//===-- Metadata.cpp - Implement Metadata classes -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Metadata classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Metadata.h" #include "LLVMContextImpl.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/ValueHandle.h" using namespace llvm; //===----------------------------------------------------------------------===// // MDString implementation. // void MDString::anchor() { } MDString::MDString(LLVMContext &C) : Value(Type::getMetadataTy(C), Value::MDStringVal) {} MDString *MDString::get(LLVMContext &Context, StringRef Str) { LLVMContextImpl *pImpl = Context.pImpl; StringMapEntry<Value*> &Entry = pImpl->MDStringCache.GetOrCreateValue(Str); Value *&S = Entry.getValue(); if (!S) S = new MDString(Context); S->setValueName(&Entry); return cast<MDString>(S); } //===----------------------------------------------------------------------===// // MDNodeOperand implementation. // // Use CallbackVH to hold MDNode operands. namespace llvm { class MDNodeOperand : public CallbackVH { MDNode *getParent() { MDNodeOperand *Cur = this; while (Cur->getValPtrInt() != 1) --Cur; assert(Cur->getValPtrInt() == 1 && "Couldn't find the beginning of the operand list!"); return reinterpret_cast<MDNode*>(Cur) - 1; } public: MDNodeOperand(Value *V) : CallbackVH(V) {} ~MDNodeOperand() {} void set(Value *V) { unsigned IsFirst = this->getValPtrInt(); this->setValPtr(V); this->setAsFirstOperand(IsFirst); } /// setAsFirstOperand - Accessor method to mark the operand as the first in /// the list. void setAsFirstOperand(unsigned V) { this->setValPtrInt(V); } virtual void deleted(); virtual void allUsesReplacedWith(Value *NV); }; } // end namespace llvm. void MDNodeOperand::deleted() { getParent()->replaceOperand(this, 0); } void MDNodeOperand::allUsesReplacedWith(Value *NV) { getParent()->replaceOperand(this, NV); } //===----------------------------------------------------------------------===// // MDNode implementation. // /// getOperandPtr - Helper function to get the MDNodeOperand's coallocated on /// the end of the MDNode. static MDNodeOperand *getOperandPtr(MDNode *N, unsigned Op) { // Use <= instead of < to permit a one-past-the-end address. assert(Op <= N->getNumOperands() && "Invalid operand number"); return reinterpret_cast<MDNodeOperand*>(N + 1) + Op; } void MDNode::replaceOperandWith(unsigned i, Value *Val) { MDNodeOperand *Op = getOperandPtr(this, i); replaceOperand(Op, Val); } MDNode::MDNode(LLVMContext &C, ArrayRef<Value*> Vals, bool isFunctionLocal) : Value(Type::getMetadataTy(C), Value::MDNodeVal) { NumOperands = Vals.size(); if (isFunctionLocal) setValueSubclassData(getSubclassDataFromValue() | FunctionLocalBit); // Initialize the operand list, which is co-allocated on the end of the node. unsigned i = 0; for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands; Op != E; ++Op, ++i) { new (Op) MDNodeOperand(Vals[i]); // Mark the first MDNodeOperand as being the first in the list of operands. if (i == 0) Op->setAsFirstOperand(1); } } /// ~MDNode - Destroy MDNode. MDNode::~MDNode() { assert((getSubclassDataFromValue() & DestroyFlag) != 0 && "Not being destroyed through destroy()?"); LLVMContextImpl *pImpl = getType()->getContext().pImpl; if (isNotUniqued()) { pImpl->NonUniquedMDNodes.erase(this); } else { pImpl->MDNodeSet.RemoveNode(this); } // Destroy the operands. for (MDNodeOperand *Op = getOperandPtr(this, 0), *E = Op+NumOperands; Op != E; ++Op) Op->~MDNodeOperand(); } static const Function *getFunctionForValue(Value *V) { if (!V) return NULL; if (Instruction *I = dyn_cast<Instruction>(V)) { BasicBlock *BB = I->getParent(); return BB ? BB->getParent() : 0; } if (Argument *A = dyn_cast<Argument>(V)) return A->getParent(); if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) return BB->getParent(); if (MDNode *MD = dyn_cast<MDNode>(V)) return MD->getFunction(); return NULL; } #ifndef NDEBUG static const Function *assertLocalFunction(const MDNode *N) { if (!N->isFunctionLocal()) return 0; // FIXME: This does not handle cyclic function local metadata. const Function *F = 0, *NewF = 