//=- X86SchedHaswell.td - X86 Haswell Scheduling -------------*- tablegen -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the machine model for Haswell to support instruction // scheduling and other instruction cost heuristics. // //===----------------------------------------------------------------------===// def HaswellModel : SchedMachineModel { // All x86 instructions are modeled as a single micro-op, and HW can decode 4 // instructions per cycle. let IssueWidth = 4; let MicroOpBufferSize = 192; // Based on the reorder buffer. let LoadLatency = 4; let MispredictPenalty = 16; } let SchedModel = HaswellModel in { // Haswell can issue micro-ops to 8 different ports in one cycle. // Ports 0, 1, 5, 6 and 7 handle all computation. // Port 4 gets the data half of stores. Store data can be available later than // the store address, but since we don't model the latency of stores, we can // ignore that. // Ports 2 and 3 are identical. They handle loads and the address half of // stores. Port 7 can handle address calculations. def HWPort0 : ProcResource<1>; def HWPort1 : ProcResource<1>; def HWPort2 : ProcResource<1>; def HWPort3 : ProcResource<1>; def HWPort4 : ProcResource<1>; def HWPort5 : ProcResource<1>; def HWPort6 : ProcResource<1>; def HWPort7 : ProcResource<1>; // Many micro-ops are capable of issuing on multiple ports. def HWPort23 : ProcResGroup<[HWPort2, HWPort3]>; def HWPort237 : ProcResGroup<[HWPort2, HWPort3, HWPort7]>; def HWPort05 : ProcResGroup<[HWPort0, HWPort5]>; def HWPort056 : ProcResGroup<[HWPort0, HWPort5, HWPort6]>; def HWPort15 : ProcResGroup<[HWPort1, HWPort5]>; def HWPort015 : ProcResGroup<[HWPort0, HWPort1, HWPort5]>; def HWPort0156: ProcResGroup<[HWPort0, HWPort1, HWPort5, HWPort6]>; // 60 Entry Unified Scheduler def HWPortAny : ProcResGroup<[HWPort0, HWPort1, HWPort2, HWPort3, HWPort4, HWPort5, HWPort6, HWPort7]> { let BufferSize=60; } // Integer division issued on port 0. def HWDivider : ProcResource<1>; // Loads are 4 cycles, so ReadAfterLd registers needn't be available until 4 // cycles after the memory operand. def : ReadAdvance<ReadAfterLd, 4>; // Many SchedWrites are defined in pairs with and without a folded load. // Instructions with folded loads are usually micro-fused, so they only appear // as two micro-ops when queued in the reservation station. // This multiclass defines the resource usage for variants with and without // folded loads. multiclass HWWriteResPair<X86FoldableSchedWrite SchedRW, ProcResourceKind ExePort, int Lat> { // Register variant is using a single cycle on ExePort. def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; } // Memory variant also uses a cycle on port 2/3 and adds 4 cycles to the // latency. def : WriteRes<SchedRW.Folded, [HWPort23, ExePort]> { let Latency = !add(Lat, 4); } } // A folded store needs a cycle on port 4 for the store data, but it does not // need an extra port 2/3 cycle to recompute the address. def : WriteRes<WriteRMW, [HWPort4]>; def : WriteRes<WriteStore, [HWPort237, HWPort4]>; def : WriteRes<WriteLoad, [HWPort23]> { let Latency = 4; } def : WriteRes<WriteMove, [HWPort0156]>; def : WriteRes<WriteZero, []>; defm : HWWriteResPair<WriteALU, HWPort0156, 1>; defm : HWWriteResPair<WriteIMul, HWPort1, 3>; def : WriteRes<WriteIMulH, []> { let Latency = 3; } defm : HWWriteResPair<WriteShift, HWPort056, 1>; defm : HWWriteResPair<WriteJump, HWPort5, 1>; // This is for simple LEAs with one or two input operands. // The complex ones can only execute on port 1, and they require two cycles on // the port to read all inputs. We don't model that. def : WriteRes<WriteLEA, [HWPort15]>; // This is quite rough, latency depends on the dividend. def : WriteRes<WriteIDiv, [HWPort0, HWDivider]> { let Latency = 25; let ResourceCycles = [1, 10]; } def : WriteRes<WriteIDivLd, [HWPort23, HWPort0, HWDivider]> { let Latency = 29; let ResourceCycles = [1, 1, 10]; } // Scalar and vector floating point. defm : HWWriteResPair<WriteFAdd, HWPort1, 3>; defm : HWWriteResPair<WriteFMul, HWPort0, 5>; defm : HWWriteResPair<WriteFDiv, HWPort0, 12>; // 10-14 cycles. defm : HWWriteResPair<WriteFRcp, HWPort0, 5>; defm : HWWriteResPair<WriteFSqrt, HWPort0, 15>; defm : HWWriteResPair<WriteCvtF2I, HWPort1, 3>; defm : HWWriteResPair<WriteCvtI2F, HWPort1, 4>; defm : HWWriteResPair<WriteCvtF2F, HWPort1, 3>; // Vector integer operations. defm : HWWriteResPair<WriteVecShift, HWPort05, 1>; defm : HWWriteResPair<WriteVecLogic, HWPort015, 1>; defm : HWWriteResPair<WriteVecALU, HWPort15, 1>; defm : HWWriteResPair<WriteVecIMul, HWPort0, 5>; defm : HWWriteResPair<WriteShuffle, HWPort15, 1>; def : WriteRes<WriteSystem, [HWPort0156]> { let Latency = 100; } def : WriteRes<WriteMicrocoded, [HWPort0156]> { let Latency = 100; } } // SchedModel