//===-- Instructions.cpp - Implement the LLVM instructions ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements all of the non-inline methods for the LLVM instruction // classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Instructions.h" #include "LLVMContextImpl.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ConstantRange.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" using namespace llvm; //===----------------------------------------------------------------------===// // CallSite Class //===----------------------------------------------------------------------===// User::op_iterator CallSite::getCallee() const { Instruction *II(getInstruction()); return isCall() ? cast<CallInst>(II)->op_end() - 1 // Skip Callee : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee } //===----------------------------------------------------------------------===// // TerminatorInst Class //===----------------------------------------------------------------------===// // Out of line virtual method, so the vtable, etc has a home. TerminatorInst::~TerminatorInst() { } //===----------------------------------------------------------------------===// // UnaryInstruction Class //===----------------------------------------------------------------------===// // Out of line virtual method, so the vtable, etc has a home. UnaryInstruction::~UnaryInstruction() { } //===----------------------------------------------------------------------===// // SelectInst Class //===----------------------------------------------------------------------===// /// areInvalidOperands - Return a string if the specified operands are invalid /// for a select operation, otherwise return null. const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { if (Op1->getType() != Op2->getType()) return "both values to select must have same type"; if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { // Vector select. if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) return "vector select condition element type must be i1"; VectorType *ET = dyn_cast<VectorType>(Op1->getType()); if (ET == 0) return "selected values for vector select must be vectors"; if (ET->getNumElements() != VT->getNumElements()) return "vector select requires selected vectors to have " "the same vector length as select condition"; } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { return "select condition must be i1 or <n x i1>"; } return 0; } //===----------------------------------------------------------------------===// // PHINode Class //===----------------------------------------------------------------------===// PHINode::PHINode(const PHINode &PN) : Instruction(PN.getType(), Instruction::PHI, allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()), ReservedSpace(PN.getNumOperands()) { std::copy(PN.op_begin(), PN.op_end(), op_begin()); std::copy(PN.block_begin(), PN.block_end(), block_begin()); SubclassOptionalData = PN.SubclassOptionalData; } PHINode::~PHINode() { dropHungoffUses(); } Use *PHINode::allocHungoffUses(unsigned N) const { // Allocate the array of Uses of the incoming values, followed by a pointer // (with bottom bit set) to the User, followed by the array of pointers to // the incoming basic blocks. size_t size = N * sizeof(Use) + sizeof(Use::UserRef) + N * sizeof(BasicBlock*); Use *Begin = static_cast<Use*>(::operator new(size)); Use *End = Begin + N; (void) new(End) Use::UserRef(const_cast<PHINode*>(this), 1); return Use::initTags(Begin, End); } // removeIncomingValue - Remove an incoming value. This is useful if a // predecessor basic block is deleted. Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { Value *Removed = getIncomingValue(Idx); // Move everything after this operand down. // // FIXME: we could just swap with the end of the list, then erase. However, // clients might not expect this to happen. The code as it is thrashes the // use/def lists, which is kinda lame. std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); // Nuke the last value. Op<-1>().set(0); --NumOperands; // If the PHI node is dead, because it has zero entries, nuke it now. if (getNumOperands() == 0 && DeletePHIIfEmpty) { // If anyone is using this PHI, make them use a dummy value instead... replaceAllUsesWith(UndefValue::get(getType())); eraseFromParent(); } return Removed; } /// growOperands - grow operands - This grows the operand list in response /// to a push_back style of operation. This grows the number of ops by 1.5 /// times. /// void PHINode::growOperands() { unsigned e = getNumOperands(); unsigned NumOps = e + e / 2; if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common. Use *OldOps = op_begin(); BasicBlock **OldBlocks = block_begin(); ReservedSpace = NumOps; OperandList = allocHungoffUses(ReservedSpace); std::copy(OldOps, OldOps + e, op_begin()); std::copy(OldBlocks, OldBlocks + e, block_begin()); Use::zap(OldOps, OldOps + e, true); } /// hasConstantValue - If the specified PHI node always merges together the same /// value, return the value, otherwise return null. Value *PHINode::hasConstantValue() const { // Exploit the fact that phi nodes always have at least one entry. Value *ConstantValue = getIncomingValue(0); for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { if (ConstantValue != this) return 0; // Incoming values not all the same. // The case where the first value is this PHI. ConstantValue = getIncomingValue(i); } if (ConstantValue == this) return UndefValue::get(getType()); return ConstantValue; } //===----------------------------------------------------------------------===// // LandingPadInst Implementation //===----------------------------------------------------------------------===// LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, unsigned NumReservedValues, const Twine &NameStr, Instruction *InsertBefore) : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertBefore) { init(PersonalityFn, 1 + NumReservedValues, NameStr); } LandingPadInst::LandingPadInst(Type *RetTy, Value *PersonalityFn, unsigned NumReservedValues, const Twine &NameStr, BasicBlock *InsertAtEnd) : Instruction(RetTy, Instruction::LandingPad, 0, 0, InsertAtEnd) { init(PersonalityFn, 1 + NumReservedValues, NameStr); } LandingPadInst::LandingPadInst(const LandingPadInst &LP) : Instruction(LP.getType(), Instruction::LandingPad, allocHungoffUses(LP.getNumOperands()), LP.getNumOperands()), ReservedSpace(LP.getNumOperands()) { Use *OL = OperandList, *InOL = LP.OperandList; for (unsigned I = 0, E = ReservedSpace; I != E; ++I) OL[I] = InOL[I]; setCleanup(LP.isCleanup()); } LandingPadInst::~LandingPadInst() { dropHungoffUses(); } LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, unsigned NumReservedClauses, const Twine &NameStr, Instruction *InsertBefore) { return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, InsertBefore); } LandingPadInst *LandingPadInst::Create(Type *RetTy, Value *PersonalityFn, unsigned NumReservedClauses, const Twine &NameStr, BasicBlock *InsertAtEnd) { return new LandingPadInst(RetTy, PersonalityFn, NumReservedClauses, NameStr, InsertAtEnd); } void LandingPadInst::init(Value *PersFn, unsigned NumReservedValues, const Twine &NameStr) { ReservedSpace = NumReservedValues; NumOperands = 1; OperandList = allocHungoffUses(ReservedSpace); OperandList[0] = PersFn; setName(NameStr); setCleanup(false); } /// growOperands - grow operands - This grows the operand list in response to a /// push_back style of operation. This grows the number of ops by 2 times. void LandingPadInst::growOperands(unsigned Size) { unsigned e = getNumOperands(); if (ReservedSpace >= e + Size) return; ReservedSpace = (e + Size / 2) * 2; Use *NewOps = allocHungoffUses(ReservedSpace); Use *OldOps = OperandList; for (unsigned i = 0; i != e; ++i) NewOps[i] = OldOps[i]; OperandList = NewOps; Use::zap(OldOps, OldOps + e, true); } void LandingPadInst::addClause(Value *Val) { unsigned OpNo = getNumOperands(); growOperands(1); assert(OpNo < ReservedSpace && "Growing didn't work!"); ++NumOperands; OperandList[OpNo] = Val; } //===----------------------------------------------------------------------===// // CallInst Implementation //===----------------------------------------------------------------------===// CallInst::~CallInst() { } void CallInst::init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr) { assert(NumOperands == Args.size() + 1 && "NumOperands not set up?"); Op<-1>() = Func; #ifndef NDEBUG FunctionType *FTy = cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); assert((Args.size() == FTy->getNumParams() || (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && "Calling a function with bad signature!"); for (unsigned i = 0; i != Args.size(); ++i) assert((i >= FTy->getNumParams() || FTy->getParamType(i) == Args[i]->getType()) && "Calling a function with a bad signature!"); #endif std::copy(Args.begin(), Args.end(), op_begin()); setName(NameStr); } void CallInst::init(Value *Func, const Twine &NameStr) { assert(NumOperands == 1 && "NumOperands not set up?"); Op<-1>() = Func; #ifndef NDEBUG FunctionType *FTy = cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType()); assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); #endif setName(NameStr); } CallInst::CallInst(Value *Func, const Twine &Name, Instruction *InsertBefore) : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits<CallInst>::op_end(this) - 1, 1, InsertBefore) { init(Func, Name); } CallInst::CallInst(Value *Func, const Twine &Name, BasicBlock *InsertAtEnd) : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType()) ->getElementType())->getReturnType(), Instruction::Call, OperandTraits<CallInst>::op_end(this) - 1, 1, InsertAtEnd) { init(Func, Name); } CallInst::CallInst(const CallInst &CI) : Instruction(CI.getType(), Instruction::Call, OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(), CI.getNumOperands()) { setAttributes(CI.getAttributes()); setTailCall(CI.isTailCall()); setCallingConv(CI.getCallingConv()); std::copy(CI.op_begin(), CI.op_end(), op_begin()); SubclassOptionalData = CI.SubclassOptionalData; } void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) { AttributeSet PAL = getAttributes(); PAL = PAL.addAttribute(getContext(), i, attr); setAttributes(PAL); } void CallInst::removeAttribute(unsigned i, Attribute attr) { AttributeSet PAL = getAttributes(); AttrBuilder B(attr); LLVMContext &Context = getContext(); PAL = PAL.removeAttributes(Context, i, AttributeSet::get(Context, i, B)); setAttributes(PAL); } bool CallInst::hasFnAttrImpl(Attribute::AttrKind A) const { if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) return true; if (const Function *F = getCalledFunction()) return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); return false; } bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { if (AttributeList.hasAttribute(i, A)) return true; if (const Function *F = getCalledFunction()) return F->getAttributes().hasAttribute(i, A); return false; } /// IsConstantOne - Return true only if val is constant int 1 static bool IsConstantOne(Value *val) { assert(val && "IsConstantOne does not work with NULL val"); return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne(); } static Instruction *createMalloc(Instruction *InsertBefore, BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize, Function *MallocF, const Twine &Name) { assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && "createMalloc needs either InsertBefore or InsertAtEnd"); // malloc(type) becomes: // bitcast (i8* malloc(typeSize)) to type* // malloc(type, arraySize) becomes: // bitcast (i8 *malloc(typeSize*arraySize)) to type* if (!ArraySize) ArraySize = ConstantInt::get(IntPtrTy, 1); else if (ArraySize->getType() != IntPtrTy) { if (InsertBefore) ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, "", InsertBefore); else ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, "", InsertAtEnd); } if (!IsConstantOne(ArraySize)) { if (IsConstantOne(AllocSize)) { AllocSize = ArraySize; // Operand * 1 = Operand } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, false /*ZExt*/); // Malloc arg is constant product of type size and array size AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); } else { // Multiply type size by the array size... if (InsertBefore) AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, "mallocsize", InsertBefore); else AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, "mallocsize", InsertAtEnd); } } assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); // Create the call to Malloc. BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; Module* M = BB->getParent()->getParent(); Type *BPTy = Type::getInt8PtrTy(BB->getContext()); Value *MallocFunc = MallocF; if (!MallocFunc) // prototype malloc as "void *malloc(size_t)" MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL); PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); CallInst *MCall = NULL; Instruction *Result = NULL; if (InsertBefore) { MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore); Result = MCall; if (Result->getType() != AllocPtrType) // Create a cast instruction to convert to the right type... Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); } else { MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall"); Result = MCall; if (Result->getType() != AllocPtrType) { InsertAtEnd->getInstList().push_back(MCall); // Create a cast instruction to convert to the right type... Result = new BitCastInst(MCall, AllocPtrType, Name); } } MCall->setTailCall(); if (Function *F = dyn_cast<Function>(MallocFunc)) { MCall->setCallingConv(F->getCallingConv()); if (!F->doesNotAlias(0)) F->setDoesNotAlias(0); } assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); return Result; } /// CreateMalloc - Generate the IR for a call to malloc: /// 1. Compute the malloc call's argument as the specified type's size, /// possibly multiplied by the array size if the array size is not /// constant 1. /// 2. Call malloc with that argument. /// 3. Bitcast the result of the malloc call to the specified type. Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize, Function * MallocF, const Twine &Name) { return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize, ArraySize, MallocF, Name); } /// CreateMalloc - Generate the IR for a call to malloc: /// 1. Compute the malloc call's argument as the specified type's size, /// possibly multiplied by the array size if the array size is not /// constant 1. /// 2. Call malloc with that argument. /// 3. Bitcast the result of the malloc call to the specified type. /// Note: This function does not add the bitcast to the basic block, that is the /// responsibility of the caller. Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, Value *AllocSize, Value *ArraySize, Function *MallocF, const Twine &Name) { return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, ArraySize, MallocF, Name); } static Instruction* createFree(Value* Source, Instruction *InsertBefore, BasicBlock *InsertAtEnd) { assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && "createFree needs either InsertBefore or InsertAtEnd"); assert(Source->getType()->isPointerTy() && "Can not free something of nonpointer type!"); BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; Module* M = BB->getParent()->getParent(); Type *VoidTy = Type::getVoidTy(M->getContext()); Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); // prototype free as "void free(void*)" Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL); CallInst* Result = NULL; Value *PtrCast = Source; if (InsertBefore) { if (Source->getType() != IntPtrTy) PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore); } else { if (Source->getType() != IntPtrTy) PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); Result = CallInst::Create(FreeFunc, PtrCast, ""); } Result->setTailCall(); if (Function *F = dyn_cast<Function>(FreeFunc)) Result->setCallingConv(F->getCallingConv()); return Result; } /// CreateFree - Generate the IR for a call to the builtin free function. Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) { return createFree(Source, InsertBefore, NULL); } /// CreateFree - Generate the IR for a call to the builtin free function. /// Note: This function does not add the call to the basic block, that is the /// responsibility of the caller. Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) { Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd); assert(FreeCall && "CreateFree did not create a CallInst"); return FreeCall; } //===----------------------------------------------------------------------===// // InvokeInst Implementation //===----------------------------------------------------------------------===// void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException, ArrayRef<Value *> Args, const Twine &NameStr) { assert(NumOperands == 3 + Args.size() && "NumOperands not set up?"); Op<-3>() = Fn; Op<-2>() = IfNormal; Op<-1>() = IfException; #ifndef NDEBUG FunctionType *FTy = cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()); assert(((Args.size() == FTy->getNumParams()) || (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && "Invoking a function with bad signature"); for (unsigned i = 0, e = Args.size(); i != e; i++) assert((i >= FTy->getNumParams() || FTy->getParamType(i) == Args[i]->getType()) && "Invoking a function with a bad signature!"); #endif std::copy(Args.begin(), Args.end(), op_begin()); setName(NameStr); } InvokeInst::InvokeInst(const InvokeInst &II) : TerminatorInst(II.getType(), Instruction::Invoke, OperandTraits<InvokeInst>::op_end(this) - II.getNumOperands(), II.getNumOperands()) { setAttributes(II.getAttributes()); setCallingConv(II.getCallingConv()); std::copy(II.op_begin(), II.op_end(), op_begin()); SubclassOptionalData = II.SubclassOptionalData; } BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned InvokeInst::getNumSuccessorsV() const { return getNumSuccessors(); } void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) { return setSuccessor(idx, B); } bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const { if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) return true; if (const Function *F = getCalledFunction()) return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); return false; } bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const { if (AttributeList.hasAttribute(i, A)) return true; if (const Function *F = getCalledFunction()) return F->getAttributes().hasAttribute(i, A); return false; } void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) { AttributeSet PAL = getAttributes(); PAL = PAL.addAttribute(getContext(), i, attr); setAttributes(PAL); } void InvokeInst::removeAttribute(unsigned i, Attribute attr) { AttributeSet PAL = getAttributes(); AttrBuilder B(attr); PAL = PAL.removeAttributes(getContext(), i, AttributeSet::get(getContext(), i, B)); setAttributes(PAL); } LandingPadInst *InvokeInst::getLandingPadInst() const { return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); } //===----------------------------------------------------------------------===// // ReturnInst Implementation //===----------------------------------------------------------------------===// ReturnInst::ReturnInst(const ReturnInst &RI) : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret, OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), RI.getNumOperands()) { if (RI.getNumOperands()) Op<0>() = RI.Op<0>(); SubclassOptionalData = RI.SubclassOptionalData; } ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, InsertBefore) { if (retVal) Op<0>() = retVal; } ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(C), Instruction::Ret, OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, InsertAtEnd) { if (retVal) Op<0>() = retVal; } ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret, OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) { } unsigned ReturnInst::getNumSuccessorsV() const { return getNumSuccessors(); } /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to /// emit the vtable for the class in this translation unit. void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { llvm_unreachable("ReturnInst has no successors!"); } BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const { llvm_unreachable("ReturnInst has no successors!"); } ReturnInst::~ReturnInst() { } //===----------------------------------------------------------------------===// // ResumeInst Implementation //===----------------------------------------------------------------------===// ResumeInst::ResumeInst(const ResumeInst &RI) : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume, OperandTraits<ResumeInst>::op_begin(this), 1) { Op<0>() = RI.Op<0>(); } ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { Op<0>() = Exn; } ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume, OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { Op<0>() = Exn; } unsigned ResumeInst::getNumSuccessorsV() const { return getNumSuccessors(); } void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { llvm_unreachable("ResumeInst has no successors!"); } BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const { llvm_unreachable("ResumeInst has no successors!"); } //===----------------------------------------------------------------------===// // UnreachableInst Implementation //===----------------------------------------------------------------------===// UnreachableInst::UnreachableInst(LLVMContext &Context, Instruction *InsertBefore) : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 0, 0, InsertBefore) { } UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable, 0, 0, InsertAtEnd) { } unsigned UnreachableInst::getNumSuccessorsV() const { return getNumSuccessors(); } void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) { llvm_unreachable("UnreachableInst has no successors!"); } BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const { llvm_unreachable("UnreachableInst has no successors!"); } //===----------------------------------------------------------------------===// // BranchInst Implementation //===----------------------------------------------------------------------===// void BranchInst::AssertOK() { if (isConditional()) assert(getCondition()->getType()->isIntegerTy(1) && "May only branch on boolean predicates!"); } BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertBefore) { assert(IfTrue != 0 && "Branch destination may not be null!"); Op<-1>() = IfTrue; } BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, Instruction *InsertBefore) : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertBefore) { Op<-1>() = IfTrue; Op<-2>() = IfFalse; Op<-3>() = Cond; #ifndef NDEBUG AssertOK(); #endif } BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { assert(IfTrue != 0 && "Branch destination may not be null!"); Op<-1>() = IfTrue; } BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { Op<-1>() = IfTrue; Op<-2>() = IfFalse; Op<-3>() = Cond; #ifndef NDEBUG AssertOK(); #endif } BranchInst::BranchInst(const BranchInst &BI) : TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br, OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), BI.getNumOperands()) { Op<-1>() = BI.Op<-1>(); if (BI.getNumOperands() != 1) { assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); Op<-3>() = BI.Op<-3>(); Op<-2>() = BI.Op<-2>(); } SubclassOptionalData = BI.SubclassOptionalData; } void BranchInst::swapSuccessors() { assert(isConditional() && "Cannot swap successors of an unconditional branch"); Op<-1>().swap(Op<-2>()); // Update profile metadata if present and it matches our structural // expectations. MDNode *ProfileData = getMetadata(LLVMContext::MD_prof); if (!ProfileData || ProfileData->getNumOperands() != 3) return; // The first operand is the name. Fetch them backwards and build a new one. Value *Ops[] = { ProfileData->getOperand(0), ProfileData->getOperand(2), ProfileData->getOperand(1) }; setMetadata(LLVMContext::MD_prof, MDNode::get(ProfileData->getContext(), Ops)); } BasicBlock *BranchInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned BranchInst::getNumSuccessorsV() const { return getNumSuccessors(); } void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) { setSuccessor(idx, B); } //===----------------------------------------------------------------------===// // AllocaInst Implementation //===----------------------------------------------------------------------===// static Value *getAISize(LLVMContext &Context, Value *Amt) { if (!Amt) Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); else { assert(!isa<BasicBlock>(Amt) && "Passed basic block into allocation size parameter! Use other ctor"); assert(Amt->getType()->isIntegerTy() && "Allocation array size is not an integer!"); } return Amt; } AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, Instruction *InsertBefore) : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, getAISize(Ty->getContext(), ArraySize), InsertBefore) { setAlignment(0); assert(!Ty->isVoidTy() && "Cannot allocate void!"); setName(Name); } AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name, BasicBlock *InsertAtEnd) : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { setAlignment(0); assert(!Ty->isVoidTy() && "Cannot allocate void!"); setName(Name); } AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore) : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, getAISize(Ty->getContext(), 