//===-- PowerPCSubtarget.cpp - PPC Subtarget Information ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the PPC specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "PPCSubtarget.h" #include "PPC.h" #include "PPCRegisterInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Function.h" #include "llvm/Support/Host.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Target/TargetMachine.h" #include <cstdlib> #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "PPCGenSubtargetInfo.inc" using namespace llvm; PPCSubtarget::PPCSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS, bool is64Bit) : PPCGenSubtargetInfo(TT, CPU, FS) , IsPPC64(is64Bit) , TargetTriple(TT) { initializeEnvironment(); resetSubtargetFeatures(CPU, FS); } /// SetJITMode - This is called to inform the subtarget info that we are /// producing code for the JIT. void PPCSubtarget::SetJITMode() { // JIT mode doesn't want lazy resolver stubs, it knows exactly where // everything is. This matters for PPC64, which codegens in PIC mode without // stubs. HasLazyResolverStubs = false; // Calls to external functions need to use indirect calls IsJITCodeModel = true; } void PPCSubtarget::resetSubtargetFeatures(const MachineFunction *MF) { AttributeSet FnAttrs = MF->getFunction()->getAttributes(); Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu"); Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ? CPUAttr.getValueAsString() : ""; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : ""; if (!FS.empty()) { initializeEnvironment(); resetSubtargetFeatures(CPU, FS); } } void PPCSubtarget::initializeEnvironment() { StackAlignment = 16; DarwinDirective = PPC::DIR_NONE; HasMFOCRF = false; Has64BitSupport = false; Use64BitRegs = false; HasAltivec = false; HasQPX = false; HasFSQRT = false; HasFRE = false; HasFRES = false; HasFRSQRTE = false; HasFRSQRTES = false; HasRecipPrec = false; HasSTFIWX = false; HasLFIWAX = false; HasFPRND = false; HasFPCVT = false; HasISEL = false; HasPOPCNTD = false; HasLDBRX = false; IsBookE = false; HasLazyResolverStubs = false; IsJITCodeModel = false; } void PPCSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) { // Determine default and user specified characteristics std::string CPUName = CPU; if (CPUName.empty()) CPUName = "generic"; #if (defined(__APPLE__) || defined(__linux__)) && \ (defined(__ppc__) || defined(__powerpc__)) if (CPUName == "generic") CPUName = sys::getHostCPUName(); #endif // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUName); // Make sure 64-bit features are available when CPUname is generic std::string FullFS = FS; // If we are generating code for ppc64, verify that options make sense. if (IsPPC64) { Has64BitSupport = true; // Silently force 64-bit register use on ppc64. Use64BitRegs = true; if (!FullFS.empty()) FullFS = "+64bit," + FullFS; else FullFS = "+64bit"; } // Parse features string. ParseSubtargetFeatures(CPUName, FullFS); // If the user requested use of 64-bit regs, but the cpu selected doesn't // support it, ignore. if (use64BitRegs() && !has64BitSupport()) Use64BitRegs = false; // Set up darwin-specific properties. if (isDarwin()) HasLazyResolverStubs = true; // QPX requires a 32-byte aligned stack. Note that we need to do this if // we're compiling for a BG/Q system regardless of whether or not QPX // is enabled because external functions will assume this alignment. if (hasQPX() || isBGQ()) StackAlignment = 32; // Determine endianness. IsLittleEndian = (TargetTriple.getArch() == Triple::ppc64le); } /// hasLazyResolverStub - Return true if accesses to the specified global have /// to go through a dyld lazy resolution stub. This means that an extra load /// is required to get the address of the global. bool PPCSubtarget::hasLazyResolverStub(const GlobalValue *GV, const TargetMachine &TM) const { // We never have stubs if HasLazyResolverStubs=false or if in static mode. if (!HasLazyResolverStubs || TM.getRelocationModel() == Reloc::Static) return false; // If symbol visibility is hidden, the extra load is not needed if // the symbol is definitely defined in the current translation unit. bool isDecl = GV->isDeclaration() && !GV->isMaterializable(); if (GV->hasHiddenVisibility() && !isDecl && !GV->hasCommonLinkage()) return false; return GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || GV->hasCommonLinkage() || isDecl; } bool PPCSubtarget::enablePostRAScheduler( CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const { // FIXME: It would be best to use TargetSubtargetInfo::ANTIDEP_ALL here, // but we can't because we can't reassign the cr registers. There is a // dependence between the cr register and the RLWINM instruction used // to extract its value which the anti-dependency breaker can't currently // see. Maybe we should make a late-expanded pseudo to encode this dependency. // (the relevant code is in PPCDAGToDAGISel::SelectSETCC) Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL; CriticalPathRCs.clear(); if (isPPC64()) CriticalPathRCs.push_back(&PPC::G8RCRegClass); else CriticalPathRCs.push_back(&PPC::GPRCRegClass); CriticalPathRCs.push_back(&PPC::F8RCRegClass); CriticalPathRCs.push_back(&PPC::VRRCRegClass); return OptLevel >= CodeGenOpt::Default; }