//===------- HexagonCopyToCombine.cpp - Hexagon Copy-To-Combine Pass ------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This pass replaces transfer instructions by combine instructions. // We walk along a basic block and look for two combinable instructions and try // to move them together. If we can move them next to each other we do so and // replace them with a combine instruction. //===----------------------------------------------------------------------===// #define DEBUG_TYPE "hexagon-copy-combine" #include "llvm/PassSupport.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "Hexagon.h" #include "HexagonInstrInfo.h" #include "HexagonRegisterInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "HexagonMachineFunctionInfo.h" using namespace llvm; static cl::opt<bool> IsCombinesDisabled("disable-merge-into-combines", cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::desc("Disable merging into combines")); static cl::opt<unsigned> MaxNumOfInstsBetweenNewValueStoreAndTFR("max-num-inst-between-tfr-and-nv-store", cl::Hidden, cl::init(4), cl::desc("Maximum distance between a tfr feeding a store we " "consider the store still to be newifiable")); namespace llvm { void initializeHexagonCopyToCombinePass(PassRegistry&); } namespace { class HexagonCopyToCombine : public MachineFunctionPass { const HexagonInstrInfo *TII; const TargetRegisterInfo *TRI; bool ShouldCombineAggressively; DenseSet<MachineInstr *> PotentiallyNewifiableTFR; public: static char ID; HexagonCopyToCombine() : MachineFunctionPass(ID) { initializeHexagonCopyToCombinePass(*PassRegistry::getPassRegistry()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { MachineFunctionPass::getAnalysisUsage(AU); } const char *getPassName() const { return "Hexagon Copy-To-Combine Pass"; } virtual bool runOnMachineFunction(MachineFunction &Fn); private: MachineInstr *findPairable(MachineInstr *I1, bool &DoInsertAtI1); void findPotentialNewifiableTFRs(MachineBasicBlock &); void combine(MachineInstr *I1, MachineInstr *I2, MachineBasicBlock::iterator &MI, bool DoInsertAtI1); bool isSafeToMoveTogether(MachineInstr *I1, MachineInstr *I2, unsigned I1DestReg, unsigned I2DestReg, bool &DoInsertAtI1); void emitCombineRR(MachineBasicBlock::iterator &Before, unsigned DestReg, MachineOperand &HiOperand, MachineOperand &LoOperand); void emitCombineRI(MachineBasicBlock::iterator &Before, unsigned DestReg, MachineOperand &HiOperand, MachineOperand &LoOperand); void emitCombineIR(MachineBasicBlock::iterator &Before, unsigned DestReg, MachineOperand &HiOperand, MachineOperand &LoOperand); void emitCombineII(MachineBasicBlock::iterator &Before, unsigned DestReg, MachineOperand &HiOperand, MachineOperand &LoOperand); }; } // End anonymous namespace. char HexagonCopyToCombine::ID = 0; INITIALIZE_PASS(HexagonCopyToCombine, "hexagon-copy-combine", "Hexagon Copy-To-Combine Pass", false, false) static bool isCombinableInstType(MachineInstr *MI, const HexagonInstrInfo *TII, bool ShouldCombineAggressively) { switch(MI->getOpcode()) { case Hexagon::TFR: { // A COPY instruction can be combined if its arguments are IntRegs (32bit). assert(MI->getOperand(0).isReg() && MI->getOperand(1).isReg()); unsigned DestReg = MI->getOperand(0).getReg(); unsigned SrcReg = MI->getOperand(1).getReg(); return Hexagon::IntRegsRegClass.contains(DestReg) && Hexagon::IntRegsRegClass.contains(SrcReg); } case Hexagon::TFRI: { // A transfer-immediate can be combined if its argument is a signed 8bit // value. assert(MI->getOperand(0).isReg() && MI->getOperand(1).isImm()); unsigned DestReg = MI->getOperand(0).getReg(); // Only combine constant extended TFRI if we are in aggressive mode. return Hexagon::IntRegsRegClass.contains(DestReg) && (ShouldCombineAggressively || isInt<8>(MI->getOperand(1).getImm())); } case Hexagon::TFRI_V4: { if (!ShouldCombineAggressively) return false; assert(MI->getOperand(0).isReg() && MI->getOperand(1).isGlobal()); // Ensure that TargetFlags are MO_NO_FLAG for a global. This is a // workaround for an ABI bug that prevents GOT relocations on combine // instructions if (MI->getOperand(1).getTargetFlags() != HexagonII::MO_NO_FLAG) return false; unsigned DestReg = MI->getOperand(0).getReg(); return Hexagon::IntRegsRegClass.contains(DestReg); } default: break; } return false; } static bool isGreaterThan8BitTFRI(MachineInstr *I) { return I->getOpcode() == Hexagon::TFRI && !isInt<8>(I->getOperand(1).getImm()); } static bool isGreaterThan6BitTFRI(MachineInstr *I) { return I->getOpcode() == Hexagon::TFRI && !isUInt<6>(I->getOperand(1).getImm()); } /// areCombinableOperations - Returns true if the two instruction can be merge /// into a combine (ignoring register constraints). static bool areCombinableOperations(const TargetRegisterInfo *TRI, MachineInstr *HighRegInst, MachineInstr *LowRegInst) { assert((HighRegInst->getOpcode() == Hexagon::TFR || HighRegInst->getOpcode() == Hexagon::TFRI || HighRegInst->getOpcode() == Hexagon::TFRI_V4) && (LowRegInst->getOpcode() == Hexagon::TFR || LowRegInst->getOpcode() == Hexagon::TFRI || LowRegInst->getOpcode() == Hexagon::TFRI_V4) && "Assume individual instructions are of a combinable type"); const HexagonRegisterInfo *QRI = static_cast<const HexagonRegisterInfo *>(TRI); // V4 added some combine variations (mixed immediate and register source // operands), if we are on < V4 we can only combine 2 register-to-register // moves and 2 immediate-to-register moves. We also don't have // constant-extenders. if (!QRI->Subtarget.hasV4TOps()) return HighRegInst->getOpcode() == LowRegInst->getOpcode() && !isGreaterThan8BitTFRI(HighRegInst) && !isGreaterThan6BitTFRI(LowRegInst); // There is no combine of two constant extended values. if ((HighRegInst->getOpcode() == Hexagon::TFRI_V4 || isGreaterThan8BitTFRI(HighRegInst)) && (LowRegInst->getOpcode() == Hexagon::TFRI_V4 || isGreaterThan6BitTFRI(LowRegInst))) return false; return true; } static bool isEvenReg(unsigned Reg) { assert(TargetRegisterInfo::isPhysicalRegister(Reg) && Hexagon::IntRegsRegClass.contains(Reg)); return (Reg - Hexagon::R0) % 2 == 0; } static void removeKillInfo(MachineInstr *MI, unsigned RegNotKilled) { for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { MachineOperand &Op = MI->getOperand(I); if (!Op.isReg() || Op.getReg() != RegNotKilled || !Op.isKill()) continue; Op.setIsKill(false); } } /// isUnsafeToMoveAcross - Returns true if it is unsafe to move a copy /// instruction from \p UseReg to \p DestReg over the instruction \p I. static bool isUnsafeToMoveAcross(MachineInstr *I, unsigned UseReg, unsigned DestReg, const TargetRegisterInfo *TRI) { return (UseReg && (I->modifiesRegister(UseReg, TRI))) || I->modifiesRegister(DestReg, TRI) || I->readsRegister(DestReg, TRI) || I->hasUnmodeledSideEffects() || I->isInlineAsm() || I->isDebugValue(); } /// isSafeToMoveTogether - Returns true if it is safe to move I1 next to I2 such /// that the two instructions can be paired in a combine. bool HexagonCopyToCombine::isSafeToMoveTogether(MachineInstr *I1, MachineInstr *I2, unsigned I1DestReg, unsigned I2DestReg, bool &DoInsertAtI1) { bool IsImmUseReg = I2->getOperand(1).isImm() || I2->getOperand(1).isGlobal(); unsigned I2UseReg = IsImmUseReg ? 