0), InsertBefore) { setAlignment(0); assert(!Ty->isVoidTy() && "Cannot allocate void!"); setName(Name); } AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, getAISize(Ty->getContext(), 0), InsertAtEnd) { setAlignment(0); assert(!Ty->isVoidTy() && "Cannot allocate void!"); setName(Name); } AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, const Twine &Name, Instruction *InsertBefore) : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, getAISize(Ty->getContext(), ArraySize), InsertBefore) { setAlignment(Align); assert(!Ty->isVoidTy() && "Cannot allocate void!"); setName(Name); } AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, const Twine &Name, BasicBlock *InsertAtEnd) : UnaryInstruction(PointerType::getUnqual(Ty), Alloca, getAISize(Ty->getContext(), ArraySize), InsertAtEnd) { setAlignment(Align); assert(!Ty->isVoidTy() && "Cannot allocate void!"); setName(Name); } // Out of line virtual method, so the vtable, etc has a home. AllocaInst::~AllocaInst() { } void AllocaInst::setAlignment(unsigned Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); assert(Align <= MaximumAlignment && "Alignment is greater than MaximumAlignment!"); setInstructionSubclassData(Log2_32(Align) + 1); assert(getAlignment() == Align && "Alignment representation error!"); } bool AllocaInst::isArrayAllocation() const { if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) return !CI->isOne(); return true; } Type *AllocaInst::getAllocatedType() const { return getType()->getElementType(); } /// isStaticAlloca - Return true if this alloca is in the entry block of the /// function and is a constant size. If so, the code generator will fold it /// into the prolog/epilog code, so it is basically free. bool AllocaInst::isStaticAlloca() const { // Must be constant size. if (!isa<ConstantInt>(getArraySize())) return false; // Must be in the entry block. const BasicBlock *Parent = getParent(); return Parent == &Parent->getParent()->front(); } //===----------------------------------------------------------------------===// // LoadInst Implementation //===----------------------------------------------------------------------===// void LoadInst::AssertOK() { assert(getOperand(0)->getType()->isPointerTy() && "Ptr must have pointer type."); assert(!(isAtomic() && getAlignment() == 0) && "Alignment required for atomic load"); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(false); setAlignment(0); setAtomic(NotAtomic); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(false); setAlignment(0); setAtomic(NotAtomic); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, Instruction *InsertBef) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(isVolatile); setAlignment(0); setAtomic(NotAtomic); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, BasicBlock *InsertAE) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(0); setAtomic(NotAtomic); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, Instruction *InsertBef) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(isVolatile); setAlignment(Align); setAtomic(NotAtomic); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, BasicBlock *InsertAE) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(Align); setAtomic(NotAtomic); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, Instruction *InsertBef) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(isVolatile); setAlignment(Align); setAtomic(Order, SynchScope); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, BasicBlock *InsertAE) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(Align); setAtomic(Order, SynchScope); AssertOK(); setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(false); setAlignment(0); setAtomic(NotAtomic); AssertOK(); if (Name && Name[0]) setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(false); setAlignment(0); setAtomic(NotAtomic); AssertOK(); if (Name && Name[0]) setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, Instruction *InsertBef) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertBef) { setVolatile(isVolatile); setAlignment(0); setAtomic(NotAtomic); AssertOK(); if (Name && Name[0]) setName(Name); } LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile, BasicBlock *InsertAE) : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(), Load, Ptr, InsertAE) { setVolatile(isVolatile); setAlignment(0); setAtomic(NotAtomic); AssertOK(); if (Name && Name[0]) setName(Name); } void LoadInst::setAlignment(unsigned Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); assert(Align <= MaximumAlignment && "Alignment is greater than MaximumAlignment!"); setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | ((Log2_32(Align)+1)<<1)); assert(getAlignment() == Align && "Alignment representation error!"); } //===----------------------------------------------------------------------===// // StoreInst Implementation //===----------------------------------------------------------------------===// void StoreInst::AssertOK() { assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); assert(getOperand(1)->getType()->isPointerTy() && "Ptr must have pointer type!"); assert(getOperand(0)->getType() == cast<PointerType>(getOperand(1)->getType())->getElementType() && "Ptr must be a pointer to Val type!"); assert(!(isAtomic() && getAlignment() == 0) && "Alignment required for atomic load"); } StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertBefore) { Op<0>() = val; Op<1>() = addr; setVolatile(false); setAlignment(0); setAtomic(NotAtomic); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertAtEnd) { Op<0>() = val; Op<1>() = addr; setVolatile(false); setAlignment(0); setAtomic(NotAtomic); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Instruction *InsertBefore) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertBefore) { Op<0>() = val; Op<1>() = addr; setVolatile(isVolatile); setAlignment(0); setAtomic(NotAtomic); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, Instruction *InsertBefore) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertBefore) { Op<0>() = val; Op<1>() = addr; setVolatile(isVolatile); setAlignment(Align); setAtomic(NotAtomic); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, Instruction *InsertBefore) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertBefore) { Op<0>() = val; Op<1>() = addr; setVolatile(isVolatile); setAlignment(Align); setAtomic(Order, SynchScope); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, BasicBlock *InsertAtEnd) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertAtEnd) { Op<0>() = val; Op<1>() = addr; setVolatile(isVolatile); setAlignment(0); setAtomic(NotAtomic); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, BasicBlock *InsertAtEnd) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertAtEnd) { Op<0>() = val; Op<1>() = addr; setVolatile(isVolatile); setAlignment(Align); setAtomic(NotAtomic); AssertOK(); } StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align, AtomicOrdering Order, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd) : Instruction(Type::getVoidTy(val->getContext()), Store, OperandTraits<StoreInst>::op_begin(this), OperandTraits<StoreInst>::operands(this), InsertAtEnd) { Op<0>() = val; Op<1>() = addr; setVolatile(isVolatile); setAlignment(Align); setAtomic(Order, SynchScope); AssertOK(); } void StoreInst::setAlignment(unsigned Align) { assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!"); assert(Align <= MaximumAlignment && "Alignment is greater than MaximumAlignment!"); setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | ((Log2_32(Align)+1) << 1)); assert(getAlignment() == Align && "Alignment representation error!"); } //===----------------------------------------------------------------------===// // AtomicCmpXchgInst Implementation //===----------------------------------------------------------------------===// void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope) { Op<0>() = Ptr; Op<1>() = Cmp; Op<2>() = NewVal; setOrdering(Ordering); setSynchScope(SynchScope); assert(getOperand(0) && getOperand(1) && getOperand(2) && "All operands must be non-null!"); assert(getOperand(0)->getType()->isPointerTy() && "Ptr must have pointer type!"); assert(getOperand(1)->getType() == cast<PointerType>(getOperand(0)->getType())->getElementType() && "Ptr must be a pointer to Cmp type!"); assert(getOperand(2)->getType() == cast<PointerType>(getOperand(0)->getType())->getElementType() && "Ptr must be a pointer to NewVal type!"); assert(Ordering != NotAtomic && "AtomicCmpXchg instructions must be atomic!"); } AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope, Instruction *InsertBefore) : Instruction(Cmp->getType(), AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { Init(Ptr, Cmp, NewVal, Ordering, SynchScope); } AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd) : Instruction(Cmp->getType(), AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { Init(Ptr, Cmp, NewVal, Ordering, SynchScope); } //===----------------------------------------------------------------------===// // AtomicRMWInst Implementation //===----------------------------------------------------------------------===// void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope) { Op<0>() = Ptr; Op<1>() = Val; setOperation(Operation); setOrdering(Ordering); setSynchScope(SynchScope); assert(getOperand(0) && getOperand(1) && "All operands must be non-null!"); assert(getOperand(0)->getType()->isPointerTy() && "Ptr must have pointer type!"); assert(getOperand(1)->getType() == cast<PointerType>(getOperand(0)->getType())->getElementType() && "Ptr must be a pointer to Val type!"); assert(Ordering != NotAtomic && "AtomicRMW instructions must be atomic!"); } AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope, Instruction *InsertBefore) : Instruction(Val->getType(), AtomicRMW, OperandTraits<AtomicRMWInst>::op_begin(this), OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) { Init(Operation, Ptr, Val, Ordering, SynchScope); } AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd) : Instruction(Val->getType(), AtomicRMW, OperandTraits<AtomicRMWInst>::op_begin(this), OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) { Init(Operation, Ptr, Val, Ordering, SynchScope); } //===----------------------------------------------------------------------===// // FenceInst Implementation //===----------------------------------------------------------------------===// FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, SynchronizationScope SynchScope, Instruction *InsertBefore) : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertBefore) { setOrdering(Ordering); setSynchScope(SynchScope); } FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, SynchronizationScope SynchScope, BasicBlock *InsertAtEnd) : Instruction(Type::getVoidTy(C), Fence, 0, 0, InsertAtEnd) { setOrdering(Ordering); setSynchScope(SynchScope); } //===----------------------------------------------------------------------===// // GetElementPtrInst Implementation //===----------------------------------------------------------------------===// void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name) { assert(NumOperands == 1 + IdxList.size() && "NumOperands not initialized?"); OperandList[0] = Ptr; std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1); setName(Name); } GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) : Instruction(GEPI.getType(), GetElementPtr, OperandTraits<GetElementPtrInst>::op_end(this) - GEPI.getNumOperands(), GEPI.getNumOperands()) { std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); SubclassOptionalData = GEPI.SubclassOptionalData; } /// getIndexedType - Returns the type of the element that would be accessed with /// a gep instruction with the specified parameters. /// /// The Idxs pointer should point to a continuous piece of memory containing the /// indices, either as Value* or uint64_t. /// /// A null type is returned if the indices are invalid for the specified /// pointer type. /// template <typename IndexTy> static Type *getIndexedTypeInternal(Type *Ptr, ArrayRef<IndexTy> IdxList) { PointerType *PTy = dyn_cast<PointerType>(Ptr->getScalarType()); if (!PTy) return 0; // Type isn't a pointer type! Type *Agg = PTy->getElementType(); // Handle the special case of the empty set index set, which is always valid. if (IdxList.empty()) return Agg; // If there is at least one index, the top level type must be sized, otherwise // it cannot be 'stepped over'. if (!Agg->isSized()) return 0; unsigned CurIdx = 1; for (; CurIdx != IdxList.size(); ++CurIdx) { CompositeType *CT = dyn_cast<CompositeType>(Agg); if (!CT || CT->isPointerTy()) return 0; IndexTy Index = IdxList[CurIdx]; if (!CT->indexValid(Index)) return 0; Agg = CT->getTypeAtIndex(Index); } return CurIdx == IdxList.size() ? Agg : 0; } Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList) { return getIndexedTypeInternal(Ptr, IdxList); } Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<Constant *> IdxList) { return getIndexedTypeInternal(Ptr, IdxList); } Type *GetElementPtrInst::getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList) { return getIndexedTypeInternal(Ptr, IdxList); } /// hasAllZeroIndices - Return true if all of the indices of this GEP are /// zeros. If so, the result pointer and the first operand have the same /// value, just potentially different types. bool GetElementPtrInst::hasAllZeroIndices() const { for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { if (!CI->isZero()) return false; } else { return false; } } return true; } /// hasAllConstantIndices - Return true if all of the indices of this GEP are /// constant integers. If so, the result pointer and the first operand have /// a constant offset between them. bool GetElementPtrInst::hasAllConstantIndices() const { for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { if (!isa<ConstantInt>(getOperand(i))) return false; } return true; } void GetElementPtrInst::setIsInBounds(bool B) { cast<GEPOperator>(this)->setIsInBounds(B); } bool GetElementPtrInst::isInBounds() const { return cast<GEPOperator>(this)->isInBounds(); } bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const { // Delegate to the generic GEPOperator implementation. return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); } //===----------------------------------------------------------------------===// // ExtractElementInst Implementation //===----------------------------------------------------------------------===// ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, const Twine &Name, Instruction *InsertBef) : Instruction(cast<VectorType>(Val->getType())->getElementType(), ExtractElement, OperandTraits<ExtractElementInst>::op_begin(this), 2, InsertBef) { assert(isValidOperands(Val, Index) && "Invalid extractelement instruction operands!"); Op<0>() = Val; Op<1>() = Index; setName(Name); } ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, const Twine &Name, BasicBlock *InsertAE) : Instruction(cast<VectorType>(Val->getType())->getElementType(), ExtractElement, OperandTraits<ExtractElementInst>::op_begin(this), 2, InsertAE) { assert(isValidOperands(Val, Index) && "Invalid extractelement instruction operands!"); Op<0>() = Val; Op<1>() = Index; setName(Name); } bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32)) return false; return true; } //===----------------------------------------------------------------------===// // InsertElementInst Implementation //===----------------------------------------------------------------------===// InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, const Twine &Name, Instruction *InsertBef) : Instruction(Vec->getType(), InsertElement, OperandTraits<InsertElementInst>::op_begin(this), 3, InsertBef) { assert(isValidOperands(Vec, Elt, Index) && "Invalid insertelement instruction operands!"); Op<0>() = Vec; Op<1>() = Elt; Op<2>() = Index; setName(Name); } InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, const Twine &Name, BasicBlock *InsertAE) : Instruction(Vec->getType(), InsertElement, OperandTraits<InsertElementInst>::op_begin(this), 3, InsertAE) { assert(isValidOperands(Vec, Elt, Index) && "Invalid insertelement instruction operands!"); Op<0>() = Vec; Op<1>() = Elt; Op<2>() = Index; setName(Name); } bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, const Value *Index) { if (!Vec->getType()->isVectorTy()) return false; // First operand of insertelement must be vector type. if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) return false;// Second operand of insertelement must be vector element type. if (!Index->getType()->isIntegerTy(32)) return false; // Third operand of insertelement must be i32. return true; } //===----------------------------------------------------------------------===// // ShuffleVectorInst Implementation //===----------------------------------------------------------------------===// ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &Name, Instruction *InsertBefore) : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), cast<VectorType>(Mask->getType())->getNumElements()), ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) { assert(isValidOperands(V1, V2, Mask) && "Invalid shuffle vector instruction operands!"); Op<0>() = V1; Op<1>() = V2; Op<2>() = Mask; setName(Name); } ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, const Twine &Name, BasicBlock *InsertAtEnd) : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), cast<VectorType>(Mask->getType())->getNumElements()), ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this), OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) { assert(isValidOperands(V1, V2, Mask) && "Invalid shuffle vector instruction operands!"); Op<0>() = V1; Op<1>() = V2; Op<2>() = Mask; setName(Name); } bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, const Value *Mask) { // V1 and V2 must be vectors of the same type. if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) return false; // Mask must be vector of i32. VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType()); if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32)) return false; // Check to see if Mask is valid. if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) return true; if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) { unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) { if (ConstantInt *CI = dyn_cast<ConstantInt>(MV->getOperand(i))) { if (CI->uge(V1Size*2)) return false; } else if (!isa<UndefValue>(MV->getOperand(i))) { return false; } } return true; } if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(Mask)) { unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) if (CDS->getElementAsInteger(i) >= V1Size*2) return false; return true; } // The bitcode reader can create a place holder for a forward reference // used as the shuffle mask. When this occurs, the shuffle mask will // fall into this case and fail. To avoid this error, do this bit of // ugliness to allow such a mask pass. if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask)) if (CE->getOpcode() == Instruction::UserOp1) return true; return false; } /// getMaskValue - Return the index from the shuffle mask for the specified /// output result. This is either -1 if the element is undef or a number less /// than 2*numelements. int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) { assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask)) return CDS->getElementAsInteger(i); Constant *C = Mask->getAggregateElement(i); if (isa<UndefValue>(C)) return -1; return cast<ConstantInt>(C)->getZExtValue(); } /// getShuffleMask - Return the full mask for this instruction, where each /// element is the element number and undef's are returned as -1. void ShuffleVectorInst::getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result) { unsigned NumElts = Mask->getType()->getVectorNumElements(); if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) { for (unsigned i = 0; i != NumElts; ++i) Result.push_back(CDS->getElementAsInteger(i)); return; } for (unsigned i = 0; i != NumElts; ++i) { Constant *C = Mask->getAggregateElement(i); Result.push_back(isa<UndefValue>(C) ? -1 : cast<ConstantInt>(C)->getZExtValue()); } } //===----------------------------------------------------------------------===// // InsertValueInst Class //===----------------------------------------------------------------------===// void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &Name) { assert(NumOperands == 2 && "NumOperands not initialized?"); // There's no fundamental reason why we require at least one index // (other than weirdness with &*IdxBegin being invalid; see // getelementptr's init routine for example). But there's no // present need to support it. assert(Idxs.size() > 0 && "InsertValueInst must have at least one index"); assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == Val->getType() && "Inserted value must match indexed type!"); Op<0>() = Agg; Op<1>() = Val; Indices.append(Idxs.begin(), Idxs.end()); setName(Name); } InsertValueInst::InsertValueInst(const InsertValueInst &IVI) : Instruction(IVI.getType(), InsertValue, OperandTraits<InsertValueInst>::op_begin(this), 2), Indices(IVI.Indices) { Op<0>() = IVI.getOperand(0); Op<1>() = IVI.getOperand(1); SubclassOptionalData = IVI.SubclassOptionalData; } //===----------------------------------------------------------------------===// // ExtractValueInst Class //===----------------------------------------------------------------------===// void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { assert(NumOperands == 1 && "NumOperands not initialized?"); // There's no fundamental reason why we require at least one index. // But there's no present need to support it. assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index"); Indices.append(Idxs.begin(), Idxs.end()); setName(Name); } ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), Indices(EVI.Indices) { SubclassOptionalData = EVI.SubclassOptionalData; } // getIndexedType - Returns the type of the element that would be extracted // with an extractvalue instruction with the specified parameters. // // A null type is returned if the indices are invalid for the specified // pointer type. // Type *ExtractValueInst::getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs) { for (unsigned CurIdx = 0; CurIdx != Idxs.size(); ++CurIdx) { unsigned Index = Idxs[CurIdx]; // We can't use CompositeType::indexValid(Index) here. // indexValid() always returns true for arrays because getelementptr allows // out-of-bounds indices. Since we don't allow those for extractvalue and // insertvalue we need to check array indexing manually. // Since the only other types we can index into are struct types it's just // as easy to check those manually as well. if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { if (Index >= AT->getNumElements()) return 0; } else if (StructType *ST = dyn_cast<StructType>(Agg)) { if (Index >= ST->getNumElements()) return 0; } else { // Not a valid type to index into. return 0; } Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); } return const_cast<Type*>(Agg); } //===----------------------------------------------------------------------===// // BinaryOperator Class //===----------------------------------------------------------------------===// BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, Instruction *InsertBefore) : Instruction(Ty, iType, OperandTraits<BinaryOperator>::op_begin(this), OperandTraits<BinaryOperator>::operands(this), InsertBefore) { Op<0>() = S1; Op<1>() = S2; init(iType); setName(Name); } BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) : Instruction(Ty, iType, OperandTraits<BinaryOperator>::op_begin(this), OperandTraits<BinaryOperator>::operands(this), InsertAtEnd) { Op<0>() = S1; Op<1>() = S2; init(iType); setName(Name); } void BinaryOperator::init(BinaryOps iType) { Value *LHS = getOperand(0), *RHS = getOperand(1); (void)LHS; (void)RHS; // Silence warnings. assert(LHS->getType() == RHS->getType() && "Binary operator operand types must match!"); #ifndef NDEBUG switch (iType) { case Add: case Sub: case Mul: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert(getType()->isIntOrIntVectorTy() && "Tried to create an integer operation on a non-integer type!"); break; case FAdd: case FSub: case FMul: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert(getType()->isFPOrFPVectorTy() && "Tried to create a floating-point operation on a " "non-floating-point type!"); break; case UDiv: case SDiv: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isIntegerTy() || (getType()->isVectorTy() && cast<VectorType>(getType())->getElementType()->isIntegerTy())) && "Incorrect operand type (not integer) for S/UDIV"); break; case FDiv: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert(getType()->isFPOrFPVectorTy() && "Incorrect operand type (not floating point) for FDIV"); break; case URem: case SRem: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert((getType()->isIntegerTy() || (getType()->isVectorTy() && cast<VectorType>(getType())->getElementType()->isIntegerTy())) && "Incorrect operand type (not integer) for S/UREM"); break; case FRem: assert(getType() == LHS->getType() && "Arithmetic operation