//===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the ARM specific subclass of TargetSubtargetInfo. // //===----------------------------------------------------------------------===// #include "ARMSubtarget.h" #include "ARMBaseInstrInfo.h" #include "ARMBaseRegisterInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Function.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetOptions.h" #define GET_SUBTARGETINFO_TARGET_DESC #define GET_SUBTARGETINFO_CTOR #include "ARMGenSubtargetInfo.inc" using namespace llvm; cl::opt<bool> ReserveR9("arm-reserve-r9", cl::Hidden, cl::desc("Reserve R9, making it unavailable as GPR")); static cl::opt<bool> DarwinUseMOVT("arm-darwin-use-movt", cl::init(true), cl::Hidden); static cl::opt<bool> UseFusedMulOps("arm-use-mulops", cl::init(true), cl::Hidden); enum AlignMode { DefaultAlign, StrictAlign, NoStrictAlign }; static cl::opt<AlignMode> Align(cl::desc("Load/store alignment support"), cl::Hidden, cl::init(DefaultAlign), cl::values( clEnumValN(DefaultAlign, "arm-default-align", "Generate unaligned accesses only on hardware/OS " "combinations that are known to support them"), clEnumValN(StrictAlign, "arm-strict-align", "Disallow all unaligned memory accesses"), clEnumValN(NoStrictAlign, "arm-no-strict-align", "Allow unaligned memory accesses"), clEnumValEnd)); ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU, const std::string &FS, const TargetOptions &Options) : ARMGenSubtargetInfo(TT, CPU, FS) , ARMProcFamily(Others) , stackAlignment(4) , CPUString(CPU) , TargetTriple(TT) , Options(Options) , TargetABI(ARM_ABI_APCS) { initializeEnvironment(); resetSubtargetFeatures(CPU, FS); } void ARMSubtarget::initializeEnvironment() { HasV4TOps = false; HasV5TOps = false; HasV5TEOps = false; HasV6Ops = false; HasV6T2Ops = false; HasV7Ops = false; HasV8Ops = false; HasVFPv2 = false; HasVFPv3 = false; HasVFPv4 = false; HasV8FP = false; HasNEON = false; UseNEONForSinglePrecisionFP = false; UseMulOps = UseFusedMulOps; SlowFPVMLx = false; HasVMLxForwarding = false; SlowFPBrcc = false; InThumbMode = false; HasThumb2 = false; IsMClass = false; NoARM = false; PostRAScheduler = false; IsR9Reserved = ReserveR9; UseMovt = false; SupportsTailCall = false; HasFP16 = false; HasD16 = false; HasHardwareDivide = false; HasHardwareDivideInARM = false; HasT2ExtractPack = false; HasDataBarrier = false; Pref32BitThumb = false; AvoidCPSRPartialUpdate = false; AvoidMOVsShifterOperand = false; HasRAS = false; HasMPExtension = false; FPOnlySP = false; HasPerfMon = false; HasTrustZone = false; AllowsUnalignedMem = false; Thumb2DSP = false; UseNaClTrap = false; UnsafeFPMath = false; } void ARMSubtarget::resetSubtargetFeatures(const MachineFunction *MF) { AttributeSet FnAttrs = MF->getFunction()->getAttributes(); Attribute CPUAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu"); Attribute FSAttr = FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features"); std::string CPU = !CPUAttr.hasAttribute(Attribute::None) ?CPUAttr.getValueAsString() : ""; std::string FS = !FSAttr.hasAttribute(Attribute::None) ? FSAttr.getValueAsString() : ""; if (!FS.empty()) { initializeEnvironment(); resetSubtargetFeatures(CPU, FS); } } void ARMSubtarget::resetSubtargetFeatures(StringRef CPU, StringRef FS) { if (CPUString.empty()) CPUString = "generic"; // Insert the architecture feature derived from the target triple into the // feature string. This is important for setting features that are implied // based on the architecture version. std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(), CPUString); if (!FS.empty()) { if (!ArchFS.empty()) ArchFS = ArchFS + "," + FS.str(); else ArchFS = FS; } ParseSubtargetFeatures(CPUString, ArchFS); // Thumb2 implies at least V6T2. FIXME: Fix tests to explicitly specify a // ARM version or CPU and