// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/http/http_stream_parser.h" #include "base/bind.h" #include "base/compiler_specific.h" #include "base/strings/string_util.h" #include "base/values.h" #include "net/base/io_buffer.h" #include "net/base/ip_endpoint.h" #include "net/base/upload_data_stream.h" #include "net/http/http_chunked_decoder.h" #include "net/http/http_request_headers.h" #include "net/http/http_request_info.h" #include "net/http/http_response_headers.h" #include "net/http/http_util.h" #include "net/socket/client_socket_handle.h" #include "net/socket/ssl_client_socket.h" namespace { const size_t kMaxMergedHeaderAndBodySize = 1400; const size_t kRequestBodyBufferSize = 1 << 14; // 16KB std::string GetResponseHeaderLines(const net::HttpResponseHeaders& headers) { std::string raw_headers = headers.raw_headers(); const char* null_separated_headers = raw_headers.c_str(); const char* header_line = null_separated_headers; std::string cr_separated_headers; while (header_line[0] != 0) { cr_separated_headers += header_line; cr_separated_headers += "\n"; header_line += strlen(header_line) + 1; } return cr_separated_headers; } // Return true if |headers| contain multiple |field_name| fields with different // values. bool HeadersContainMultipleCopiesOfField( const net::HttpResponseHeaders& headers, const std::string& field_name) { void* it = NULL; std::string field_value; if (!headers.EnumerateHeader(&it, field_name, &field_value)) return false; // There's at least one |field_name| header. Check if there are any more // such headers, and if so, return true if they have different values. std::string field_value2; while (headers.EnumerateHeader(&it, field_name, &field_value2)) { if (field_value != field_value2) return true; } return false; } base::Value* NetLogSendRequestBodyCallback( int length, bool is_chunked, bool did_merge, net::NetLog::LogLevel /* log_level */) { base::DictionaryValue* dict = new base::DictionaryValue(); dict->SetInteger("length", length); dict->SetBoolean("is_chunked", is_chunked); dict->SetBoolean("did_merge", did_merge); return dict; } } // namespace namespace net { // Similar to DrainableIOBuffer(), but this version comes with its own // storage. The motivation is to avoid repeated allocations of // DrainableIOBuffer. // // Example: // // scoped_refptr<SeekableIOBuffer> buf = new SeekableIOBuffer(1024); // // capacity() == 1024. size() == BytesRemaining() == BytesConsumed() == 0. // // data() points to the beginning of the buffer. // // // Read() takes an IOBuffer. // int bytes_read = some_reader->Read(buf, buf->capacity()); // buf->DidAppend(bytes_read); // // size() == BytesRemaining() == bytes_read. data() is unaffected. // // while (buf->BytesRemaining() > 0) { // // Write() takes an IOBuffer. If it takes const char*, we could /// // simply use the regular IOBuffer like buf->data() + offset. // int bytes_written = Write(buf, buf->BytesRemaining()); // buf->DidConsume(bytes_written); // } // // BytesRemaining() == 0. BytesConsumed() == size(). // // data() points to the end of the consumed bytes (exclusive). // // // If you want to reuse the buffer, be sure to clear the buffer. // buf->Clear(); // // size() == BytesRemaining() == BytesConsumed() == 0. // // data() points to the beginning of the buffer. // class HttpStreamParser::SeekableIOBuffer : public net::IOBuffer { public: explicit SeekableIOBuffer(int capacity) : IOBuffer(capacity), real_data_(data_), capacity_(capacity), size_(0), used_(0) { } // DidConsume() changes the |data_| pointer so that |data_| always points // to the first unconsumed byte. void DidConsume(int bytes) { SetOffset(used_ + bytes); } // Returns the number of unconsumed bytes. int BytesRemaining() const { return size_ - used_; } // Seeks to an arbitrary point in the buffer. The notion of bytes consumed // and remaining are updated appropriately. void SetOffset(int bytes) { DCHECK_GE(bytes, 0); DCHECK_LE(bytes, size_); used_ = bytes; data_ = real_data_ + used_; } // Called after data is added to the buffer. Adds |bytes| added to // |size_|. data() is unaffected. void DidAppend(int bytes) { DCHECK_GE(bytes, 0); DCHECK_GE(size_ + bytes, 0); DCHECK_LE(size_ + bytes, capacity_); size_ += bytes; } // Changes the logical size to 0, and the offset to 0. void Clear() { size_ = 0; SetOffset(0); } // Returns the logical size of the buffer (i.e the number of bytes of data // in the buffer). int size() const { return size_; } // Returns the capacity of the buffer. The capacity is the size used when // the object is created. int capacity() const { return capacity_; }; private: virtual ~SeekableIOBuffer() { // data_ will be deleted in IOBuffer::~IOBuffer(). data_ = real_data_; } char* real_data_; const int capacity_; int size_; int used_; }; // 2 CRLFs + max of 8 hex chars. const size_t HttpStreamParser::kChunkHeaderFooterSize = 12; HttpStreamParser::HttpStreamParser(ClientSocketHandle* connection, const HttpRequestInfo* request, GrowableIOBuffer* read_buffer, const BoundNetLog& net_log) : io_state_(STATE_NONE), request_(request), request_headers_(NULL), read_buf_(read_buffer), read_buf_unused_offset_(0), response_header_start_offset_(-1), received_bytes_(0), response_body_length_(-1), response_body_read_(0), user_read_buf_(NULL), user_read_buf_len_(0), connection_(connection), net_log_(net_log), sent_last_chunk_(false), weak_ptr_factory_(this) { io_callback_ = base::Bind(&HttpStreamParser::OnIOComplete, weak_ptr_factory_.GetWeakPtr()); } HttpStreamParser::~HttpStreamParser() { } int HttpStreamParser::SendRequest(const std::string& request_line, const HttpRequestHeaders& headers, HttpResponseInfo* response, const CompletionCallback& callback) { DCHECK_EQ(STATE_NONE, io_state_); DCHECK(callback_.is_null()); DCHECK(!callback.is_null()); DCHECK(response); net_log_.AddEvent( NetLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST_HEADERS, base::Bind(&HttpRequestHeaders::NetLogCallback, base::Unretained(&headers), &request_line)); DVLOG(1) << __FUNCTION__ << "()" << " request_line = \"" << request_line << "\"" << " headers = \"" << headers.ToString() << "\""; response_ = response; // Put the peer's IP address and port into the response. IPEndPoint ip_endpoint; int result = connection_->socket()->GetPeerAddress(&ip_endpoint); if (result != OK) return result; response_->socket_address = HostPortPair::FromIPEndPoint(ip_endpoint); std::string request = request_line + headers.ToString(); if (request_->upload_data_stream != NULL) { request_body_send_buf_ = new SeekableIOBuffer(kRequestBodyBufferSize); if (request_->upload_data_stream->is_chunked()) { // Read buffer is adjusted to guarantee that |request_body_send_buf_| is // large enough to hold the encoded chunk. request_body_read_buf_ = new SeekableIOBuffer(kRequestBodyBufferSize - kChunkHeaderFooterSize); } else { // No need to encode request body, just send the raw data. request_body_read_buf_ = request_body_send_buf_; } } io_state_ = STATE_SENDING_HEADERS; // If we have a small request body, then we'll merge with the headers into a // single write. bool did_merge = false; if (ShouldMergeRequestHeadersAndBody(request, request_->upload_data_stream)) { size_t merged_size = request.size() + request_->upload_data_stream->size(); scoped_refptr<IOBuffer> merged_request_headers_and_body( new IOBuffer(merged_size)); // We'll repurpose |request_headers_| to store the merged headers and // body. request_headers_ = new DrainableIOBuffer( merged_request_headers_and_body.get(), merged_size); memcpy(request_headers_->data(), request.data(), request.size()); request_headers_->DidConsume(request.size()); size_t todo = request_->upload_data_stream->size(); while (todo) { int consumed = request_->upload_data_stream ->Read(request_headers_.get(), todo, CompletionCallback()); DCHECK_GT(consumed, 0); // Read() won't fail if not chunked. request_headers_->DidConsume(consumed); todo -= consumed; } DCHECK(request_->upload_data_stream->IsEOF()); // Reset the offset, so the buffer can be read from the beginning. request_headers_->SetOffset(0); did_merge = true; net_log_.AddEvent( NetLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST_BODY, base::Bind(&NetLogSendRequestBodyCallback, request_->upload_data_stream->size(), false, /* not chunked */ true /* merged */)); } if (!did_merge) { // If we didn't