should return same type as operands!"); assert(getType()->isFPOrFPVectorTy() && "Incorrect operand type (not floating point) for FREM"); break; case Shl: case LShr: case AShr: assert(getType() == LHS->getType() && "Shift operation should return same type as operands!"); assert((getType()->isIntegerTy() || (getType()->isVectorTy() && cast<VectorType>(getType())->getElementType()->isIntegerTy())) && "Tried to create a shift operation on a non-integral type!"); break; case And: case Or: case Xor: assert(getType() == LHS->getType() && "Logical operation should return same type as operands!"); assert((getType()->isIntegerTy() || (getType()->isVectorTy() && cast<VectorType>(getType())->getElementType()->isIntegerTy())) && "Tried to create a logical operation on a non-integral type!"); break; default: break; } #endif } BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore) { assert(S1->getType() == S2->getType() && "Cannot create binary operator with two operands of differing type!"); return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock *InsertAtEnd) { BinaryOperator *Res = Create(Op, S1, S2, Name); InsertAtEnd->getInstList().push_back(Res); return Res; } BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, Instruction *InsertBefore) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return new BinaryOperator(Instruction::Sub, zero, Op, Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return new BinaryOperator(Instruction::Sub, zero, Op, Op->getType(), Name, InsertAtEnd); } BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, Instruction *InsertBefore) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); } BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); } BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, Instruction *InsertBefore) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); } BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); } BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, Instruction *InsertBefore) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return new BinaryOperator(Instruction::FSub, zero, Op, Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd) { Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); return new BinaryOperator(Instruction::FSub, zero, Op, Op->getType(), Name, InsertAtEnd); } BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, Instruction *InsertBefore) { Constant *C = Constant::getAllOnesValue(Op->getType()); return new BinaryOperator(Instruction::Xor, Op, C, Op->getType(), Name, InsertBefore); } BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, BasicBlock *InsertAtEnd) { Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); return new BinaryOperator(Instruction::Xor, Op, AllOnes, Op->getType(), Name, InsertAtEnd); } // isConstantAllOnes - Helper function for several functions below static inline bool isConstantAllOnes(const Value *V) { if (const Constant *C = dyn_cast<Constant>(V)) return C->isAllOnesValue(); return false; } bool BinaryOperator::isNeg(const Value *V) { if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) if (Bop->getOpcode() == Instruction::Sub) if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) return C->isNegativeZeroValue(); return false; } bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) { if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) if (Bop->getOpcode() == Instruction::FSub) if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) { if (!IgnoreZeroSign) IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros(); return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue(); } return false; } bool BinaryOperator::isNot(const Value *V) { if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V)) return (Bop->getOpcode() == Instruction::Xor && (isConstantAllOnes(Bop->getOperand(1)) || isConstantAllOnes(Bop->getOperand(0)))); return false; } Value *BinaryOperator::getNegArgument(Value *BinOp) { return cast<BinaryOperator>(BinOp)->getOperand(1); } const Value *BinaryOperator::getNegArgument(const Value *BinOp) { return getNegArgument(const_cast<Value*>(BinOp)); } Value *BinaryOperator::getFNegArgument(Value *BinOp) { return cast<BinaryOperator>(BinOp)->getOperand(1); } const Value *BinaryOperator::getFNegArgument(const Value *BinOp) { return getFNegArgument(const_cast<Value*>(BinOp)); } Value *BinaryOperator::getNotArgument(Value *BinOp) { assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!"); BinaryOperator *BO = cast<BinaryOperator>(BinOp); Value *Op0 = BO->getOperand(0); Value *Op1 = BO->getOperand(1); if (isConstantAllOnes(Op0)) return Op1; assert(isConstantAllOnes(Op1)); return Op0; } const Value *BinaryOperator::getNotArgument(const Value *BinOp) { return getNotArgument(const_cast<Value*>(BinOp)); } // swapOperands - Exchange the two operands to this instruction. This // instruction is safe to use on any binary instruction and does not // modify the semantics of the instruction. If the instruction is // order dependent (SetLT f.e.) the opcode is changed. // bool BinaryOperator::swapOperands() { if (!isCommutative()) return true; // Can't commute operands Op<0>().swap(Op<1>()); return false; } void BinaryOperator::setHasNoUnsignedWrap(bool b) { cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b); } void BinaryOperator::setHasNoSignedWrap(bool b) { cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b); } void BinaryOperator::setIsExact(bool b) { cast<PossiblyExactOperator>(this)->setIsExact(b); } bool BinaryOperator::hasNoUnsignedWrap() const { return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap(); } bool BinaryOperator::hasNoSignedWrap() const { return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap(); } bool BinaryOperator::isExact() const { return cast<PossiblyExactOperator>(this)->isExact(); } //===----------------------------------------------------------------------===// // FPMathOperator Class //===----------------------------------------------------------------------===// /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs. /// An accuracy of 0.0 means that the operation should be performed with the /// default precision. float FPMathOperator::getFPAccuracy() const { const MDNode *MD = cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); if (!MD) return 0.0; ConstantFP *Accuracy = cast<ConstantFP>(MD->getOperand(0)); return Accuracy->getValueAPF().convertToFloat(); } //===----------------------------------------------------------------------===// // CastInst Class //===----------------------------------------------------------------------===// void CastInst::anchor() {} // Just determine if this cast only deals with integral->integral conversion. bool CastInst::isIntegerCast() const { switch (getOpcode()) { default: return false; case Instruction::ZExt: case Instruction::SExt: case Instruction::Trunc: return true; case Instruction::BitCast: return getOperand(0)->getType()->isIntegerTy() && getType()->isIntegerTy(); } } bool CastInst::isLosslessCast() const { // Only BitCast can be lossless, exit fast if we're not BitCast if (getOpcode() != Instruction::BitCast) return false; // Identity cast is always lossless Type* SrcTy = getOperand(0)->getType(); Type* DstTy = getType(); if (SrcTy == DstTy) return true; // Pointer to pointer is always lossless. if (SrcTy->isPointerTy()) return DstTy->isPointerTy(); return false; // Other types have no identity values } /// This function determines if the CastInst does not require any bits to be /// changed in order to effect the cast. Essentially, it identifies cases where /// no code gen is necessary for the cast, hence the name no-op cast. For /// example, the following are all no-op casts: /// # bitcast i32* %x to i8* /// # bitcast <2 x i32> %x to <4 x i16> /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only /// @brief Determine if the described cast is a no-op. bool CastInst::isNoopCast(Instruction::CastOps Opcode, Type *SrcTy, Type *DestTy, Type *IntPtrTy) { switch (Opcode) { default: llvm_unreachable("Invalid CastOp"); case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: return false; // These always modify bits case Instruction::BitCast: return true; // BitCast never modifies bits. case Instruction::PtrToInt: return IntPtrTy->getScalarSizeInBits() == DestTy->getScalarSizeInBits(); case Instruction::IntToPtr: return IntPtrTy->getScalarSizeInBits() == SrcTy->getScalarSizeInBits(); } } /// @brief Determine if a cast is a no-op. bool CastInst::isNoopCast(Type *IntPtrTy) const { return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy); } /// This function determines if a pair of casts can be eliminated and what /// opcode should be used in the elimination. This assumes that there are two /// instructions like this: /// * %F = firstOpcode SrcTy %x to MidTy /// * %S = secondOpcode MidTy %F to DstTy /// The function returns a resultOpcode so these two casts can be replaced with: /// * %Replacement = resultOpcode %SrcTy %x to DstTy /// If no such cast is permited, the function returns 0. unsigned CastInst::isEliminableCastPair( Instruction::CastOps firstOp, Instruction::CastOps secondOp, Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, Type *DstIntPtrTy) { // Define the 144 possibilities for these two cast instructions. The values // in this matrix determine what to do in a given situation and select the // case in the switch below. The rows correspond to firstOp, the columns // correspond to secondOp. In looking at the table below, keep in mind // the following cast properties: // // Size Compare Source Destination // Operator Src ? Size Type Sign Type Sign // -------- ------------ ------------------- --------------------- // TRUNC > Integer Any Integral Any // ZEXT < Integral Unsigned Integer Any // SEXT < Integral Signed Integer Any // FPTOUI n/a FloatPt n/a Integral Unsigned // FPTOSI n/a FloatPt n/a Integral Signed // UITOFP n/a Integral Unsigned FloatPt n/a // SITOFP n/a Integral Signed FloatPt n/a // FPTRUNC > FloatPt n/a FloatPt n/a // FPEXT < FloatPt n/a FloatPt n/a // PTRTOINT n/a Pointer n/a Integral Unsigned // INTTOPTR n/a Integral Unsigned Pointer n/a // BITCAST = FirstClass n/a FirstClass n/a // // NOTE: some transforms are safe, but we consider them to be non-profitable. // For example, we could merge "fptoui double to i32" + "zext i32 to i64", // into "fptoui double to i64", but this loses information about the range // of the produced value (we no longer know the top-part is all zeros). // Further this conversion is often much more expensive for typical hardware, // and causes issues when building libgcc. We disallow fptosi+sext for the // same reason. const unsigned numCastOps = Instruction::CastOpsEnd - Instruction::CastOpsBegin; static const uint8_t CastResults[numCastOps][numCastOps] = { // T F F U S F F P I B -+ // R Z S P P I I T P 2 N T | // U E E 2 2 2 2 R E I T C +- secondOp // N X X U S F F N X N 2 V | // C T T I I P P C T T P T -+ { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc -+ { 8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt | { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt | { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI | { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI | { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP +- firstOp { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP | { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc | { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt | { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt | { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr | { 5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast -+ }; // If either of the casts are a bitcast from scalar to vector, disallow the // merging. However, bitcast of A->B->A are allowed. bool isFirstBitcast = (firstOp == Instruction::BitCast); bool isSecondBitcast = (secondOp == Instruction::BitCast); bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast); // Check if any of the bitcasts convert scalars<->vectors. if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) // Unless we are bitcasing to the original type, disallow optimizations. if (!chainedBitcast) return 0; int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] [secondOp-Instruction::CastOpsBegin]; switch (ElimCase) { case 0: // categorically disallowed return 0; case 1: // allowed, use first cast's opcode return firstOp; case 2: // allowed, use second cast's opcode return secondOp; case 3: // no-op cast in second op implies firstOp as long as the DestTy // is integer and we are not converting between a vector and a // non vector type. if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) return