0; for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (Value *V = N->getOperand(i)) { if (MDNode *MD = dyn_cast<MDNode>(V)) NewF = assertLocalFunction(MD); else NewF = getFunctionForValue(V); } if (F == 0) F = NewF; else assert((NewF == 0 || F == NewF) &&"inconsistent function-local metadata"); } return F; } #endif // getFunction - If this metadata is function-local and recursively has a // function-local operand, return the first such operand's parent function. // Otherwise, return null. getFunction() should not be used for performance- // critical code because it recursively visits all the MDNode's operands. const Function *MDNode::getFunction() const { #ifndef NDEBUG return assertLocalFunction(this); #else if (!isFunctionLocal()) return NULL; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (const Function *F = getFunctionForValue(getOperand(i))) return F; return NULL; #endif } // destroy - Delete this node. Only when there are no uses. void MDNode::destroy() { setValueSubclassData(getSubclassDataFromValue() | DestroyFlag); // Placement delete, then free the memory. this->~MDNode(); free(this); } /// isFunctionLocalValue - Return true if this is a value that would require a /// function-local MDNode. static bool isFunctionLocalValue(Value *V) { return isa<Instruction>(V) || isa<Argument>(V) || isa<BasicBlock>(V) || (isa<MDNode>(V) && cast<MDNode>(V)->isFunctionLocal()); } MDNode *MDNode::getMDNode(LLVMContext &Context, ArrayRef<Value*> Vals, FunctionLocalness FL, bool Insert) { LLVMContextImpl *pImpl = Context.pImpl; // Add all the operand pointers. Note that we don't have to add the // isFunctionLocal bit because that's implied by the operands. // Note that if the operands are later nulled out, the node will be // removed from the uniquing map. FoldingSetNodeID ID; for (unsigned i = 0; i != Vals.size(); ++i) ID.AddPointer(Vals[i]); void *InsertPoint; MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint); if (N || !Insert) return N; bool isFunctionLocal = false; switch (FL) { case FL_Unknown: for (unsigned i = 0; i != Vals.size(); ++i) { Value *V = Vals[i]; if (!V) continue; if (isFunctionLocalValue(V)) { isFunctionLocal = true; break; } } break; case FL_No: isFunctionLocal = false; break; case FL_Yes: isFunctionLocal = true; break; } // Coallocate space for the node and Operands together, then placement new. void *Ptr = malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand)); N = new (Ptr) MDNode(Context, Vals, isFunctionLocal); // Cache the operand hash. N->Hash = ID.ComputeHash(); // InsertPoint will have been set by the FindNodeOrInsertPos call. pImpl->MDNodeSet.InsertNode(N, InsertPoint); return N; } MDNode *MDNode::get(LLVMContext &Context, ArrayRef<Value*> Vals) { return getMDNode(Context, Vals, FL_Unknown); } MDNode *MDNode::getWhenValsUnresolved(LLVMContext &Context, ArrayRef<Value*> Vals, bool isFunctionLocal) { return getMDNode(Context, Vals, isFunctionLocal ? FL_Yes : FL_No); } MDNode *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Value*> Vals) { return getMDNode(Context, Vals, FL_Unknown, false); } MDNode *MDNode::getTemporary(LLVMContext &Context, ArrayRef<Value*> Vals) { MDNode *N = (MDNode *)malloc(sizeof(MDNode) + Vals.size() * sizeof(MDNodeOperand)); N = new (N) MDNode(Context, Vals, FL_No); N->setValueSubclassData(N->getSubclassDataFromValue() | NotUniquedBit); LeakDetector::addGarbageObject(N); return N; } void MDNode::deleteTemporary(MDNode *N) { assert(N->use_empty() && "Temporary MDNode has uses!"); assert(!N->getContext().pImpl->MDNodeSet.RemoveNode(N) && "Deleting a non-temporary uniqued node!"); assert(!N->getContext().pImpl->NonUniquedMDNodes.erase(N) && "Deleting a non-temporary non-uniqued node!"); assert((N->getSubclassDataFromValue() & NotUniquedBit) && "Temporary MDNode does not have NotUniquedBit set!"); assert((N->getSubclassDataFromValue() & DestroyFlag) == 0 && "Temporary MDNode has DestroyFlag set!"); LeakDetector::removeGarbageObject(N); N->destroy(); } /// getOperand - Return specified operand. Value *MDNode::getOperand(unsigned i) const { assert(i < getNumOperands() && "Invalid operand number"); return *getOperandPtr(const_cast<MDNode*>(this), i); } void MDNode::Profile(FoldingSetNodeID &ID) const { // Add all the operand pointers. Note that we don't have to add the // isFunctionLocal bit because that's implied by the operands. // Note that if the operands are later nulled out, the node will be // removed from the uniquing map. