intrinsic!"); case 1: return Sig.push_back(IIT_I1); case 8: return Sig.push_back(IIT_I8); case 16: return Sig.push_back(IIT_I16); case 32: return Sig.push_back(IIT_I32); case 64: return Sig.push_back(IIT_I64); } } switch (VT) { default: PrintFatalError("unhandled MVT in intrinsic!"); case MVT::f16: return Sig.push_back(IIT_F16); case MVT::f32: return Sig.push_back(IIT_F32); case MVT::f64: return Sig.push_back(IIT_F64); case MVT::Metadata: return Sig.push_back(IIT_METADATA); case MVT::x86mmx: return Sig.push_back(IIT_MMX); // MVT::OtherVT is used to mean the empty struct type here. case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT); } } #ifdef _MSC_VER #pragma optimize("",off) // MSVC 2010 optimizer can't deal with this function. #endif static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes, std::vector<unsigned char> &Sig) { if (R->isSubClassOf("LLVMMatchType")) { unsigned Number = R->getValueAsInt("Number"); assert(Number < ArgCodes.size() && "Invalid matching number!"); if (R->isSubClassOf("LLVMExtendedElementVectorType")) Sig.push_back(IIT_EXTEND_VEC_ARG); else if (R->isSubClassOf("LLVMTruncatedElementVectorType")) Sig.push_back(IIT_TRUNC_VEC_ARG); else Sig.push_back(IIT_ARG); return Sig.push_back((Number << 2) | ArgCodes[Number]); } MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT")); unsigned Tmp = 0; switch (VT) { default: break; case MVT::iPTRAny: ++Tmp; // FALL THROUGH. case MVT::vAny: ++Tmp; // FALL THROUGH. case MVT::fAny: ++Tmp; // FALL THROUGH. case MVT::iAny: { // If this is an "any" valuetype, then the type is the type of the next // type in the list specified to getIntrinsic(). Sig.push_back(IIT_ARG); // Figure out what arg # this is consuming, and remember what kind it was. unsigned ArgNo = ArgCodes.size(); ArgCodes.push_back(Tmp); // Encode what sort of argument it must be in the low 2 bits of the ArgNo. return Sig.push_back((ArgNo << 2) | Tmp); } case MVT::iPTR: { unsigned AddrSpace = 0; if (R->isSubClassOf("LLVMQualPointerType")) { AddrSpace = R->getValueAsInt("AddrSpace"); assert(AddrSpace < 256 && "Address space exceeds 255"); } if (AddrSpace) { Sig.push_back(IIT_ANYPTR); Sig.push_back(AddrSpace); } else { Sig.push_back(IIT_PTR); } return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, Sig); } } if (EVT(VT).isVector()) { EVT VVT = VT; switch (VVT.getVectorNumElements()) { default: PrintFatalError("unhandled vector type width in intrinsic!"); case 2: Sig.push_back(IIT_V2); break; case 4: Sig.push_back(IIT_V4); break; case 8: Sig.push_back(IIT_V8); break; case 16: Sig.push_back(IIT_V16); break; case 32: Sig.push_back(IIT_V32); break; } return EncodeFixedValueType(VVT.getVectorElementType(). getSimpleVT().SimpleTy, Sig); } EncodeFixedValueType(VT, Sig); } #ifdef _MSC_VER #pragma optimize("",on) #endif /// ComputeFixedEncoding - If we can encode the type signature for this /// intrinsic into 32 bits, return it. If not, return ~0U. static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, std::vector<unsigned char> &TypeSig) { std::vector<unsigned char> ArgCodes; if (Int.IS.RetVTs.empty()) TypeSig.push_back(IIT_Done); else if (Int.IS.RetVTs.size() == 1 && Int.IS.RetVTs[0] == MVT::isVoid) TypeSig.push_back(IIT_Done); else { switch (Int.IS.RetVTs.size()) { case 1: break; case 2: TypeSig.push_back(IIT_STRUCT2); break; case 3: TypeSig.push_back(IIT_STRUCT3); break; case 4: TypeSig.push_back(IIT_STRUCT4); break; case 5: TypeSig.push_back(IIT_STRUCT5); break; default: assert(0 && "Unhandled case in