then remove this. if (!HasV6T2Ops && hasThumb2()) HasV4TOps = HasV5TOps = HasV5TEOps = HasV6Ops = HasV6T2Ops = true; // Keep a pointer to static instruction cost data for the specified CPU. SchedModel = getSchedModelForCPU(CPUString); // Initialize scheduling itinerary for the specified CPU. InstrItins = getInstrItineraryForCPU(CPUString); if ((TargetTriple.getTriple().find("eabi") != std::string::npos) || (isTargetIOS() && isMClass())) // FIXME: We might want to separate AAPCS and EABI. Some systems, e.g. // Darwin-EABI conforms to AACPS but not the rest of EABI. TargetABI = ARM_ABI_AAPCS; if (isAAPCS_ABI()) stackAlignment = 8; if (!isTargetIOS()) UseMovt = hasV6T2Ops(); else { IsR9Reserved = ReserveR9 | !HasV6Ops; UseMovt = DarwinUseMOVT && hasV6T2Ops(); SupportsTailCall = !getTargetTriple().isOSVersionLT(5, 0); } if (!isThumb() || hasThumb2()) PostRAScheduler = true; switch (Align) { case DefaultAlign: // Assume pre-ARMv6 doesn't support unaligned accesses. // // ARMv6 may or may not support unaligned accesses depending on the // SCTLR.U bit, which is architecture-specific. We assume ARMv6 // Darwin targets support unaligned accesses, and others don't. // // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit // which raises an alignment fault on unaligned accesses. Linux // defaults this bit to 0 and handles it as a system-wide (not // per-process) setting. It is therefore safe to assume that ARMv7+ // Linux targets support unaligned accesses. The same goes for NaCl. // // The above behavior is consistent with GCC. AllowsUnalignedMem = ( (hasV7Ops() && (isTargetLinux() || isTargetNaCl())) || (hasV6Ops() && isTargetDarwin())); break; case StrictAlign: AllowsUnalignedMem = false; break; case NoStrictAlign: AllowsUnalignedMem = true; break; } // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default. uint64_t Bits = getFeatureBits(); if ((Bits & ARM::ProcA5 || Bits & ARM::ProcA8) && // Where this matters (Options.UnsafeFPMath || isTargetDarwin())) UseNEONForSinglePrecisionFP = true; } /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol. bool ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV, Reloc::Model RelocM) const { if (RelocM == Reloc::Static) return false; // Materializable GVs (in JIT lazy compilation mode) do not require an extra // load from stub. bool isDecl = GV->hasAvailableExternallyLinkage(); if (GV->isDeclaration() && !GV->isMaterializable()) isDecl = true; if (!isTargetDarwin()) { // Extra load is needed for all externally visible. if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return false; return true; } else { if (RelocM == Reloc::PIC_) { // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return false; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return true; // If symbol visibility is hidden, we have a stub for common symbol // references and external declarations. if (isDecl || GV->hasCommonLinkage()) // Hidden $non_lazy_ptr reference. return true; return false; } else { // If this is a strong reference to a definition, it is definitely not // through a stub. if (!isDecl && !GV->isWeakForLinker()) return false; // Unless we have a symbol with hidden visibility, we have to go through a // normal $non_lazy_ptr stub because this symbol might be resolved late. if (!GV->hasHiddenVisibility()) // Non-hidden $non_lazy_ptr reference. return true; } } return false; } unsigned ARMSubtarget::getMispredictionPenalty() const { return SchedModel->MispredictPenalty; } bool ARMSubtarget::enablePostRAScheduler( CodeGenOpt::Level OptLevel, TargetSubtargetInfo::AntiDepBreakMode& Mode, RegClassVector& CriticalPathRCs) const { Mode = TargetSubtargetInfo::ANTIDEP_CRITICAL; CriticalPathRCs.clear(); CriticalPathRCs.push_back(&ARM::GPRRegClass); return PostRAScheduler && OptLevel >= CodeGenOpt::Default; }