merge the body with the headers, then |request_headers_| // contains just the HTTP headers. scoped_refptr<StringIOBuffer> headers_io_buf(new StringIOBuffer(request)); request_headers_ = new DrainableIOBuffer(headers_io_buf.get(), headers_io_buf->size()); } result = DoLoop(OK); if (result == ERR_IO_PENDING) callback_ = callback; return result > 0 ? OK : result; } int HttpStreamParser::ReadResponseHeaders(const CompletionCallback& callback) { DCHECK(io_state_ == STATE_REQUEST_SENT || io_state_ == STATE_DONE); DCHECK(callback_.is_null()); DCHECK(!callback.is_null()); DCHECK_EQ(0, read_buf_unused_offset_); // This function can be called with io_state_ == STATE_DONE if the // connection is closed after seeing just a 1xx response code. if (io_state_ == STATE_DONE) return ERR_CONNECTION_CLOSED; int result = OK; io_state_ = STATE_READ_HEADERS; if (read_buf_->offset() > 0) { // Simulate the state where the data was just read from the socket. result = read_buf_->offset(); read_buf_->set_offset(0); } if (result > 0) io_state_ = STATE_READ_HEADERS_COMPLETE; result = DoLoop(result); if (result == ERR_IO_PENDING) callback_ = callback; return result > 0 ? OK : result; } void HttpStreamParser::Close(bool not_reusable) { if (not_reusable && connection_->socket()) connection_->socket()->Disconnect(); connection_->Reset(); } int HttpStreamParser::ReadResponseBody(IOBuffer* buf, int buf_len, const CompletionCallback& callback) { DCHECK(io_state_ == STATE_BODY_PENDING || io_state_ == STATE_DONE); DCHECK(callback_.is_null()); DCHECK(!callback.is_null()); DCHECK_LE(buf_len, kMaxBufSize); if (io_state_ == STATE_DONE) return OK; user_read_buf_ = buf; user_read_buf_len_ = buf_len; io_state_ = STATE_READ_BODY; int result = DoLoop(OK); if (result == ERR_IO_PENDING) callback_ = callback; return result; } void HttpStreamParser::OnIOComplete(int result) { result = DoLoop(result); // The client callback can do anything, including destroying this class, // so any pending callback must be issued after everything else is done. if (result != ERR_IO_PENDING && !callback_.is_null()) { CompletionCallback c = callback_; callback_.Reset(); c.Run(result); } } int HttpStreamParser::DoLoop(int result) { bool can_do_more = true; do { switch (io_state_) { case STATE_SENDING_HEADERS: if (result < 0) can_do_more = false; else result = DoSendHeaders(result); break; case STATE_SENDING_BODY: if (result < 0) can_do_more = false; else result = DoSendBody(result); break; case STATE_SEND_REQUEST_READING_BODY: result = DoSendRequestReadingBody(result); break; case STATE_REQUEST_SENT: DCHECK(result != ERR_IO_PENDING); can_do_more = false; break; case STATE_READ_HEADERS: net_log_.BeginEvent(NetLog::TYPE_HTTP_STREAM_PARSER_READ_HEADERS); result = DoReadHeaders(); break; case STATE_READ_HEADERS_COMPLETE: result = DoReadHeadersComplete(result); net_log_.EndEventWithNetErrorCode( NetLog::TYPE_HTTP_STREAM_PARSER_READ_HEADERS, result); break; case STATE_BODY_PENDING: DCHECK(result != ERR_IO_PENDING); can_do_more = false; break; case STATE_READ_BODY: result = DoReadBody(); // DoReadBodyComplete handles error conditions. break; case STATE_READ_BODY_COMPLETE: result = DoReadBodyComplete(result); break; case STATE_DONE: DCHECK(result != ERR_IO_PENDING); can_do_more = false; break; default: NOTREACHED(); can_do_more = false; break; } } while (result != ERR_IO_PENDING && can_do_more); return result; } int HttpStreamParser::DoSendHeaders(int result) { request_headers_->DidConsume(result); int bytes_remaining = request_headers_->BytesRemaining(); if (bytes_remaining > 0) { // Record our best estimate of the 'request time' as the time when we send // out the first bytes of the request headers. if (bytes_remaining == request_headers_->size()) { response_->request_time = base::Time::Now(); } result = connection_->socket() ->Write(request_headers_.get(), bytes_remaining, io_callback_); } else if (request_->upload_data_stream != NULL && (request_->upload_data_stream->is_chunked() || // !IsEOF() indicates that the body wasn't merged. (request_->upload_data_stream->size() > 0 && !request_->upload_data_stream->IsEOF()))) { net_log_.AddEvent( NetLog::TYPE_HTTP_TRANSACTION_SEND_REQUEST_BODY, base::Bind(&NetLogSendRequestBodyCallback, request_->upload_data_stream->size(), request_->upload_data_stream->is_chunked(), false /* not merged */)); io_state_ = STATE_SENDING_BODY; result = OK; } else { io_state_ = STATE_REQUEST_SENT; } return result; } int HttpStreamParser::DoSendBody(int result) { // |result| is the number of bytes sent from the last call to // DoSendBody(), or 0 (i.e. OK). // Send the remaining data in the request body buffer. request_body_send_buf_->DidConsume(result); if (request_body_send_buf_->BytesRemaining() > 0) { return connection_->socket() ->Write(request_body_send_buf_.get(), request_body_send_buf_->BytesRemaining(), io_callback_); } if (request_->upload_data_stream->is_chunked() && sent_last_chunk_) { io_state_ = STATE_REQUEST_SENT; return OK; } request_body_read_buf_->Clear(); io_state_ = STATE_SEND_REQUEST_READING_BODY; return request_->upload_data_stream->Read(request_body_read_buf_.get(), request_body_read_buf_->capacity(), io_callback_); } int HttpStreamParser::DoSendRequestReadingBody(int result) { // |result| is the result of read from the request body from the last call to // DoSendBody(). DCHECK_GE(result, 0); // There won't be errors. // Chunked data needs to be encoded. if (request_->upload_data_stream->is_chunked()) { if (result == 0) { // Reached the end. DCHECK(request_->upload_data_stream->IsEOF()); sent_last_chunk_ = true; } // Encode the buffer as 1 chunk. const base::StringPiece payload(request_body_read_buf_->data(), result); request_body_send_buf_->Clear(); result = EncodeChunk(payload, request_body_send_buf_->data(), request_body_send_buf_->capacity()); } if (result == 0) { // Reached the end. // Reaching EOF means we can finish sending request body unless the data is // chunked. (i.e. No need to send the terminal chunk.) DCHECK(request_->upload_data_stream->IsEOF()); DCHECK(!request_->upload_data_stream->is_chunked()); io_state_ = STATE_REQUEST_SENT; } else if (result > 0) { request_body_send_buf_->DidAppend(result); result = 0; io_state_ = STATE_SENDING_BODY; } return result; } int HttpStreamParser::DoReadHeaders() { io_state_ = STATE_READ_HEADERS_COMPLETE; // Grow the read buffer if necessary. if (read_buf_->RemainingCapacity() == 0) read_buf_->SetCapacity(read_buf_->capacity() + kHeaderBufInitialSize); // http://crbug.com/16371: We're seeing |user_buf_->data()| return NULL. // See if the user is passing in an IOBuffer with a NULL |data_|. CHECK(read_buf_->data()); return connection_->socket() ->Read(read_buf_.get(), read_buf_->RemainingCapacity(), io_callback_); } int HttpStreamParser::DoReadHeadersComplete(int result) { DCHECK_EQ(0, read_buf_unused_offset_); if (result == 0) result = ERR_CONNECTION_CLOSED; if (result < 0 && result != ERR_CONNECTION_CLOSED) { io_state_ = STATE_DONE; return result; } // If we've used the connection before, then we know it is not a HTTP/0.9 // response and return ERR_CONNECTION_CLOSED. if (result == ERR_CONNECTION_CLOSED && read_buf_->offset() == 0 && connection_->is_reused()) { io_state_ = STATE_DONE; return result; } // Record our best estimate of the 'response time' as the time when we read // the first bytes of the response headers. if (read_buf_->offset() == 0 && result != ERR_CONNECTION_CLOSED) response_->response_time = base::Time::Now(); if (result == ERR_CONNECTION_CLOSED) { // The connection closed before we detected the end of the headers. if (read_buf_->offset() == 0) { // The connection was closed before any data was sent. Likely an error // rather than empty HTTP/0.9 response. io_state_ = STATE_DONE; return ERR_EMPTY_RESPONSE; } else if (request_->url.SchemeIsSecure()) { // The connection was closed in the middle of the headers. For HTTPS we // don't parse partial headers. Return a different error code so that we // know that we shouldn't attempt to retry the request. io_state_ = STATE_DONE; return ERR_RESPONSE_HEADERS_TRUNCATED; } // Parse things as well as we can and let the caller decide what to do. int end_offset; if (response_header_start_offset_ >= 0) { io_state_ = STATE_READ_BODY_COMPLETE; end_offset = read_buf_->offset(); } else { io_state_ = STATE_BODY_PENDING; end_offset = 0; } int rv = DoParseResponseHeaders(end_offset); if (rv < 0) return rv; return result; } read_buf_->set_offset(read_buf_->offset() + result); DCHECK_LE(read_buf_->offset(), read_buf_->capacity()); DCHECK_GE(result, 0); int end_of_header_offset = ParseResponseHeaders(); // Note: -1 is special, it indicates we haven't found the end of headers. // Anything less than -1 is a net::Error, so we bail out. if (end_of_header_offset < -1) return end_of_header_offset; if (end_of_header_offset == -1) { io_state_ = STATE_READ_HEADERS; // Prevent growing the headers buffer indefinitely. if (read_buf_->offset() >= kMaxHeaderBufSize) { io_state_ = STATE_DONE; return ERR_RESPONSE_HEADERS_TOO_BIG; } } else { CalculateResponseBodySize(); // If the body is zero length, the caller may not call ReadResponseBody, // which is where any extra data is copied to read_buf_, so we move the // data here. if (response_body_length_ == 0) { int extra_bytes = read_buf_->offset() - end_of_header_offset; if (extra_bytes) { CHECK_GT(extra_bytes, 0); memmove(read_buf_->StartOfBuffer(), read_buf_->StartOfBuffer() + end_of_header_offset, extra_bytes); } read_buf_->SetCapacity(extra_bytes); if (response_->headers->response_code() / 100 == 1) { // After processing a 1xx response, the caller will ask for the next // header, so reset state to support that. We don't completely ignore a // 1xx response because it cannot be returned in reply to a CONNECT // request so we return OK here, which lets the caller inspect the // response and reject it in the event that we're setting up a CONNECT // tunnel. response_header_start_offset_ = -1; response_body_length_ = -1; io_state_ = STATE_REQUEST_SENT; } else { io_state_ = STATE_DONE; } return OK; } // Note where the headers stop. read_buf_unused_offset_ = end_of_header_offset; io_state_ = STATE_BODY_PENDING; } return result; } int HttpStreamParser::DoReadBody() { io_state_ = STATE_READ_BODY_COMPLETE; // There may be some data left over from reading the response headers. if (read_buf_->offset()) { int available = read_buf_->offset() - read_buf_unused_offset_; if (available) { CHECK_GT(available, 0); int bytes_from_buffer = std::min(available, user_read_buf_len_); memcpy(user_read_buf_->data(), read_buf_->StartOfBuffer() + read_buf_unused_offset_, bytes_from_buffer); read_buf_unused_offset_ += bytes_from_buffer; if (bytes_from_buffer == available) { read_buf_->SetCapacity(0); read_buf_unused_offset_ = 0; } return bytes_from_buffer; } else { read_buf_->SetCapacity(0); read_buf_unused_offset_ = 0; } } // Check to see if we're done reading. if (IsResponseBodyComplete()) return 0; DCHECK_EQ(0, read_buf_->offset()); return connection_->socket() ->Read(user_read_buf_.get(), user_read_buf_len_, io_callback_); } int HttpStreamParser::DoReadBodyComplete(int result) { // When the connection is closed, there are numerous ways to interpret it. // // - If a Content-Length header is present and the body contains exactly that // number of bytes at connection close, the response is successful. // // - If a Content-Length header is present and the body contains fewer bytes // than promised by the header at connection close, it may indicate that // the connection was closed prematurely, or it may indicate that the // server sent an invalid Content-Length header. Unfortunately, the invalid // Content-Length header case does occur in practice and other browsers are // tolerant of it. We choose to treat it as an error for now, but the // download system treats it as a non-error, and URLRequestHttpJob also // treats it as OK if the Content-Length is the post-decoded body content // length. // // - If chunked encoding is used and the terminating chunk has been processed // when the connection is closed, the response is successful. // // - If chunked encoding is used and the terminating chunk has not been // processed when the connection is closed, it may indicate that the // connection was closed prematurely or it may indicate that the server // sent an invalid chunked encoding. We choose to treat it as // an invalid chunked encoding. // // - If a Content-Length is not present and chunked encoding