0 : I2->getOperand(1).getReg(); // It is not safe to move I1 and I2 into one combine if I2 has a true // dependence on I1. if (I2UseReg && I1->modifiesRegister(I2UseReg, TRI)) return false; bool isSafe = true; // First try to move I2 towards I1. { // A reverse_iterator instantiated like below starts before I2, and I1 // respectively. // Look at instructions I in between I2 and (excluding) I1. MachineBasicBlock::reverse_iterator I(I2), End = --(MachineBasicBlock::reverse_iterator(I1)); // At 03 we got better results (dhrystone!) by being more conservative. if (!ShouldCombineAggressively) End = MachineBasicBlock::reverse_iterator(I1); // If I2 kills its operand and we move I2 over an instruction that also // uses I2's use reg we need to modify that (first) instruction to now kill // this reg. unsigned KilledOperand = 0; if (I2->killsRegister(I2UseReg)) KilledOperand = I2UseReg; MachineInstr *KillingInstr = 0; for (; I != End; ++I) { // If the intervening instruction I: // * modifies I2's use reg // * modifies I2's def reg // * reads I2's def reg // * or has unmodelled side effects // we can't move I2 across it. if (isUnsafeToMoveAcross(&*I, I2UseReg, I2DestReg, TRI)) { isSafe = false; break; } // Update first use of the killed operand. if (!KillingInstr && KilledOperand && I->readsRegister(KilledOperand, TRI)) KillingInstr = &*I; } if (isSafe) { // Update the intermediate instruction to with the kill flag. if (KillingInstr) { bool Added = KillingInstr->addRegisterKilled(KilledOperand, TRI, true); (void)Added; // supress compiler warning assert(Added && "Must successfully update kill flag"); removeKillInfo(I2, KilledOperand); } DoInsertAtI1 = true; return true; } } // Try to move I1 towards I2. { // Look at instructions I in between I1 and (excluding) I2. MachineBasicBlock::iterator I(I1), End(I2); // At O3 we got better results (dhrystone) by being more conservative here. if (!ShouldCombineAggressively) End = llvm::next(MachineBasicBlock::iterator(I2)); IsImmUseReg = I1->getOperand(1).isImm() || I1->getOperand(1).isGlobal(); unsigned I1UseReg = IsImmUseReg ? 0 : I1->getOperand(1).getReg(); // Track killed operands. If we move across an instruction that kills our // operand, we need to update the kill information on the moved I1. It kills // the operand now. MachineInstr *KillingInstr = 0; unsigned KilledOperand = 0; while(++I != End) { // If the intervening instruction I: // * modifies I1's use reg // * modifies I1's def reg // * reads I1's def reg // * or has unmodelled side effects // We introduce this special case because llvm has no api to remove a // kill flag for a register (a removeRegisterKilled() analogous to // addRegisterKilled) that handles aliased register correctly. // * or has a killed aliased register use of I1's use reg // %D4<def> = TFRI64 16 // %R6<def> = TFR %R9 // %R8<def> = KILL %R8, %D4<imp-use,kill> // If we want to move R6 = across the KILL instruction we would have // to remove the %D4<imp-use,kill> operand. For now, we are // conservative and disallow the move. // we can't move I1 across it. if (isUnsafeToMoveAcross(I, I1UseReg, I1DestReg, TRI) || // Check for an aliased register kill. Bail out if we see one. (!I->killsRegister(I1UseReg) && I->killsRegister(I1UseReg, TRI))) return false; // Check for an exact kill (registers match). if (I1UseReg && I->killsRegister(I1UseReg)) { assert(KillingInstr == 0 && "Should only see one killing instruction"); KilledOperand = I1UseReg; KillingInstr = &*I; } } if (KillingInstr) { removeKillInfo(KillingInstr, KilledOperand); // Update I1 to set the kill flag. This flag will later be picked up by // the new COMBINE instruction. bool Added = I1->addRegisterKilled(KilledOperand, TRI); (void)Added; // supress compiler warning assert(Added && "Must successfully update kill flag"); } DoInsertAtI1 = false; } return true; } /// findPotentialNewifiableTFRs - Finds tranfers that feed stores that could be /// newified. (A use of a 64 bit register define can not be newified) void HexagonCopyToCombine::findPotentialNewifiableTFRs(MachineBasicBlock &BB) { DenseMap<unsigned, MachineInstr *> LastDef; for (MachineBasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I) { MachineInstr *MI = I; // Mark TFRs that feed a potential new value store as such. if(TII->mayBeNewStore(MI)) { // Look for uses of TFR instructions. for (unsigned OpdIdx = 0, OpdE = MI->getNumOperands(); OpdIdx != OpdE; ++OpdIdx) { MachineOperand &Op = MI->getOperand(OpdIdx); // Skip over anything except register uses. if (!Op.isReg() || !Op.isUse() || !Op.getReg()) continue; // Look for the defining instruction. unsigned Reg = Op.getReg(); MachineInstr *DefInst = LastDef[Reg]; if (!DefInst) continue; if (!isCombinableInstType(DefInst, TII, ShouldCombineAggressively)) continue; // Only close newifiable stores should influence the decision. MachineBasicBlock::iterator It(DefInst); unsigned NumInstsToDef = 0; while (&*It++ != MI) ++NumInstsToDef; if (NumInstsToDef > MaxNumOfInstsBetweenNewValueStoreAndTFR) continue; PotentiallyNewifiableTFR.insert(DefInst); } // Skip to next instruction. continue; } // Put instructions that last defined integer or double registers into the // map. for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { MachineOperand &Op = MI->getOperand(I); if (!Op.isReg() || !Op.isDef() || !Op.getReg()) continue; unsigned Reg = Op.getReg(); if (Hexagon::DoubleRegsRegClass.contains(Reg)) { for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { LastDef[*SubRegs] = MI; } } else if (Hexagon::IntRegsRegClass.contains(Reg)) LastDef[Reg] = MI; } } } bool HexagonCopyToCombine::runOnMachineFunction(MachineFunction &MF) { if (IsCombinesDisabled) return false; bool HasChanged = false; // Get target info. TRI = MF.getTarget().getRegisterInfo(); TII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo()); // Combine aggressively (for code size) ShouldCombineAggressively = MF.getTarget().getOptLevel() <= CodeGenOpt::Default; // Traverse basic blocks. for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE; ++BI) { PotentiallyNewifiableTFR.clear(); findPotentialNewifiableTFRs(*BI); // Traverse instructions in basic block. for(MachineBasicBlock::iterator MI = BI->begin(), End = BI->end(); MI != End;) { MachineInstr *I1 = MI++; // Don't combine a TFR whose user could be newified (instructions that // define double registers can not be newified - Programmer's Ref Manual // 5.4.2 New-value stores). if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(I1)) continue; // Ignore instructions that are not combinable. if (!isCombinableInstType(I1, TII, ShouldCombineAggressively)) continue; // Find a second instruction that can be merged into a combine // instruction. bool DoInsertAtI1 = false; MachineInstr *I2 = findPairable(I1, DoInsertAtI1); if (I2) { HasChanged = true; combine(I1, I2, MI, DoInsertAtI1); } } } return