struct"); } for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i) EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, TypeSig); } for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i) EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, TypeSig); } static void printIITEntry(raw_ostream &OS, unsigned char X) { OS << (unsigned)X; } void IntrinsicEmitter::EmitGenerator(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { // If we can compute a 32-bit fixed encoding for this intrinsic, do so and // capture it in this vector, otherwise store a ~0U. std::vector<unsigned> FixedEncodings; SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable; std::vector<unsigned char> TypeSig; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) { // Get the signature for the intrinsic. TypeSig.clear(); ComputeFixedEncoding(Ints[i], TypeSig); // Check to see if we can encode it into a 32-bit word. We can only encode // 8 nibbles into a 32-bit word. if (TypeSig.size() <= 8) { bool Failed = false; unsigned Result = 0; for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { // If we had an unencodable argument, bail out. if (TypeSig[i] > 15) { Failed = true; break; } Result = (Result << 4) | TypeSig[e-i-1]; } // If this could be encoded into a 31-bit word, return it. if (!Failed && (Result >> 31) == 0) { FixedEncodings.push_back(Result); continue; } } // Otherwise, we're going to unique the sequence into the // LongEncodingTable, and use its offset in the 32-bit table instead. LongEncodingTable.add(TypeSig); // This is a placehold that we'll replace after the table is laid out. FixedEncodings.push_back(~0U); } LongEncodingTable.layout(); OS << "// Global intrinsic function declaration type table.\n"; OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; OS << "static const unsigned IIT_Table[] = {\n "; for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { if ((i & 7) == 7) OS << "\n "; // If the entry fit in the table, just emit it. if (FixedEncodings[i] != ~0U) { OS << "0x" << utohexstr(FixedEncodings[i]) << ", "; continue; } TypeSig.clear(); ComputeFixedEncoding(Ints[i], TypeSig); // Otherwise, emit the offset into the long encoding table. We emit it this // way so that it is easier to read the offset in the .def file. OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; } OS << "0\n};\n\n"; // Emit the shared table of register lists. OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; if (!LongEncodingTable.empty()) LongEncodingTable.emit(OS, printIITEntry); OS << " 255\n};\n\n"; OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL } enum ModRefKind { MRK_none, MRK_readonly, MRK_readnone }; static ModRefKind getModRefKind(const CodeGenIntrinsic &intrinsic) { switch (intrinsic.ModRef) { case CodeGenIntrinsic::NoMem: return MRK_readnone; case CodeGenIntrinsic::ReadArgMem: case CodeGenIntrinsic::ReadMem: return MRK_readonly; case CodeGenIntrinsic::ReadWriteArgMem: case CodeGenIntrinsic::ReadWriteMem: return MRK_none; } llvm_unreachable("bad mod-ref kind"); } namespace { struct AttributeComparator { bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { // Sort throwing intrinsics after non-throwing intrinsics. if (L->canThrow != R->canThrow) return R->canThrow; if (L->isNoReturn != R->isNoReturn) return R->isNoReturn; // Try to order by readonly/readnone attribute. ModRefKind LK = getModRefKind(*L); ModRefKind RK = getModRefKind(*R); if (LK != RK) return (LK > RK); // Order by argument attributes. // This is reliable because each side is already sorted internally. return (L->ArgumentAttributes < R->ArgumentAttributes); } }; } // End anonymous namespace /// EmitAttributes - This emits the Intrinsic::getAttributes method. void IntrinsicEmitter:: EmitAttributes(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { OS << "// Add parameter attributes that are not common to all intrinsics.