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) ID.AddPointer(getOperand(i)); } void MDNode::setIsNotUniqued() { setValueSubclassData(getSubclassDataFromValue() | NotUniquedBit); LLVMContextImpl *pImpl = getType()->getContext().pImpl; pImpl->NonUniquedMDNodes.insert(this); } // Replace value from this node's operand list. void MDNode::replaceOperand(MDNodeOperand *Op, Value *To) { Value *From = *Op; // If is possible that someone did GV->RAUW(inst), replacing a global variable // with an instruction or some other function-local object. If this is a // non-function-local MDNode, it can't point to a function-local object. // Handle this case by implicitly dropping the MDNode reference to null. // Likewise if the MDNode is function-local but for a different function. if (To && isFunctionLocalValue(To)) { if (!isFunctionLocal()) To = 0; else { const Function *F = getFunction(); const Function *FV = getFunctionForValue(To); // Metadata can be function-local without having an associated function. // So only consider functions to have changed if non-null. if (F && FV && F != FV) To = 0; } } if (From == To) return; // Update the operand. Op->set(To); // If this node is already not being uniqued (because one of the operands // already went to null), then there is nothing else to do here. if (isNotUniqued()) return; LLVMContextImpl *pImpl = getType()->getContext().pImpl; // Remove "this" from the context map. FoldingSet doesn't have to reprofile // this node to remove it, so we don't care what state the operands are in. pImpl->MDNodeSet.RemoveNode(this); // If we are dropping an argument to null, we choose to not unique the MDNode // anymore. This commonly occurs during destruction, and uniquing these // brings little reuse. Also, this means we don't need to include // isFunctionLocal bits in FoldingSetNodeIDs for MDNodes. if (To == 0) { setIsNotUniqued(); return; } // Now that the node is out of the folding set, get ready to reinsert it. // First, check to see if another node with the same operands already exists // in the set. If so, then this node is redundant. FoldingSetNodeID ID; Profile(ID); void *InsertPoint; if (MDNode *N = pImpl->MDNodeSet.FindNodeOrInsertPos(ID, InsertPoint)) { replaceAllUsesWith(N); destroy(); return; } // Cache the operand hash. Hash = ID.ComputeHash(); // InsertPoint will have been set by the FindNodeOrInsertPos call. pImpl->MDNodeSet.InsertNode(this, InsertPoint); // If this MDValue was previously function-local but no longer is, clear // its function-local flag. if (isFunctionLocal() && !isFunctionLocalValue(To)) { bool isStillFunctionLocal = false; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Value *V = getOperand(i); if (!V) continue; if (isFunctionLocalValue(V)) { isStillFunctionLocal = true; break; } } if (!isStillFunctionLocal) setValueSubclassData(getSubclassDataFromValue() & ~FunctionLocalBit); } } MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) { if (!A || !B) return NULL; APFloat AVal = cast<ConstantFP>(A->getOperand(0))->getValueAPF(); APFloat BVal = cast<ConstantFP>(B->getOperand(0))->getValueAPF(); if (AVal.compare(BVal) == APFloat::cmpLessThan) return A; return B; } static bool isContiguous(const ConstantRange &A, const ConstantRange &B) { return A.getUpper() == B.getLower() || A.getLower() == B.getUpper(); } static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) { return !A.intersectWith(B).isEmptySet() || isContiguous(A, B); } static bool tryMergeRange(SmallVectorImpl<Value *> &EndPoints, ConstantInt *Low, ConstantInt *High) { ConstantRange NewRange(Low->getValue(), High->getValue()); unsigned Size = EndPoints.size(); APInt LB = cast<ConstantInt>(EndPoints[Size - 2])->getValue(); APInt LE = cast<ConstantInt>(EndPoints[Size - 