firstOp; return 0; case 4: // no-op cast in second op implies firstOp as long as the DestTy // is floating point. if (DstTy->isFloatingPointTy()) return firstOp; return 0; case 5: // no-op cast in first op implies secondOp as long as the SrcTy // is an integer. if (SrcTy->isIntegerTy()) return secondOp; return 0; case 6: // no-op cast in first op implies secondOp as long as the SrcTy // is a floating point. if (SrcTy->isFloatingPointTy()) return secondOp; return 0; case 7: { unsigned MidSize = MidTy->getScalarSizeInBits(); // Check the address spaces first. If we know they are in the same address // space, the pointer sizes must be the same so we can still fold this // without knowing the actual sizes as long we know that the intermediate // pointer is the largest possible pointer size. if (MidSize == 64 && SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) return Instruction::BitCast; // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) return 0; unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); if (MidSize >= PtrSize) return Instruction::BitCast; return 0; } case 8: { // ext, trunc -> bitcast, if the SrcTy and DstTy are same size // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy) // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy) unsigned SrcSize = SrcTy->getScalarSizeInBits(); unsigned DstSize = DstTy->getScalarSizeInBits(); if (SrcSize == DstSize) return Instruction::BitCast; else if (SrcSize < DstSize) return firstOp; return secondOp; } case 9: // zext, sext -> zext, because sext can't sign extend after zext return Instruction::ZExt; case 10: // fpext followed by ftrunc is allowed if the bit size returned to is // the same as the original, in which case its just a bitcast if (SrcTy == DstTy) return Instruction::BitCast; return 0; // If the types are not the same we can't eliminate it. case 11: { // bitcast followed by ptrtoint is allowed as long as the bitcast is a // pointer to pointer cast, and the pointers are the same size. PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy); PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy); if (!SrcPtrTy || !MidPtrTy) return 0; // If the address spaces are the same, we know they are the same size // without size information if (SrcPtrTy->getAddressSpace() == MidPtrTy->getAddressSpace()) return secondOp; if (!SrcIntPtrTy || !MidIntPtrTy) return 0; if (SrcIntPtrTy->getScalarSizeInBits() == MidIntPtrTy->getScalarSizeInBits()) return secondOp; return 0; } case 12: { // inttoptr, bitcast -> inttoptr if bitcast is a ptr to ptr cast // and the ptrs are to address spaces of the same size PointerType *MidPtrTy = dyn_cast<PointerType>(MidTy); PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy); if (!MidPtrTy || !DstPtrTy) return 0; if (MidPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) return firstOp; if (MidIntPtrTy && DstIntPtrTy && MidIntPtrTy->getScalarSizeInBits() == DstIntPtrTy->getScalarSizeInBits()) return firstOp; return 0; } case 13: { // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize if (!MidIntPtrTy) return 0; unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); unsigned SrcSize = SrcTy->getScalarSizeInBits(); unsigned DstSize = DstTy->getScalarSizeInBits(); if (SrcSize <= PtrSize && SrcSize == DstSize) return Instruction::BitCast; return 0; } case 99: // cast combination can't happen (error in input). This is for all cases // where the MidTy is not the same for the two cast instructions. llvm_unreachable("Invalid Cast Combination"); default: llvm_unreachable("Error in CastResults table!!!"); } } CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore) { assert(castIsValid(op, S, Ty) && "Invalid cast!"); // Construct and return the appropriate CastInst subclass switch (op) { case Trunc: return new TruncInst (S, Ty, Name, InsertBefore); case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore); case SExt: return new SExtInst (S, Ty, Name, InsertBefore); case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore); case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore); case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore); case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore); case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore); case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore); case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore); case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore); case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore); default: llvm_unreachable("Invalid opcode provided"); } } CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) { assert(castIsValid(op, S, Ty) && "Invalid cast!"); // Construct and return the appropriate CastInst subclass switch (op) { case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd); case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd); case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd); case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd); case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd); case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd); case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd); case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd); case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd); case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd); case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd); case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd); default: llvm_unreachable("Invalid opcode provided"); } } CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore) { if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); } CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) { if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); } CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore) { if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); return Create(Instruction::SExt, S, Ty, Name, InsertBefore); } CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) { if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); } CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore) { if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); } CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) { if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); } CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) { assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && "Invalid cast"); assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); assert((!Ty->isVectorTy() || Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && "Invalid cast"); if (Ty->isIntOrIntVectorTy()) return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); } /// @brief Create a BitCast or a PtrToInt cast instruction CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore) { assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && "Invalid cast"); assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); assert((!Ty->isVectorTy() || Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && "Invalid cast"); if (Ty->isIntOrIntVectorTy()) return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); } CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, bool isSigned, const Twine &Name, Instruction *InsertBefore) { assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && "Invalid integer cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::Trunc : (isSigned ? Instruction::SExt : Instruction::ZExt))); return Create(opcode, C, Ty, Name, InsertBefore); } CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, bool isSigned, const Twine &Name, BasicBlock *InsertAtEnd) { assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::Trunc : (isSigned ? Instruction::SExt : Instruction::ZExt))); return Create(opcode, C, Ty, Name, InsertAtEnd); } CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, const Twine &Name, Instruction *InsertBefore) { assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); return Create(opcode, C, Ty, Name, InsertBefore); } CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd) { assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); return Create(opcode, C, Ty, Name, InsertAtEnd); } // Check whether it is valid to call getCastOpcode for these types. // This routine must be kept in sync with getCastOpcode. bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) return false; if (SrcTy == DestTy) return true; if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { // An element by element cast. Valid if casting the elements is valid. SrcTy = SrcVecTy->getElementType(); DestTy = DestVecTy->getElementType(); } // Get the bit sizes, we'll need these unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr // Run through the possibilities ... if (DestTy->isIntegerTy()) { // Casting to integral if (SrcTy->isIntegerTy()) { // Casting from integral return true; } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt return true; } else if (SrcTy->isVectorTy()) { // Casting from vector return DestBits == SrcBits; } else { // Casting from something else return SrcTy->isPointerTy(); } } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt if (SrcTy->isIntegerTy()) { // Casting from integral return true; } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt return true; } else if (SrcTy->isVectorTy()) { // Casting from vector return DestBits == SrcBits; } else { // Casting from something else return false; } } else if (DestTy->isVectorTy()) { // Casting to vector return DestBits == SrcBits; } else if (DestTy->isPointerTy()) { // Casting to pointer if (SrcTy->isPointerTy()) { // Casting from pointer return true; } else if (SrcTy->isIntegerTy()) { // Casting from integral return true; } else { // Casting from something else return false; } } else if (DestTy->isX86_MMXTy()) { if (SrcTy->isVectorTy()) { return DestBits == SrcBits; // 64-bit vector to MMX } else { return false; } } else { // Casting to something else return false; } } bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) return false; if (SrcTy == DestTy) return true; if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { // An element by element cast. Valid if casting the elements is valid. SrcTy = SrcVecTy->getElementType(); DestTy = DestVecTy->getElementType(); } } } if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); } } unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr // Could still have vectors of pointers if the number of elements doesn't // match if (SrcBits == 0 || DestBits == 0) return false; if (SrcBits != DestBits) return false; if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) return false; return true; } // Provide a way to get a "cast" where the cast opcode is inferred from the // types and size of the operand. This, basically, is a parallel of the // logic in the castIsValid function below. This axiom should hold: // castIsValid( getCastOpcode(Val, Ty), Val, Ty) // should not assert in castIsValid. In other words, this produces a "correct" // casting opcode for the arguments passed to it. // This routine must be kept in sync with isCastable. Instruction::CastOps CastInst::getCastOpcode( const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { Type *SrcTy = Src->getType(); assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && "Only first class types are castable!"); if (SrcTy == DestTy) return BitCast; // FIXME: Check address space sizes here if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { // An element by element cast. Find the appropriate opcode based on the // element types. SrcTy = SrcVecTy->getElementType(); DestTy = DestVecTy->getElementType(); } // Get the bit sizes, we'll need these unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr // Run through the possibilities ... if (DestTy->isIntegerTy()) { // Casting to integral if (SrcTy->isIntegerTy()) { // Casting from integral if (DestBits < SrcBits) return Trunc; // int -> smaller int else if (DestBits > SrcBits) { // its an extension if (SrcIsSigned) return SExt; // signed -> SEXT else return ZExt; // unsigned -> ZEXT } else { return BitCast; // Same size, No-op cast } } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt if (DestIsSigned) return FPToSI; // FP -> sint else return FPToUI; // FP -> uint } else if (SrcTy->isVectorTy()) { assert(DestBits == SrcBits && "Casting vector to integer of different width"); return BitCast; // Same size, no-op cast } else { assert(SrcTy->isPointerTy() && "Casting from a value that is not first-class type"); return PtrToInt; // ptr -> int } } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt if (SrcTy->isIntegerTy()) { // Casting