; RUN: opt < %s -loop-reduce -S | FileCheck %s ; LSR shouldn't consider %t8 to be an interesting user of %t6, and it ; should be able to form pretty GEPs. target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64" define void @Z4() nounwind { ; CHECK-LABEL: define void @Z4( bb: br label %bb3 bb1: ; preds = %bb3 br i1 undef, label %bb10, label %bb2 bb2: ; preds = %bb1 %t = add i64 %t4, 1 ; <i64> [#uses=1] br label %bb3 bb3: ; preds = %bb2, %bb %t4 = phi i64 [ %t, %bb2 ], [ 0, %bb ] ; <i64> [#uses=3] br label %bb1 ; CHECK: bb10: ; CHECK-NEXT: %t7 = icmp eq i64 %t4, 0 ; Host %t2 computation outside the loop. ; CHECK-NEXT: [[SCEVGEP:%[^ ]+]] = getelementptr i8* undef, i64 %t4 ; CHECK-NEXT: br label %bb14 bb10: ; preds = %bb9 %t7 = icmp eq i64 %t4, 0 ; <i1> [#uses=1] %t3 = add i64 %t4, 16 ; <i64> [#uses=1] br label %bb14 ; CHECK: bb14: ; CHECK-NEXT: store i8 undef, i8* [[SCEVGEP]] ; CHECK-NEXT: %t6 = load float** undef ; Fold %t3's add within the address. ; CHECK-NEXT: [[SCEVGEP1:%[^ ]+]] = getelementptr float* %t6, i64 4 ; CHECK-NEXT: [[SCEVGEP2:%[^ ]+]] = bitcast float* [[SCEVGEP1]] to i8* ; Use the induction variable (%t4) to access the right element ; CHECK-NEXT: [[ADDRESS:%[^ ]+]] = getelementptr i8* [[SCEVGEP2]], i64 %t4 ; CHECK-NEXT: store i8 undef, i8* [[ADDRESS]] ; CHECK-NEXT: br label %bb14 bb14: ; preds = %bb14, %bb10 %t2 = getelementptr inbounds i8* undef, i64 %t4 ; <i8*> [#uses=1] store i8 undef, i8* %t2 %t6 = load float** undef %t8 = bitcast float* %t6 to i8* ; <i8*> [#uses=1] %t9 = getelementptr inbounds i8* %t8, i64 %t3 ; <i8*> [#uses=1] store i8 undef, i8* %t9 br label %bb14 } define fastcc void @TransformLine() nounwind { ; CHECK-LABEL: @TransformLine( bb: br label %loop0 ; CHECK: loop0: ; Induction variable is initialized to -2. ; CHECK-NEXT: [[PHIIV:%[^ ]+]] = phi i32 [ [[IVNEXT:%[^ ]+]], %loop0 ], [ -2, %bb ] ; CHECK-NEXT: [[IVNEXT]] = add i32 [[PHIIV]], 1 ; CHECK-NEXT: br i1 false, label %loop0, label %bb0 loop0: ; preds = %loop0, %bb %i0 = phi i32 [ %i0.next, %loop0 ], [ 0, %bb ] ; <i32> [#uses=2] %i0.next = add i32 %i0, 1 ; <i32> [#uses=1] br i1 false, label %loop0, label %bb0 bb0: ; preds = %loop0 br label %loop1 ; CHECK: loop1: ; CHECK-NEXT: %i1 = phi i32 [ 0, %bb0 ], [ %i1.next, %bb5 ] ; IVNEXT covers the uses of %i0 and %t0. ; Therefore, %t0 has been removed. ; The critical edge has been split. ; CHECK-NEXT: br i1 false, label %bb2, label %[[LOOP1BB6:.+]] loop1: ; preds = %bb5, %bb0 %i1 = phi i32 [ 0, %bb0 ], [ %i1.next, %bb5 ] ; <i32> [#uses=4] %t0 = add i32 %i0, %i1 ; <i32> [#uses=1] br i1 false, label %bb2, label %bb6 ; CHECK: bb2: ; Critical edge split. ; CHECK-NEXT: br i1 true, label %[[BB2BB6:[^,]+]], label %bb5 bb2: ; preds = %loop1 br i1 true, label %bb6, label %bb5 ; CHECK: bb5: ; CHECK-NEXT: %i1.next = add i32 %i1, 1 ; CHECK-NEXT: br i1 true, label %[[BB5BB6:[^,]+]], label %loop1 bb5: ; preds = %bb2 %i1.next = add i32 %i1, 1 ; <i32> [#uses=1] br i1 true, label %bb6, label %loop1 ; bb5 to bb6 split basic block. ; CHECK: [[BB5BB6]]: ; CHECK-NEXT: [[INITIALVAL:%[^ ]+]] = add i32 [[IVNEXT]], %i1.next ; CHECK-NEXT: br label %[[SPLITTOBB6:.+]] ; bb2 to bb6 split basic block. ; CHECK: [[BB2BB6]]: ; CHECK-NEXT: br label %[[SPLITTOBB6]] ; Split basic blocks to bb6. ; CHECK: [[SPLITTOBB6]]: ; CHECK-NEXT: [[INITP8:%[^ ]+]] = phi i32 [ [[INITIALVAL]], %[[BB5BB6]] ], [ undef, %[[BB2BB6]] ] ; CHECK-NEXT: [[INITP9:%[^ ]+]] = phi i32 [ undef, %[[BB5BB6]] ], [ %i1, %[[BB2BB6]] ] ; CHECK-NEXT: br label %bb6 ; CHECK: [[LOOP1BB6]]: ; CHECK-NEXT: br label %bb6 ; CHECK: bb6: ; CHECK-NEXT: %p8 = phi i32 [ undef, %[[LOOP1BB6]] ], [ [[INITP8]], %[[SPLITTOBB6]] ] ; CHECK-NEXT: %p9 = phi i32 [ %i1, %[[LOOP1BB6]] ], [ [[INITP9]], %[[SPLITTOBB6]] ] ; CHECK-NEXT: unreachable bb6: ; preds = %bb5, %bb2, %loop1 %p8 = phi i32 [ %t0, %bb5 ], [ undef, %loop1 ], [ undef, %bb2 ] ; <i32> [#uses=0] %p9 = phi i32 [ undef, %bb5 ], [ %i1, %loop1 ], [ %i1, %bb2 ] ; <i32> [#uses=0] unreachable }