HasChanged; } /// findPairable - Returns an instruction that can be merged with \p I1 into a /// COMBINE instruction or 0 if no such instruction can be found. Returns true /// in \p DoInsertAtI1 if the combine must be inserted at instruction \p I1 /// false if the combine must be inserted at the returned instruction. MachineInstr *HexagonCopyToCombine::findPairable(MachineInstr *I1, bool &DoInsertAtI1) { MachineBasicBlock::iterator I2 = llvm::next(MachineBasicBlock::iterator(I1)); unsigned I1DestReg = I1->getOperand(0).getReg(); for (MachineBasicBlock::iterator End = I1->getParent()->end(); I2 != End; ++I2) { // Bail out early if we see a second definition of I1DestReg. if (I2->modifiesRegister(I1DestReg, TRI)) break; // Ignore non-combinable instructions. if (!isCombinableInstType(I2, TII, ShouldCombineAggressively)) continue; // Don't combine a TFR whose user could be newified. if (ShouldCombineAggressively && PotentiallyNewifiableTFR.count(I2)) continue; unsigned I2DestReg = I2->getOperand(0).getReg(); // Check that registers are adjacent and that the first destination register // is even. bool IsI1LowReg = (I2DestReg - I1DestReg) == 1; bool IsI2LowReg = (I1DestReg - I2DestReg) == 1; unsigned FirstRegIndex = IsI1LowReg ? I1DestReg : I2DestReg; if ((!IsI1LowReg && !IsI2LowReg) || !isEvenReg(FirstRegIndex)) continue; // Check that the two instructions are combinable. V4 allows more // instructions to be merged into a combine. // The order matters because in a TFRI we might can encode a int8 as the // hi reg operand but only a uint6 as the low reg operand. if ((IsI2LowReg && !areCombinableOperations(TRI, I1, I2)) || (IsI1LowReg && !areCombinableOperations(TRI, I2, I1))) break; if (isSafeToMoveTogether(I1, I2, I1DestReg, I2DestReg, DoInsertAtI1)) return I2; // Not safe. Stop searching. break; } return 0; } void HexagonCopyToCombine::combine(MachineInstr *I1, MachineInstr *I2, MachineBasicBlock::iterator &MI, bool DoInsertAtI1) { // We are going to delete I2. If MI points to I2 advance it to the next // instruction. if ((MachineInstr *)MI == I2) ++MI; // Figure out whether I1 or I2 goes into the lowreg part. unsigned I1DestReg = I1->getOperand(0).getReg(); unsigned I2DestReg = I2->getOperand(0).getReg(); bool IsI1Loreg = (I2DestReg - I1DestReg) == 1; unsigned LoRegDef = IsI1Loreg ? I1DestReg : I2DestReg; // Get the double word register. unsigned DoubleRegDest = TRI->getMatchingSuperReg(LoRegDef, Hexagon::subreg_loreg, &Hexagon::DoubleRegsRegClass); assert(DoubleRegDest != 0 && "Expect a valid register"); // Setup source operands. MachineOperand &LoOperand = IsI1Loreg ? I1->getOperand(1) : I2->getOperand(1); MachineOperand &HiOperand = IsI1Loreg ? I2->getOperand(1) : I1->getOperand(1); // Figure out which source is a register and which a constant. bool IsHiReg = HiOperand.isReg(); bool IsLoReg = LoOperand.isReg(); MachineBasicBlock::iterator InsertPt(DoInsertAtI1 ? I1 : I2); // Emit combine. if (IsHiReg && IsLoReg) emitCombineRR(InsertPt, DoubleRegDest, HiOperand, LoOperand); else if (IsHiReg) emitCombineRI(InsertPt, DoubleRegDest, HiOperand, LoOperand); else if (IsLoReg) emitCombineIR(InsertPt, DoubleRegDest, HiOperand, LoOperand); else emitCombineII(InsertPt, DoubleRegDest, HiOperand, LoOperand); I1->eraseFromParent(); I2->eraseFromParent(); } void HexagonCopyToCombine::emitCombineII(MachineBasicBlock::iterator &InsertPt, unsigned DoubleDestReg, MachineOperand &HiOperand, MachineOperand &LoOperand) { DebugLoc DL = InsertPt->getDebugLoc(); MachineBasicBlock *BB = InsertPt->getParent(); // Handle globals. if (HiOperand.isGlobal()) { BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg) .addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(), HiOperand.getTargetFlags()) .addImm(LoOperand.getImm()); return; } if (LoOperand.isGlobal()) { BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg) .addImm(HiOperand.getImm()) .addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(), LoOperand.getTargetFlags()); return; } // Handle constant extended immediates. if (!isInt<8>(HiOperand.getImm())) { assert(isInt<8>(LoOperand.getImm())); BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg) .addImm(HiOperand.getImm()) .addImm(LoOperand.getImm()); return; } if (!isUInt<6>(LoOperand.getImm())) { assert(isInt<8>(HiOperand.getImm())); BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_iI_V4), DoubleDestReg) .addImm(HiOperand.getImm()) .addImm(LoOperand.getImm()); return; } // Insert new combine instruction. // DoubleRegDest = combine #HiImm, #LoImm BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ii), DoubleDestReg) .addImm(HiOperand.getImm()) .addImm(LoOperand.getImm()); } void HexagonCopyToCombine::emitCombineIR(MachineBasicBlock::iterator &InsertPt, unsigned DoubleDestReg, MachineOperand &HiOperand, MachineOperand &LoOperand) { unsigned LoReg = LoOperand.getReg(); unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill()); DebugLoc DL = InsertPt->getDebugLoc(); MachineBasicBlock *BB = InsertPt->getParent(); // Handle global. if (HiOperand.isGlobal()) { BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg) .addGlobalAddress(HiOperand.getGlobal(), HiOperand.getOffset(), HiOperand.getTargetFlags()) .addReg(LoReg, LoRegKillFlag); return; } // Insert new combine instruction. // DoubleRegDest = combine #HiImm, LoReg BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_Ir_V4), DoubleDestReg) .addImm(HiOperand.getImm()) .addReg(LoReg, LoRegKillFlag); } void HexagonCopyToCombine::emitCombineRI(MachineBasicBlock::iterator &InsertPt, unsigned DoubleDestReg, MachineOperand &HiOperand, MachineOperand &LoOperand) { unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill()); unsigned HiReg = HiOperand.getReg(); DebugLoc DL = InsertPt->getDebugLoc(); MachineBasicBlock *BB = InsertPt->getParent(); // Handle global. if (LoOperand.isGlobal()) { BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg) .addReg(HiReg, HiRegKillFlag) .addGlobalAddress(LoOperand.getGlobal(), LoOperand.getOffset(), LoOperand.getTargetFlags()); return; } // Insert new combine instruction. // DoubleRegDest = combine HiReg, #LoImm BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rI_V4), DoubleDestReg) .addReg(HiReg, HiRegKillFlag) .addImm(LoOperand.getImm()); } void HexagonCopyToCombine::emitCombineRR(MachineBasicBlock::iterator &InsertPt, unsigned DoubleDestReg, MachineOperand &HiOperand, MachineOperand &LoOperand) { unsigned LoRegKillFlag = getKillRegState(LoOperand.isKill()); unsigned HiRegKillFlag = getKillRegState(HiOperand.isKill()); unsigned LoReg = LoOperand.getReg(); unsigned HiReg = HiOperand.getReg(); DebugLoc DL = InsertPt->getDebugLoc(); MachineBasicBlock *BB = InsertPt->getParent(); // Insert new combine instruction. // DoubleRegDest = combine HiReg, LoReg BuildMI(*BB, InsertPt, DL, TII->get(Hexagon::COMBINE_rr), DoubleDestReg) .addReg(HiReg, HiRegKillFlag) .addReg(LoReg, LoRegKillFlag); } FunctionPass *llvm::createHexagonCopyToCombine() { return new HexagonCopyToCombine(); }