//===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/IR/IRBuilder.h" #include "llvm/ADT/OwningPtr.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "gtest/gtest.h" using namespace llvm; namespace { class IRBuilderTest : public testing::Test { protected: virtual void SetUp() { M.reset(new Module("MyModule", getGlobalContext())); FunctionType *FTy = FunctionType::get(Type::getVoidTy(getGlobalContext()), /*isVarArg=*/false); F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); BB = BasicBlock::Create(getGlobalContext(), "", F); GV = new GlobalVariable(*M, Type::getFloatTy(getGlobalContext()), true, GlobalValue::ExternalLinkage, 0); } virtual void TearDown() { BB = 0; M.reset(); } OwningPtr<Module> M; Function *F; BasicBlock *BB; GlobalVariable *GV; }; TEST_F(IRBuilderTest, Lifetime) { IRBuilder<> Builder(BB); AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty()); AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty()); AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(), Builder.getInt32(123)); CallInst *Start1 = Builder.CreateLifetimeStart(Var1); CallInst *Start2 = Builder.CreateLifetimeStart(Var2); CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100)); EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1)); EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1)); EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100)); EXPECT_EQ(Start1->getArgOperand(1), Var1); EXPECT_NE(Start2->getArgOperand(1), Var2); EXPECT_EQ(Start3->getArgOperand(1), Var3); Value *End1 = Builder.CreateLifetimeEnd(Var1); Builder.CreateLifetimeEnd(Var2); Builder.CreateLifetimeEnd(Var3); IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1); IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1); ASSERT_TRUE(II_Start1 != NULL); EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start); ASSERT_TRUE(II_End1 != NULL); EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end); } TEST_F(IRBuilderTest, CreateCondBr) { IRBuilder<> Builder(BB); BasicBlock *TBB = BasicBlock::Create(getGlobalContext(), "", F); BasicBlock *FBB = BasicBlock::Create(getGlobalContext(), "", F); BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB); TerminatorInst *TI = BB->getTerminator(); EXPECT_EQ(BI, TI); EXPECT_EQ(2u, TI->getNumSuccessors()); EXPECT_EQ(TBB, TI->getSuccessor(0)); EXPECT_EQ(FBB, TI->getSuccessor(1)); BI->eraseFromParent(); MDNode *Weights = MDBuilder(getGlobalContext()).createBranchWeights(42, 13); BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights); TI = BB->getTerminator(); EXPECT_EQ(BI, TI); EXPECT_EQ(2u, TI->getNumSuccessors()); EXPECT_EQ(TBB, TI->getSuccessor(0)); EXPECT_EQ(FBB, TI->getSuccessor(1)); EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof)); } TEST_F(IRBuilderTest, LandingPadName) { IRBuilder<> Builder(BB); LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), Builder.getInt32(0), 0, "LP"); EXPECT_EQ(LP->getName(), "LP"); } TEST_F(IRBuilderTest, GetIntTy) { IRBuilder<> Builder(BB); IntegerType *Ty1 = Builder.getInt1Ty(); EXPECT_EQ(Ty1, IntegerType::get(getGlobalContext(), 1)); DataLayout* DL = new DataLayout(M.get()); IntegerType *IntPtrTy = Builder.getIntPtrTy(DL); unsigned IntPtrBitSize = DL->getPointerSizeInBits(0); EXPECT_EQ(IntPtrTy, IntegerType::get(getGlobalContext(), IntPtrBitSize)); delete DL; } TEST_F(IRBuilderTest, FastMathFlags) { IRBuilder<> Builder(BB); Value *F; Instruction *FDiv, *FAdd; F = Builder.CreateLoad(GV); F = Builder.CreateFAdd(F, F); EXPECT_FALSE(Builder.getFastMathFlags().any()); ASSERT_TRUE(isa<Instruction>(F)); FAdd = cast<Instruction>(F); EXPECT_FALSE(FAdd->hasNoNaNs()); FastMathFlags FMF; Builder.SetFastMathFlags(FMF); F = Builder.CreateFAdd(F, F); EXPECT_FALSE(Builder.getFastMathFlags().any()); FMF.setUnsafeAlgebra(); Builder.SetFastMathFlags(FMF); F = Builder.CreateFAdd(F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); ASSERT_TRUE(isa<Instruction>(F)); FAdd = cast<Instruction>(F); EXPECT_TRUE(FAdd->hasNoNaNs()); F = Builder.CreateFDiv(F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().UnsafeAlgebra); ASSERT_TRUE(isa<Instruction>(F)); FDiv = cast<Instruction>(F); EXPECT_TRUE(FDiv->hasAllowReciprocal()); Builder.clearFastMathFlags(); F = Builder.CreateFDiv(F, F); ASSERT_TRUE(isa<Instruction>(F)); FDiv = cast<Instruction>(F); EXPECT_FALSE(FDiv->hasAllowReciprocal()); FMF.clear(); FMF.setAllowReciprocal(); Builder.SetFastMathFlags(FMF); F = Builder.CreateFDiv(F, F); EXPECT_TRUE(Builder.getFastMathFlags().any()); EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal); ASSERT_TRUE(isa<Instruction>(F)); FDiv = cast<Instruction>(F); EXPECT_TRUE(FDiv->hasAllowReciprocal()); Builder.clearFastMathFlags(); F = Builder.CreateFDiv(F, F); ASSERT_TRUE(isa<Instruction>(F)); FDiv = cast<Instruction>(F); EXPECT_FALSE(FDiv->getFastMathFlags().any()); FDiv->copyFastMathFlags(FAdd); EXPECT_TRUE(FDiv->hasNoNaNs()); } }