//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Class definitions //===----------------------------------------------------------------------===// class ImmediateAsmOperand<string name> : AsmOperandClass { let Name = name; let RenderMethod = "addImmOperands"; } // Constructs both a DAG pattern and instruction operand for an immediate // of type VT. PRED returns true if a node is acceptable and XFORM returns // the operand value associated with the node. ASMOP is the name of the // associated asm operand, and also forms the basis of the asm print method. class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> : PatLeaf<(vt imm), pred, xform>, Operand<vt> { let PrintMethod = "print"##asmop##"Operand"; let DecoderMethod = "decode"##asmop##"Operand"; let ParserMatchClass = !cast<AsmOperandClass>(asmop); } // Constructs an asm operand for a PC-relative address. SIZE says how // many bits there are. class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> { let PredicateMethod = "isImm"; let ParserMethod = "parsePCRel"##size; } // Constructs an operand for a PC-relative address with address type VT. // ASMOP is the associated asm operand. class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> { let PrintMethod = "printPCRelOperand"; let ParserMatchClass = asmop; } // Constructs both a DAG pattern and instruction operand for a PC-relative // address with address size VT. SELF is the name of the operand and // ASMOP is the associated asm operand. class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop> : ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>, PCRelOperand<vt, asmop> { let MIOperandInfo = (ops !cast<Operand>(self)); } // Constructs an AsmOperandClass for addressing mode FORMAT, treating the // registers as having BITSIZE bits and displacements as having DISPSIZE bits. // LENGTH is "LenN" for addresses with an N-bit length field, otherwise it // is "". class AddressAsmOperand<string format, string bitsize, string dispsize, string length = ""> : AsmOperandClass { let Name = format##bitsize##"Disp"##dispsize##length; let ParserMethod = "parse"##format##bitsize; let RenderMethod = "add"##format##"Operands"; } // Constructs both a DAG pattern and instruction operand for an addressing mode. // FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated // AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands // (base register, displacement, etc.). SELTYPE is the type of the memory // operand for selection purposes; sometimes we want different selection // choices for the same underlying addressing mode. SUFFIX is similarly // a suffix appended to the displacement for selection purposes; // e.g. we want to reject small 20-bit displacements if a 12-bit form // also exists, but we want to accept them otherwise. class AddressingMode<string seltype, string bitsize, string dispsize, string suffix, string length, int numops, string format, dag operands> : ComplexPattern<!cast<ValueType>("i"##bitsize), numops, "select"##seltype##dispsize##suffix##length, [add, sub, or, frameindex, z_adjdynalloc]>, Operand<!cast<ValueType>("i"##bitsize)> { let PrintMethod = "print"##format##"Operand"; let EncoderMethod = "get"##format##dispsize##length##"Encoding"; let DecoderMethod = "decode"##format##bitsize##"Disp"##dispsize##length##"Operand"; let MIOperandInfo = operands; let ParserMatchClass = !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length); } // An addressing mode with a base and displacement but no index. class BDMode<string type, string bitsize, string dispsize, string suffix> : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr", (ops !cast<RegisterOperand>("ADDR"##bitsize), !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>; // An addressing mode with a base, displacement and index. class BDXMode<string type, string bitsize, string dispsize, string suffix> : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr", (ops !cast<RegisterOperand>("ADDR"##bitsize), !cast<Immediate>("disp"##dispsize##"imm"##bitsize), !cast<RegisterOperand>("ADDR"##bitsize))>; // A BDMode paired with an immediate length operand of LENSIZE bits. class BDLMode<string type, string bitsize, string dispsize, string suffix, string lensize> : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3, "BDLAddr", (ops !cast<RegisterOperand>("ADDR"##bitsize), !cast<Immediate>("disp"##dispsize##"imm"##bitsize), !cast<Immediate>("imm"##bitsize))>; //===----------------------------------------------------------------------===// // Extracting immediate operands from nodes // These all create MVT::i64 nodes to ensure the value is not sign-extended // when converted from an SDNode to a MachineOperand later on. //===----------------------------------------------------------------------===// // Bits 0-15 (counting from the lsb). def LL16 : SDNodeXForm<imm, [{ uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; return CurDAG->getTargetConstant(Value, MVT::i64); }]>; // Bits 16-31 (counting from the lsb). def LH16 : SDNodeXForm<imm, [{ uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; return CurDAG->getTargetConstant(Value, MVT::i64); }]>; // Bits 32-47 (counting from the lsb). def HL16 : SDNodeXForm<imm, [{ uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; return CurDAG->getTargetConstant(Value, MVT::i64); }]>; // Bits 48-63 (counting from the lsb). def HH16 : SDNodeXForm<imm, [{ uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; return CurDAG->getTargetConstant(Value, MVT::i64); }]>; // Low 32 bits. def LF32 : SDNodeXForm<imm, [{ uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; return CurDAG->getTargetConstant(Value, MVT::i64); }]>; // High 32 bits. def