1])->getValue(); ConstantRange LastRange(LB, LE); if (canBeMerged(NewRange, LastRange)) { ConstantRange Union = LastRange.unionWith(NewRange); Type *Ty = High->getType(); EndPoints[Size - 2] = ConstantInt::get(Ty, Union.getLower()); EndPoints[Size - 1] = ConstantInt::get(Ty, Union.getUpper()); return true; } return false; } static void addRange(SmallVectorImpl<Value *> &EndPoints, ConstantInt *Low, ConstantInt *High) { if (!EndPoints.empty()) if (tryMergeRange(EndPoints, Low, High)) return; EndPoints.push_back(Low); EndPoints.push_back(High); } MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) { // Given two ranges, we want to compute the union of the ranges. This // is slightly complitade by having to combine the intervals and merge // the ones that overlap. if (!A || !B) return NULL; if (A == B) return A; // First, walk both lists in older of the lower boundary of each interval. // At each step, try to merge the new interval to the last one we adedd. SmallVector<Value*, 4> EndPoints; int AI = 0; int BI = 0; int AN = A->getNumOperands() / 2; int BN = B->getNumOperands() / 2; while (AI < AN && BI < BN) { ConstantInt *ALow = cast<ConstantInt>(A->getOperand(2 * AI)); ConstantInt *BLow = cast<ConstantInt>(B->getOperand(2 * BI)); if (ALow->getValue().slt(BLow->getValue())) { addRange(EndPoints, ALow, cast<ConstantInt>(A->getOperand(2 * AI + 1))); ++AI; } else { addRange(EndPoints, BLow, cast<ConstantInt>(B->getOperand(2 * BI + 1))); ++BI; } } while (AI < AN) { addRange(EndPoints, cast<ConstantInt>(A->getOperand(2 * AI)), cast<ConstantInt>(A->getOperand(2 * AI + 1))); ++AI; } while (BI < BN) { addRange(EndPoints, cast<ConstantInt>(B->getOperand(2 * BI)), cast<ConstantInt>(B->getOperand(2 * BI + 1))); ++BI; } // If we have more than 2 ranges (4 endpoints) we have to try to merge // the last and first ones. unsigned Size = EndPoints.size(); if (Size > 4) { ConstantInt *FB = cast<ConstantInt>(EndPoints[0]); ConstantInt *FE = cast<ConstantInt>(EndPoints[1]); if (tryMergeRange(EndPoints, FB, FE)) { for (unsigned i = 0; i < Size - 2; ++i) { EndPoints[i] = EndPoints[i + 2]; } EndPoints.resize(Size - 2); } } // If in the end we have a single range, it is possible that it is now the // full range. Just drop the metadata in that case. if (EndPoints.size() == 2) { ConstantRange Range(cast<ConstantInt>(EndPoints[0])->getValue(), cast<ConstantInt>(EndPoints[1])->getValue()); if (Range.isFullSet()) return NULL; } return MDNode::get(A->getContext(), EndPoints); } //===----------------------------------------------------------------------===// // NamedMDNode implementation. // static SmallVector<TrackingVH<MDNode>, 4> &getNMDOps(void *Operands) { return *(SmallVector<TrackingVH<MDNode>, 4>*)Operands; } NamedMDNode::NamedMDNode(const Twine &N) : Name(N.str()), Parent(0), Operands(new SmallVector<TrackingVH<MDNode>, 4>()) { } NamedMDNode::~NamedMDNode() { dropAllReferences(); delete &getNMDOps(Operands); } /// getNumOperands - Return number of NamedMDNode operands. unsigned NamedMDNode::getNumOperands() const { return (unsigned)getNMDOps(Operands).size(); } /// getOperand - Return specified operand. MDNode *NamedMDNode::getOperand(unsigned i) const { assert(i < getNumOperands() && "Invalid Operand number!"); return dyn_cast<MDNode>(&*getNMDOps(Operands)[i]); } /// addOperand - Add metadata Operand. void NamedMDNode::addOperand(MDNode *M) { assert(!M->isFunctionLocal() && "NamedMDNode operands must not be function-local!"); getNMDOps(Operands).push_back(TrackingVH<MDNode>(M)); } /// eraseFromParent - Drop all references and remove the node from parent /// module. void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); } /// dropAllReferences - Remove all uses and clear node vector. void NamedMDNode::dropAllReferences() { getNMDOps(Operands).clear(); } /// getName - Return a constant reference to this named metadata's name. StringRef NamedMDNode::getName() const { return StringRef(Name); } //===----------------------------------------------------------------------===// // Instruction Metadata method implementations. // void Instruction::setMetadata(StringRef