from integral if (SrcIsSigned) return SIToFP; // sint -> FP else return UIToFP; // uint -> FP } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt if (DestBits < SrcBits) { return FPTrunc; // FP -> smaller FP } else if (DestBits > SrcBits) { return FPExt; // FP -> larger FP } else { return BitCast; // same size, no-op cast } } else if (SrcTy->isVectorTy()) { assert(DestBits == SrcBits && "Casting vector to floating point of different width"); return BitCast; // same size, no-op cast } llvm_unreachable("Casting pointer or non-first class to float"); } else if (DestTy->isVectorTy()) { assert(DestBits == SrcBits && "Illegal cast to vector (wrong type or size)"); return BitCast; } else if (DestTy->isPointerTy()) { if (SrcTy->isPointerTy()) { // TODO: Address space pointer sizes may not match return BitCast; // ptr -> ptr } else if (SrcTy->isIntegerTy()) { return IntToPtr; // int -> ptr } llvm_unreachable("Casting pointer to other than pointer or int"); } else if (DestTy->isX86_MMXTy()) { if (SrcTy->isVectorTy()) { assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); return BitCast; // 64-bit vector to MMX } llvm_unreachable("Illegal cast to X86_MMX"); } llvm_unreachable("Casting to type that is not first-class"); } //===----------------------------------------------------------------------===// // CastInst SubClass Constructors //===----------------------------------------------------------------------===// /// Check that the construction parameters for a CastInst are correct. This /// could be broken out into the separate constructors but it is useful to have /// it in one place and to eliminate the redundant code for getting the sizes /// of the types involved. bool CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { // Check for type sanity on the arguments Type *SrcTy = S->getType(); // If this is a cast to the same type then it's trivially true. if (SrcTy == DstTy) return true; if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || SrcTy->isAggregateType() || DstTy->isAggregateType()) return false; // Get the size of the types in bits, we'll need this later unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); unsigned DstBitSize = DstTy->getScalarSizeInBits(); // If these are vector types, get the lengths of the vectors (using zero for // scalar types means that checking that vector lengths match also checks that // scalars are not being converted to vectors or vectors to scalars). unsigned SrcLength = SrcTy->isVectorTy() ? cast<VectorType>(SrcTy)->getNumElements() : 0; unsigned DstLength = DstTy->isVectorTy() ? cast<VectorType>(DstTy)->getNumElements() : 0; // Switch on the opcode provided switch (op) { default: return false; // This is an input error case Instruction::Trunc: return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && SrcLength == DstLength && SrcBitSize > DstBitSize; case Instruction::ZExt: return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && SrcLength == DstLength && SrcBitSize < DstBitSize; case Instruction::SExt: return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && SrcLength == DstLength && SrcBitSize < DstBitSize; case Instruction::FPTrunc: return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && SrcLength == DstLength && SrcBitSize > DstBitSize; case Instruction::FPExt: return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && SrcLength == DstLength && SrcBitSize < DstBitSize; case Instruction::UIToFP: case Instruction::SIToFP: return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && SrcLength == DstLength; case Instruction::FPToUI: case Instruction::FPToSI: return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && SrcLength == DstLength; case Instruction::PtrToInt: if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) return false; if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) return false; return SrcTy->getScalarType()->isPointerTy() && DstTy->getScalarType()->isIntegerTy(); case Instruction::IntToPtr: if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) return false; if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) return false; return SrcTy->getScalarType()->isIntegerTy() && DstTy->getScalarType()->isPointerTy(); case Instruction::BitCast: // BitCast implies a no-op cast of type only. No bits change. // However, you can't cast pointers to anything but pointers. if (SrcTy->isPointerTy() != DstTy->isPointerTy()) return false; // Now we know we're not dealing with a pointer/non-pointer mismatch. In all // these cases, the cast is okay if the source and destination bit widths // are identical. return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); } } TruncInst::TruncInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, Trunc, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); } TruncInst::TruncInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); } ZExtInst::ZExtInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, ZExt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); } ZExtInst::ZExtInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); } SExtInst::SExtInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, SExt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); } SExtInst::SExtInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); } FPTruncInst::FPTruncInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); } FPTruncInst::FPTruncInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); } FPExtInst::FPExtInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, FPExt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); } FPExtInst::FPExtInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); } UIToFPInst::UIToFPInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); } UIToFPInst::UIToFPInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); } SIToFPInst::SIToFPInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); } SIToFPInst::SIToFPInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); } FPToUIInst::FPToUIInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); } FPToUIInst::FPToUIInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); } FPToSIInst::FPToSIInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); } FPToSIInst::FPToSIInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); } PtrToIntInst::PtrToIntInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); } PtrToIntInst::PtrToIntInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); } IntToPtrInst::IntToPtrInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); } IntToPtrInst::IntToPtrInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); } BitCastInst::BitCastInst( Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore ) : CastInst(Ty, BitCast, S, Name, InsertBefore) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); } BitCastInst::BitCastInst( Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); } //===----------------------------------------------------------------------===// // CmpInst Classes //===----------------------------------------------------------------------===// void CmpInst::anchor() {} CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, Value *LHS, Value *RHS, const Twine &Name, Instruction *InsertBefore) : Instruction(ty, op, OperandTraits<CmpInst>::op_begin(this), OperandTraits<CmpInst>::operands(this), InsertBefore) { Op<0>() = LHS; Op<1>() = RHS; setPredicate((Predicate)predicate); setName(Name); } CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate, Value *LHS, Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) : Instruction(ty, op, OperandTraits<CmpInst>::op_begin(this), OperandTraits<CmpInst>::operands(this), InsertAtEnd) { Op<0>() = LHS; Op<1>() = RHS; setPredicate((Predicate)predicate); setName(Name); } CmpInst * CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name, Instruction *InsertBefore) { if (Op == Instruction::ICmp) { if (InsertBefore) return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), S1, S2, Name); else return new ICmpInst(CmpInst::Predicate(predicate), S1, S2, Name); } if (InsertBefore) return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), S1, S2, Name); else return new FCmpInst(CmpInst::Predicate(predicate), S1, S2, Name); } CmpInst * CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2, const Twine &Name, BasicBlock *InsertAtEnd) { if (Op == Instruction::ICmp) { return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), S1, S2, Name); } return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), S1, S2, Name); } void CmpInst::swapOperands() { if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) IC->swapOperands(); else cast<FCmpInst>(this)->swapOperands(); } bool CmpInst::isCommutative() const { if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) return IC->isCommutative(); return cast<FCmpInst>(this)->isCommutative(); } bool CmpInst::isEquality() const { if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) return IC->isEquality(); return cast<FCmpInst>(this)->isEquality(); } CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { switch (pred) { default: llvm_unreachable("Unknown cmp predicate!"); case ICMP_EQ: return ICMP_NE; case ICMP_NE: return ICMP_EQ; case ICMP_UGT: return ICMP_ULE; case ICMP_ULT: return ICMP_UGE; case ICMP_UGE: return ICMP_ULT; case ICMP_ULE: return ICMP_UGT; case ICMP_SGT: return ICMP_SLE; case ICMP_SLT: return ICMP_SGE; case ICMP_SGE: return ICMP_SLT; case ICMP_SLE: return ICMP_SGT; case FCMP_OEQ: return FCMP_UNE; case FCMP_ONE: return FCMP_UEQ; case FCMP_OGT: return FCMP_ULE; case FCMP_OLT: return FCMP_UGE; case FCMP_OGE: return FCMP_ULT; case FCMP_OLE: return FCMP_UGT; case FCMP_UEQ: return FCMP_ONE; case FCMP_UNE: return FCMP_OEQ; case FCMP_UGT: return FCMP_OLE; case FCMP_ULT: return FCMP_OGE; case FCMP_UGE: return FCMP_OLT; case FCMP_ULE: return FCMP_OGT; case FCMP_ORD: return FCMP_UNO; case FCMP_UNO: return FCMP_ORD; case FCMP_TRUE: return FCMP_FALSE; case FCMP_FALSE: return FCMP_TRUE; } } ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { switch (pred) { default: llvm_unreachable("Unknown icmp predicate!"); case ICMP_EQ: case ICMP_NE: case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: return pred; case ICMP_UGT: return ICMP_SGT; case ICMP_ULT: return ICMP_SLT; case ICMP_UGE: return ICMP_SGE; case ICMP_ULE: return ICMP_SLE; } } ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { switch (pred) { default: llvm_unreachable("Unknown icmp predicate!"); case ICMP_EQ: case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: return pred; case ICMP_SGT: return ICMP_UGT; case ICMP_SLT: return ICMP_ULT; case ICMP_SGE: return ICMP_UGE; case ICMP_SLE: return ICMP_ULE; } } /// Initialize a set of values that all satisfy the condition with C. /// ConstantRange ICmpInst::makeConstantRange(Predicate pred, const APInt &C) { APInt Lower(C); APInt Upper(C); uint32_t BitWidth = C.getBitWidth(); switch (pred) { default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!"); case ICmpInst::ICMP_EQ: ++Upper; break; case ICmpInst::ICMP_NE: ++Lower; break; case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); // Check for an empty-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/false); break; case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); // Check for an empty-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/false); break; case ICmpInst::ICMP_UGT: ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) // Check for an empty-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/false); break; case ICmpInst::ICMP_SGT: ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) // Check for an empty-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/false); break; case ICmpInst::ICMP_ULE: Lower = APInt::getMinValue(BitWidth); ++Upper; // Check for a full-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/true); break; case ICmpInst::ICMP_SLE: Lower = APInt::getSignedMinValue(BitWidth); ++Upper; // Check for a full-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/true); break; case ICmpInst::ICMP_UGE: Upper = APInt::getMinValue(BitWidth); // Min = Next(Max) // Check for a full-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/true); break; case ICmpInst::ICMP_SGE: Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max) // Check for a full-set condition. if (Lower == Upper) return ConstantRange(BitWidth, /*isFullSet=*/true); break; } return ConstantRange(Lower, Upper); } CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { switch (pred) { default: llvm_unreachable("Unknown cmp predicate!"); case ICMP_EQ: case ICMP_NE: return pred; case ICMP_SGT: return ICMP_SLT; case ICMP_SLT: return ICMP_SGT; case ICMP_SGE: return