HF32 : SDNodeXForm<imm, [{ uint64_t Value = N->getZExtValue() >> 32; return CurDAG->getTargetConstant(Value, MVT::i64); }]>; // Truncate an immediate to a 8-bit signed quantity. def SIMM8 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64); }]>; // Truncate an immediate to a 8-bit unsigned quantity. def UIMM8 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64); }]>; // Truncate an immediate to a 16-bit signed quantity. def SIMM16 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64); }]>; // Truncate an immediate to a 16-bit unsigned quantity. def UIMM16 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64); }]>; // Truncate an immediate to a 32-bit signed quantity. def SIMM32 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64); }]>; // Truncate an immediate to a 32-bit unsigned quantity. def UIMM32 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64); }]>; // Negate and then truncate an immediate to a 32-bit unsigned quantity. def NEGIMM32 : SDNodeXForm<imm, [{ return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64); }]>; //===----------------------------------------------------------------------===// // Immediate asm operands. //===----------------------------------------------------------------------===// def U4Imm : ImmediateAsmOperand<"U4Imm">; def U6Imm : ImmediateAsmOperand<"U6Imm">; def S8Imm : ImmediateAsmOperand<"S8Imm">; def U8Imm : ImmediateAsmOperand<"U8Imm">; def S16Imm : ImmediateAsmOperand<"S16Imm">; def U16Imm : ImmediateAsmOperand<"U16Imm">; def S32Imm : ImmediateAsmOperand<"S32Imm">; def U32Imm : ImmediateAsmOperand<"U32Imm">; //===----------------------------------------------------------------------===// // 8-bit immediates //===----------------------------------------------------------------------===// def uimm8zx4 : Immediate<i8, [{ return isUInt<4>(N->getZExtValue()); }], NOOP_SDNodeXForm, "U4Imm">; def uimm8zx6 : Immediate<i8, [{ return isUInt<6>(N->getZExtValue()); }], NOOP_SDNodeXForm, "U6Imm">; def simm8 : Immediate<i8, [{}], SIMM8, "S8Imm">; def uimm8 : Immediate<i8, [{}], UIMM8, "U8Imm">; //===----------------------------------------------------------------------===// // i32 immediates //===----------------------------------------------------------------------===// // Immediates for 8-bit lengths. def imm32len8 : Immediate<i32, [{ return isUInt<8>(N->getZExtValue() - 1); }], NOOP_SDNodeXForm, "U32Imm">; // Immediates for the lower and upper 16 bits of an i32, with the other // bits of the i32 being zero. def imm32ll16 : Immediate<i32, [{ return SystemZ::isImmLL(N->getZExtValue()); }], LL16, "U16Imm">; def imm32lh16 : Immediate<i32, [{ return SystemZ::isImmLH(N->getZExtValue()); }], LH16, "U16Imm">; // Immediates for the lower and upper 16 bits of an i32, with the other // bits of the i32 being one. def imm32ll16c : Immediate<i32, [{ return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); }], LL16, "U16Imm">; def imm32lh16c : Immediate<i32, [{ return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); }], LH16, "U16Imm">; // Short immediates def imm32sx8 : Immediate<i32, [{ return isInt<8>(N->getSExtValue()); }], SIMM8, "S8Imm">; def imm32zx8 : Immediate<i32, [{ return isUInt<8>(N->getZExtValue()); }], UIMM8, "U8Imm">; def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; def imm32sx16 : Immediate<i32, [{ return isInt<16>(N->getSExtValue()); }], SIMM16, "S16Imm">; def imm32zx16 : Immediate<i32, [{ return isUInt<16>(N->getZExtValue()); }], UIMM16, "U16Imm">; def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; // Full 32-bit immediates. we need both signed and unsigned versions // because the assembler is picky. E.g. AFI requires signed operands // while NILF requires unsigned ones. def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; def imm32 : ImmLeaf<i32, [{}]>; //===----------------------------------------------------------------------===// // 64-bit immediates //===----------------------------------------------------------------------===// // Immediates for 16-bit chunks of an i64, with the other bits of the // i32 being zero. def imm64ll16 : Immediate<i64, [{ return SystemZ::isImmLL(N->getZExtValue()); }], LL16, "U16Imm">; def imm64lh16 : Immediate<i64, [{ return SystemZ::isImmLH(N->getZExtValue()); }], LH16, "U16Imm">; def imm64hl16 : Immediate<i64, [{ return SystemZ::isImmHL(N->getZExtValue()); }], HL16, "U16Imm">; def imm64hh16 : Immediate<i64, [{ return SystemZ::isImmHH(N->getZExtValue()); }], HH16, "U16Imm">; // Immediates for 16-bit chunks of an i64, with the other bits of the // i32 being one. def imm64ll16c : Immediate<i64, [{ return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); }], LL16, "U16Imm">; def imm64lh16c : Immediate<i64, [{ return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); }], LH16, "U16Imm">; def imm64hl16c : Immediate<i64, [{ return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); }], HL16, "U16Imm">; def imm64hh16c : Immediate<i64, [{ return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); }], HH16, "U16Imm">; // Immediates for the lower and upper 32 bits of an i64, with the other // bits of the i32 being zero. def imm64lf32 : Immediate<i64, [{ return SystemZ::isImmLF(N->getZExtValue()); }], LF32, "U32Imm">; def imm64hf32 : Immediate<i64, [{ return SystemZ::isImmHF(N->getZExtValue()); }], HF32, "U32Imm">; // Immediates for the lower and upper 32 bits of an i64, with the other // bits of the i32 being one. def imm64lf32c : Immediate<i64, [{ return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); }], LF32, "U32Imm">; def imm64hf32c : Immediate<i64, [{ return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); }], HF32, "U32Imm">; // Short