\n"; OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; if (TargetOnly) OS << "static AttributeSet getAttributes(LLVMContext &C, " << TargetPrefix << "Intrinsic::ID id) {\n"; else OS << "AttributeSet Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; // Compute the maximum number of attribute arguments and the map typedef std::map<const CodeGenIntrinsic*, unsigned, AttributeComparator> UniqAttrMapTy; UniqAttrMapTy UniqAttributes; unsigned maxArgAttrs = 0; unsigned AttrNum = 0; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = Ints[i]; maxArgAttrs = std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); unsigned &N = UniqAttributes[&intrinsic]; if (N) continue; assert(AttrNum < 256 && "Too many unique attributes for table!"); N = ++AttrNum; } // Emit an array of AttributeSet. Most intrinsics will have at least one // entry, for the function itself (index ~1), which is usually nounwind. OS << " static const uint8_t IntrinsicsToAttributesMap[] = {\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = Ints[i]; OS << " " << UniqAttributes[&intrinsic] << ", // " << intrinsic.Name << "\n"; } OS << " };\n\n"; OS << " AttributeSet AS[" << maxArgAttrs+1 << "];\n"; OS << " unsigned NumAttrs = 0;\n"; OS << " if (id != 0) {\n"; OS << " SmallVector<Attribute::AttrKind, 8> AttrVec;\n"; OS << " switch(IntrinsicsToAttributesMap[id - "; if (TargetOnly) OS << "Intrinsic::num_intrinsics"; else OS << "1"; OS << "]) {\n"; OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(), E = UniqAttributes.end(); I != E; ++I) { OS << " case " << I->second << ":\n"; const CodeGenIntrinsic &intrinsic = *(I->first); // Keep track of the number of attributes we're writing out. unsigned numAttrs = 0; // The argument attributes are alreadys sorted by argument index. unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size(); if (ae) { while (ai != ae) { unsigned argNo = intrinsic.ArgumentAttributes[ai].first; OS << " AttrVec.clear();\n"; do { switch (intrinsic.ArgumentAttributes[ai].second) { case CodeGenIntrinsic::NoCapture: OS << " AttrVec.push_back(Attribute::NoCapture);\n"; break; case CodeGenIntrinsic::ReadOnly: OS << " AttrVec.push_back(Attribute::ReadOnly);\n"; break; case CodeGenIntrinsic::ReadNone: OS << " AttrVec.push_back(Attribute::ReadNone);\n"; break; } ++ai; } while (ai != ae && intrinsic.ArgumentAttributes[ai].first == argNo); OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " << argNo+1 << ", AttrVec);\n"; } } ModRefKind modRef = getModRefKind(intrinsic); if (!intrinsic.canThrow || modRef || intrinsic.isNoReturn) { OS << " AttrVec.clear();\n"; if (!intrinsic.canThrow) OS << " AttrVec.push_back(Attribute::NoUnwind);\n"; if (intrinsic.isNoReturn) OS << " AttrVec.push_back(Attribute::NoReturn);\n"; switch (modRef) { case MRK_none: break; case MRK_readonly: OS << " AttrVec.push_back(Attribute::ReadOnly);\n"; break; case MRK_readnone: OS << " AttrVec.push_back(Attribute::ReadNone);\n"; break; } OS << " AS[" << numAttrs++ << "] = AttributeSet::get(C, " << "AttributeSet::FunctionIndex, AttrVec);\n"; } if (numAttrs) { OS << " NumAttrs = " << numAttrs << ";\n"; OS << " break;\n"; } else { OS << " return AttributeSet();\n"; } } OS << " }\n"; OS << " }\n"; OS << " return AttributeSet::get(C, ArrayRef<AttributeSet>(AS, " "NumAttrs));\n"; OS << "}\n"; OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; } /// EmitModRefBehavior - Determine intrinsic alias analysis mod/ref behavior. void IntrinsicEmitter:: EmitModRefBehavior(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS){ OS << "// Determine intrinsic alias analysis mod/ref behavior.