ICMP_SLE; case ICMP_SLE: return ICMP_SGE; case ICMP_UGT: return ICMP_ULT; case ICMP_ULT: return ICMP_UGT; case ICMP_UGE: return ICMP_ULE; case ICMP_ULE: return ICMP_UGE; case FCMP_FALSE: case FCMP_TRUE: case FCMP_OEQ: case FCMP_ONE: case FCMP_UEQ: case FCMP_UNE: case FCMP_ORD: case FCMP_UNO: return pred; case FCMP_OGT: return FCMP_OLT; case FCMP_OLT: return FCMP_OGT; case FCMP_OGE: return FCMP_OLE; case FCMP_OLE: return FCMP_OGE; case FCMP_UGT: return FCMP_ULT; case FCMP_ULT: return FCMP_UGT; case FCMP_UGE: return FCMP_ULE; case FCMP_ULE: return FCMP_UGE; } } bool CmpInst::isUnsigned(unsigned short predicate) { switch (predicate) { default: return false; case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_UGE: return true; } } bool CmpInst::isSigned(unsigned short predicate) { switch (predicate) { default: return false; case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_SGE: return true; } } bool CmpInst::isOrdered(unsigned short predicate) { switch (predicate) { default: return false; case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ORD: return true; } } bool CmpInst::isUnordered(unsigned short predicate) { switch (predicate) { default: return false; case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: case FCmpInst::FCMP_UNO: return true; } } bool CmpInst::isTrueWhenEqual(unsigned short predicate) { switch(predicate) { default: return false; case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; } } bool CmpInst::isFalseWhenEqual(unsigned short predicate) { switch(predicate) { case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; default: return false; } } //===----------------------------------------------------------------------===// // SwitchInst Implementation //===----------------------------------------------------------------------===// void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { assert(Value && Default && NumReserved); ReservedSpace = NumReserved; NumOperands = 2; OperandList = allocHungoffUses(ReservedSpace); OperandList[0] = Value; OperandList[1] = Default; } /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor can also autoinsert before another instruction. SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, Instruction *InsertBefore) : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 0, 0, InsertBefore) { init(Value, Default, 2+NumCases*2); } /// SwitchInst ctor - Create a new switch instruction, specifying a value to /// switch on and a default destination. The number of additional cases can /// be specified here to make memory allocation more efficient. This /// constructor also autoinserts at the end of the specified BasicBlock. SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch, 0, 0, InsertAtEnd) { init(Value, Default, 2+NumCases*2); } SwitchInst::SwitchInst(const SwitchInst &SI) : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) { init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); NumOperands = SI.getNumOperands(); Use *OL = OperandList, *InOL = SI.OperandList; for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { OL[i] = InOL[i]; OL[i+1] = InOL[i+1]; } TheSubsets = SI.TheSubsets; SubclassOptionalData = SI.SubclassOptionalData; } SwitchInst::~SwitchInst() { dropHungoffUses(); } /// addCase - Add an entry to the switch instruction... /// void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { IntegersSubsetToBB Mapping; // FIXME: Currently we work with ConstantInt based cases. // So inititalize IntItem container directly from ConstantInt. Mapping.add(IntItem::fromConstantInt(OnVal)); IntegersSubset CaseRanges = Mapping.getCase(); addCase(CaseRanges, Dest); } void SwitchInst::addCase(IntegersSubset& OnVal, BasicBlock *Dest) { unsigned NewCaseIdx = getNumCases(); unsigned OpNo = NumOperands; if (OpNo+2 > ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); NumOperands = OpNo+2; SubsetsIt TheSubsetsIt = TheSubsets.insert(TheSubsets.end(), OnVal); CaseIt Case(this, NewCaseIdx, TheSubsetsIt); Case.updateCaseValueOperand(OnVal); Case.setSuccessor(Dest); } /// removeCase - This method removes the specified case and its successor /// from the switch instruction. void SwitchInst::removeCase(CaseIt& i) { unsigned idx = i.getCaseIndex(); assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); unsigned NumOps = getNumOperands(); Use *OL = OperandList; // Overwrite this case with the end of the list. if (2 + (idx + 1) * 2 != NumOps) { OL[2 + idx * 2] = OL[NumOps - 2]; OL[2 + idx * 2 + 1] = OL[NumOps - 1]; } // Nuke the last value. OL[NumOps-2].set(0); OL[NumOps-2+1].set(0); // Do the same with TheCases collection: if (i.SubsetIt != --TheSubsets.end()) { *i.SubsetIt = TheSubsets.back(); TheSubsets.pop_back(); } else { TheSubsets.pop_back(); i.SubsetIt = TheSubsets.end(); } NumOperands = NumOps-2; } /// growOperands - grow operands - This grows the operand list in response /// to a push_back style of operation. This grows the number of ops by 3 times. /// void SwitchInst::growOperands() { unsigned e = getNumOperands(); unsigned NumOps = e*3; ReservedSpace = NumOps; Use *NewOps = allocHungoffUses(NumOps); Use *OldOps = OperandList; for (unsigned i = 0; i != e; ++i) { NewOps[i] = OldOps[i]; } OperandList = NewOps; Use::zap(OldOps, OldOps + e, true); } BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned SwitchInst::getNumSuccessorsV() const { return getNumSuccessors(); } void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) { setSuccessor(idx, B); } //===----------------------------------------------------------------------===// // IndirectBrInst Implementation //===----------------------------------------------------------------------===// void IndirectBrInst::init(Value *Address, unsigned NumDests) { assert(Address && Address->getType()->isPointerTy() && "Address of indirectbr must be a pointer"); ReservedSpace = 1+NumDests; NumOperands = 1; OperandList = allocHungoffUses(ReservedSpace); OperandList[0] = Address; } /// growOperands - grow operands - This grows the operand list in response /// to a push_back style of operation. This grows the number of ops by 2 times. /// void IndirectBrInst::growOperands() { unsigned e = getNumOperands(); unsigned NumOps = e*2; ReservedSpace = NumOps; Use *NewOps = allocHungoffUses(NumOps); Use *OldOps = OperandList; for (unsigned i = 0; i != e; ++i) NewOps[i] = OldOps[i]; OperandList = NewOps; Use::zap(OldOps, OldOps + e, true); } IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, Instruction *InsertBefore) : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 0, 0, InsertBefore) { init(Address, NumCases); } IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, BasicBlock *InsertAtEnd) : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr, 0, 0, InsertAtEnd) { init(Address, NumCases); } IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, allocHungoffUses(IBI.getNumOperands()), IBI.getNumOperands()) { Use *OL = OperandList, *InOL = IBI.OperandList; for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) OL[i] = InOL[i]; SubclassOptionalData = IBI.SubclassOptionalData; } IndirectBrInst::~IndirectBrInst() { dropHungoffUses(); } /// addDestination - Add a destination. /// void IndirectBrInst::addDestination(BasicBlock *DestBB) { unsigned OpNo = NumOperands; if (OpNo+1 > ReservedSpace) growOperands(); // Get more space! // Initialize some new operands. assert(OpNo < ReservedSpace && "Growing didn't work!"); NumOperands = OpNo+1; OperandList[OpNo] = DestBB; } /// removeDestination - This method removes the specified successor from the /// indirectbr instruction. void IndirectBrInst::removeDestination(unsigned idx) { assert(idx < getNumOperands()-1 && "Successor index out of range!"); unsigned NumOps = getNumOperands(); Use *OL = OperandList; // Replace this value with the last one. OL[idx+1] = OL[NumOps-1]; // Nuke the last value. OL[NumOps-1].set(0); NumOperands = NumOps-1; } BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const { return getSuccessor(idx); } unsigned IndirectBrInst::getNumSuccessorsV() const { return getNumSuccessors(); } void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) { setSuccessor(idx, B); } //===----------------------------------------------------------------------===// // clone_impl() implementations //===----------------------------------------------------------------------===// // Define these methods here so vtables don't get emitted into every translation // unit that uses these classes. GetElementPtrInst *GetElementPtrInst::clone_impl() const { return new (getNumOperands()) GetElementPtrInst(*this); } BinaryOperator *BinaryOperator::clone_impl() const { return Create(getOpcode(), Op<0>(), Op<1>()); } FCmpInst* FCmpInst::clone_impl() const { return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); } ICmpInst* ICmpInst::clone_impl() const { return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); } ExtractValueInst *ExtractValueInst::clone_impl() const { return new ExtractValueInst(*this); } InsertValueInst *InsertValueInst::clone_impl() const { return new InsertValueInst(*this); } AllocaInst *AllocaInst::clone_impl() const { return new AllocaInst(getAllocatedType(), (Value*)getOperand(0), getAlignment()); } LoadInst *LoadInst::clone_impl() const { return new LoadInst(getOperand(0), Twine(), isVolatile(), getAlignment(), getOrdering(), getSynchScope()); } StoreInst *StoreInst::clone_impl() const { return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlignment(), getOrdering(), getSynchScope()); } AtomicCmpXchgInst *AtomicCmpXchgInst::clone_impl() const { AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), getOrdering(), getSynchScope()); Result->setVolatile(isVolatile()); return Result; } AtomicRMWInst *AtomicRMWInst::clone_impl() const { AtomicRMWInst *Result = new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1), getOrdering(), getSynchScope()); Result->setVolatile(isVolatile()); return Result; } FenceInst *FenceInst::clone_impl() const { return new FenceInst(getContext(), getOrdering(), getSynchScope()); } TruncInst *TruncInst::clone_impl() const { return new TruncInst(getOperand(0), getType()); } ZExtInst *ZExtInst::clone_impl() const { return new ZExtInst(getOperand(0), getType()); } SExtInst *SExtInst::clone_impl() const { return new SExtInst(getOperand(0), getType()); } FPTruncInst *FPTruncInst::clone_impl() const { return new FPTruncInst(getOperand(0), getType()); } FPExtInst *FPExtInst::clone_impl() const { return new FPExtInst(getOperand(0), getType()); } UIToFPInst *UIToFPInst::clone_impl() const { return new UIToFPInst(getOperand(0), getType()); } SIToFPInst *SIToFPInst::clone_impl() const { return new SIToFPInst(getOperand(0), getType()); } FPToUIInst *FPToUIInst::clone_impl() const { return new FPToUIInst(getOperand(0), getType()); } FPToSIInst *FPToSIInst::clone_impl() const { return new FPToSIInst(getOperand(0), getType()); } PtrToIntInst *PtrToIntInst::clone_impl() const { return new PtrToIntInst(getOperand(0), getType()); } IntToPtrInst *IntToPtrInst::clone_impl() const { return new IntToPtrInst(getOperand(0), getType()); } BitCastInst *BitCastInst::clone_impl() const { return new BitCastInst(getOperand(0), getType()); } CallInst *CallInst::clone_impl() const { return new(getNumOperands()) CallInst(*this); } SelectInst *SelectInst::clone_impl() const { return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); } VAArgInst *VAArgInst::clone_impl() const { return new VAArgInst(getOperand(0), getType()); } ExtractElementInst *ExtractElementInst::clone_impl() const { return ExtractElementInst::Create(getOperand(0), getOperand(1)); } InsertElementInst *InsertElementInst::clone_impl() const { return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); } ShuffleVectorInst *ShuffleVectorInst::clone_impl() const { return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); } PHINode *PHINode::clone_impl() const { return new PHINode(*this); } LandingPadInst *LandingPadInst::clone_impl() const { return new LandingPadInst(*this); } ReturnInst *ReturnInst::clone_impl() const { return new(getNumOperands()) ReturnInst(*this); } BranchInst *BranchInst::clone_impl() const { return new(getNumOperands()) BranchInst(*this); } SwitchInst *SwitchInst::clone_impl() const { return new SwitchInst(*this); } IndirectBrInst *IndirectBrInst::clone_impl() const { return new IndirectBrInst(*this); } InvokeInst *InvokeInst::clone_impl() const { return new(getNumOperands()) InvokeInst(*this); } ResumeInst *ResumeInst::clone_impl() const { return new(1) ResumeInst(*this); } UnreachableInst *UnreachableInst::clone_impl() const { LLVMContext &Context = getContext(); return new UnreachableInst(Context); }