Kind, MDNode *Node) { if (Node == 0 && !hasMetadata()) return; setMetadata(getContext().getMDKindID(Kind), Node); } MDNode *Instruction::getMetadataImpl(StringRef Kind) const { return getMetadataImpl(getContext().getMDKindID(Kind)); } /// setMetadata - Set the metadata of of the specified kind to the specified /// node. This updates/replaces metadata if already present, or removes it if /// Node is null. void Instruction::setMetadata(unsigned KindID, MDNode *Node) { if (Node == 0 && !hasMetadata()) return; // Handle 'dbg' as a special case since it is not stored in the hash table. if (KindID == LLVMContext::MD_dbg) { DbgLoc = DebugLoc::getFromDILocation(Node); return; } // Handle the case when we're adding/updating metadata on an instruction. if (Node) { LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; assert(!Info.empty() == hasMetadataHashEntry() && "HasMetadata bit is wonked"); if (Info.empty()) { setHasMetadataHashEntry(true); } else { // Handle replacement of an existing value. for (unsigned i = 0, e = Info.size(); i != e; ++i) if (Info[i].first == KindID) { Info[i].second = Node; return; } } // No replacement, just add it to the list. Info.push_back(std::make_pair(KindID, Node)); return; } // Otherwise, we're removing metadata from an instruction. assert((hasMetadataHashEntry() == getContext().pImpl->MetadataStore.count(this)) && "HasMetadata bit out of date!"); if (!hasMetadataHashEntry()) return; // Nothing to remove! LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; // Common case is removing the only entry. if (Info.size() == 1 && Info[0].first == KindID) { getContext().pImpl->MetadataStore.erase(this); setHasMetadataHashEntry(false); return; } // Handle removal of an existing value. for (unsigned i = 0, e = Info.size(); i != e; ++i) if (Info[i].first == KindID) { Info[i] = Info.back(); Info.pop_back(); assert(!Info.empty() && "Removing last entry should be handled above"); return; } // Otherwise, removing an entry that doesn't exist on the instruction. } MDNode *Instruction::getMetadataImpl(unsigned KindID) const { // Handle 'dbg' as a special case since it is not stored in the hash table. if (KindID == LLVMContext::MD_dbg) return DbgLoc.getAsMDNode(getContext()); if (!hasMetadataHashEntry()) return 0; LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this]; assert(!Info.empty() && "bit out of sync with hash table"); for (LLVMContextImpl::MDMapTy::iterator I = Info.begin(), E = Info.end(); I != E; ++I) if (I->first == KindID) return I->second; return 0; } void Instruction::getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode*> > &Result) const { Result.clear(); // Handle 'dbg' as a special case since it is not stored in the hash table. if (!DbgLoc.isUnknown()) { Result.push_back(std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode(getContext()))); if (!hasMetadataHashEntry()) return; } assert(hasMetadataHashEntry() && getContext().pImpl->MetadataStore.count(this) && "Shouldn't have called this"); const LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore.find(this)->second; assert(!Info.empty() && "Shouldn't have called this"); Result.append(Info.begin(), Info.end()); // Sort the resulting array so it is stable. if (Result.size() > 1) array_pod_sort(Result.begin(), Result.end()); } void Instruction:: getAllMetadataOtherThanDebugLocImpl(SmallVectorImpl<std::pair<unsigned, MDNode*> > &Result) const { Result.clear(); assert(hasMetadataHashEntry() && getContext().pImpl->MetadataStore.count(this) && "Shouldn't have called this"); const LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore.find(this)->second; assert(!Info.empty() && "Shouldn't have called this"); Result.append(Info.begin(), Info.end()); // Sort the resulting array so it is stable. if (Result.size() > 1) array_pod_sort(Result.begin(), Result.end()); } /// clearMetadataHashEntries - Clear all hashtable-based metadata from /// this instruction. void Instruction::clearMetadataHashEntries() { assert(hasMetadataHashEntry() && "Caller should check"); getContext().pImpl->MetadataStore.erase(this); setHasMetadataHashEntry(false); }