\n" << "#ifdef GET_INTRINSIC_MODREF_BEHAVIOR\n" << "assert(iid <= Intrinsic::" << Ints.back().EnumName << " && " << "\"Unknown intrinsic.\");\n\n"; OS << "static const uint8_t IntrinsicModRefBehavior[] = {\n" << " /* invalid */ UnknownModRefBehavior,\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { OS << " /* " << TargetPrefix << Ints[i].EnumName << " */ "; switch (Ints[i].ModRef) { case CodeGenIntrinsic::NoMem: OS << "DoesNotAccessMemory,\n"; break; case CodeGenIntrinsic::ReadArgMem: OS << "OnlyReadsArgumentPointees,\n"; break; case CodeGenIntrinsic::ReadMem: OS << "OnlyReadsMemory,\n"; break; case CodeGenIntrinsic::ReadWriteArgMem: OS << "OnlyAccessesArgumentPointees,\n"; break; case CodeGenIntrinsic::ReadWriteMem: OS << "UnknownModRefBehavior,\n"; break; } } OS << "};\n\n" << "return static_cast<ModRefBehavior>(IntrinsicModRefBehavior[iid]);\n" << "#endif // GET_INTRINSIC_MODREF_BEHAVIOR\n\n"; } /// EmitTargetBuiltins - All of the builtins in the specified map are for the /// same target, and we already checked it. static void EmitTargetBuiltins(const std::map<std::string, std::string> &BIM, const std::string &TargetPrefix, raw_ostream &OS) { std::vector<StringMatcher::StringPair> Results; for (std::map<std::string, std::string>::const_iterator I = BIM.begin(), E = BIM.end(); I != E; ++I) { std::string ResultCode = "return " + TargetPrefix + "Intrinsic::" + I->second + ";"; Results.push_back(StringMatcher::StringPair(I->first, ResultCode)); } StringMatcher("BuiltinName", Results, OS).Emit(); } void IntrinsicEmitter:: EmitIntrinsicToGCCBuiltinMap(const std::vector<CodeGenIntrinsic> &Ints, raw_ostream &OS) { typedef std::map<std::string, std::map<std::string, std::string> > BIMTy; BIMTy BuiltinMap; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { if (!Ints[i].GCCBuiltinName.empty()) { // Get the map for this target prefix. std::map<std::string, std::string> &BIM =BuiltinMap[Ints[i].TargetPrefix]; if (!BIM.insert(std::make_pair(Ints[i].GCCBuiltinName, Ints[i].EnumName)).second) PrintFatalError("Intrinsic '" + Ints[i].TheDef->getName() + "': duplicate GCC builtin name!"); } } OS << "// Get the LLVM intrinsic that corresponds to a GCC builtin.\n"; OS << "// This is used by the C front-end. The GCC builtin name is passed\n"; OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; OS << "#ifdef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN\n"; if (TargetOnly) { OS << "static " << TargetPrefix << "Intrinsic::ID " << "getIntrinsicForGCCBuiltin(const char " << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; } else { OS << "Intrinsic::ID Intrinsic::getIntrinsicForGCCBuiltin(const char " << "*TargetPrefixStr, const char *BuiltinNameStr) {\n"; } OS << " StringRef BuiltinName(BuiltinNameStr);\n"; OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; // Note: this could emit significantly better code if we cared. for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){ OS << " "; if (!I->first.empty()) OS << "if (TargetPrefix == \"" << I->first << "\") "; else OS << "/* Target Independent Builtins */ "; OS << "{\n"; // Emit the comparisons for this target prefix. EmitTargetBuiltins(I->second, TargetPrefix, OS); OS << " }\n"; } OS << " return "; if (!TargetPrefix.empty()) OS << "(" << TargetPrefix << "Intrinsic::ID)"; OS << "Intrinsic::not_intrinsic;\n"; OS << "}\n"; OS << "#endif\n\n"; } namespace llvm { void EmitIntrinsics(RecordKeeper &RK, raw_ostream &OS, bool TargetOnly = false) { IntrinsicEmitter(RK, TargetOnly).run(OS); } } // End llvm namespace