immediates. def imm64sx8 : Immediate<i64, [{ return isInt<8>(N->getSExtValue()); }], SIMM8, "S8Imm">; def imm64sx16 : Immediate<i64, [{ return isInt<16>(N->getSExtValue()); }], SIMM16, "S16Imm">; def imm64zx16 : Immediate<i64, [{ return isUInt<16>(N->getZExtValue()); }], UIMM16, "U16Imm">; def imm64sx32 : Immediate<i64, [{ return isInt<32>(N->getSExtValue()); }], SIMM32, "S32Imm">; def imm64zx32 : Immediate<i64, [{ return isUInt<32>(N->getZExtValue()); }], UIMM32, "U32Imm">; def imm64zx32n : Immediate<i64, [{ return isUInt<32>(-N->getSExtValue()); }], NEGIMM32, "U32Imm">; def imm64 : ImmLeaf<i64, [{}]>; //===----------------------------------------------------------------------===// // Floating-point immediates //===----------------------------------------------------------------------===// // Floating-point zero. def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; // Floating point negative zero. def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; //===----------------------------------------------------------------------===// // Symbolic address operands //===----------------------------------------------------------------------===// // PC-relative asm operands. def PCRel16 : PCRelAsmOperand<"16">; def PCRel32 : PCRelAsmOperand<"32">; // PC-relative offsets of a basic block. The offset is sign-extended // and multiplied by 2. def brtarget16 : PCRelOperand<OtherVT, PCRel16> { let EncoderMethod = "getPC16DBLEncoding"; let DecoderMethod = "decodePC16DBLOperand"; } def brtarget32 : PCRelOperand<OtherVT, PCRel32> { let EncoderMethod = "getPC32DBLEncoding"; let DecoderMethod = "decodePC32DBLOperand"; } // A PC-relative offset of a global value. The offset is sign-extended // and multiplied by 2. def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> { let EncoderMethod = "getPC32DBLEncoding"; let DecoderMethod = "decodePC32DBLOperand"; } // A PC-relative offset of a global value when the value is used as a // call target. The offset is sign-extended and multiplied by 2. def pcrel16call : PCRelAddress<i64, "pcrel16call", PCRel16> { let PrintMethod = "printCallOperand"; let EncoderMethod = "getPLT16DBLEncoding"; let DecoderMethod = "decodePC16DBLOperand"; } def pcrel32call : PCRelAddress<i64, "pcrel32call", PCRel32> { let PrintMethod = "printCallOperand"; let EncoderMethod = "getPLT32DBLEncoding"; let DecoderMethod = "decodePC32DBLOperand"; } //===----------------------------------------------------------------------===// // Addressing modes //===----------------------------------------------------------------------===// // 12-bit displacement operands. def disp12imm32 : Operand<i32>; def disp12imm64 : Operand<i64>; // 20-bit displacement operands. def disp20imm32 : Operand<i32>; def disp20imm64 : Operand<i64>; def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">; def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">; def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">; def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">; def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">; def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">; def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">; // DAG patterns and operands for addressing modes. Each mode has // the form <type><range><group>[<len>] where: // // <type> is one of: // shift : base + displacement (32-bit) // bdaddr : base + displacement // bdxaddr : base + displacement + index // laaddr : like bdxaddr, but used for Load Address operations // dynalloc : base + displacement + index + ADJDYNALLOC // bdladdr : base + displacement with a length field // // <range> is one of: // 12 : the displacement is an unsigned 12-bit value // 20 : the displacement is a signed 20-bit value // // <group> is one of: // pair : used when there is an equivalent instruction with the opposite // range value (12 or 20) // only : used when there is no equivalent instruction with the opposite // range value // // <len> is one of: // // <empty> : there is no length field // len8 : the length field is 8 bits, with a range of [1, 0x100]. def shift12only : BDMode <"BDAddr", "32", "12", "Only">; def shift20only : BDMode <"BDAddr", "32", "20", "Only">; def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">; def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">; def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">; def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">; def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">; def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">; def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">; def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">; def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">; def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">; def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">; def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">; def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">; //===----------------------------------------------------------------------===// // Miscellaneous //===----------------------------------------------------------------------===// // Access registers. At present we just use them for accessing the thread // pointer, so we don't expose them as register to LLVM. def AccessReg : AsmOperandClass { let Name = "AccessReg"; let ParserMethod = "parseAccessReg"; } def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }], NOOP_SDNodeXForm, "AccessReg"> { let ParserMatchClass = AccessReg; } // A 4-bit condition-code mask. def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>, Operand<i8> { let PrintMethod = "printCond4Operand"; }