is not used, // connection close is the only way to signal that the response is // complete. Unfortunately, this also means that there is no way to detect // early close of a connection. No error is returned. if (result == 0 && !IsResponseBodyComplete() && CanFindEndOfResponse()) { if (chunked_decoder_.get()) result = ERR_INCOMPLETE_CHUNKED_ENCODING; else result = ERR_CONTENT_LENGTH_MISMATCH; } if (result > 0) received_bytes_ += result; // Filter incoming data if appropriate. FilterBuf may return an error. if (result > 0 && chunked_decoder_.get()) { result = chunked_decoder_->FilterBuf(user_read_buf_->data(), result); if (result == 0 && !chunked_decoder_->reached_eof()) { // Don't signal completion of the Read call yet or else it'll look like // we received end-of-file. Wait for more data. io_state_ = STATE_READ_BODY; return OK; } } if (result > 0) response_body_read_ += result; if (result <= 0 || IsResponseBodyComplete()) { io_state_ = STATE_DONE; // Save the overflow data, which can be in two places. There may be // some left over in |user_read_buf_|, plus there may be more // in |read_buf_|. But the part left over in |user_read_buf_| must have // come from the |read_buf_|, so there's room to put it back at the // start first. int additional_save_amount = read_buf_->offset() - read_buf_unused_offset_; int save_amount = 0; if (chunked_decoder_.get()) { save_amount = chunked_decoder_->bytes_after_eof(); } else if (response_body_length_ >= 0) { int64 extra_data_read = response_body_read_ - response_body_length_; if (extra_data_read > 0) { save_amount = static_cast<int>(extra_data_read); if (result > 0) result -= save_amount; } } CHECK_LE(save_amount + additional_save_amount, kMaxBufSize); if (read_buf_->capacity() < save_amount + additional_save_amount) { read_buf_->SetCapacity(save_amount + additional_save_amount); } if (save_amount) { received_bytes_ -= save_amount; memcpy(read_buf_->StartOfBuffer(), user_read_buf_->data() + result, save_amount); } read_buf_->set_offset(save_amount); if (additional_save_amount) { memmove(read_buf_->data(), read_buf_->StartOfBuffer() + read_buf_unused_offset_, additional_save_amount); read_buf_->set_offset(save_amount + additional_save_amount); } read_buf_unused_offset_ = 0; } else { io_state_ = STATE_BODY_PENDING; user_read_buf_ = NULL; user_read_buf_len_ = 0; } return result; } int HttpStreamParser::ParseResponseHeaders() { int end_offset = -1; DCHECK_EQ(0, read_buf_unused_offset_); // Look for the start of the status line, if it hasn't been found yet. if (response_header_start_offset_ < 0) { response_header_start_offset_ = HttpUtil::LocateStartOfStatusLine( read_buf_->StartOfBuffer(), read_buf_->offset()); } if (response_header_start_offset_ >= 0) { end_offset = HttpUtil::LocateEndOfHeaders(read_buf_->StartOfBuffer(), read_buf_->offset(), response_header_start_offset_); } else if (read_buf_->offset() >= 8) { // Enough data to decide that this is an HTTP/0.9 response. // 8 bytes = (4 bytes of junk) + "http".length() end_offset = 0; } if (end_offset == -1) return -1; int rv = DoParseResponseHeaders(end_offset); if (rv < 0) return rv; return end_offset; } int HttpStreamParser::DoParseResponseHeaders(int end_offset) { scoped_refptr<HttpResponseHeaders> headers; DCHECK_EQ(0, read_buf_unused_offset_); if (response_header_start_offset_ >= 0) { received_bytes_ += end_offset; headers = new HttpResponseHeaders(HttpUtil::AssembleRawHeaders( read_buf_->StartOfBuffer(), end_offset)); } else { // Enough data was read -- there is no status line. headers = new HttpResponseHeaders(std::string("HTTP/0.9 200 OK")); } // Check for multiple Content-Length headers with no Transfer-Encoding header. // If they exist, and have distinct values, it's a potential response // smuggling attack. if (!headers->HasHeader("Transfer-Encoding")) { if (HeadersContainMultipleCopiesOfField(*headers.get(), "Content-Length")) return ERR_RESPONSE_HEADERS_MULTIPLE_CONTENT_LENGTH; } // Check for multiple Content-Disposition or Location headers. If they exist, // it's also a potential response smuggling attack. if (HeadersContainMultipleCopiesOfField(*headers.get(), "Content-Disposition")) return ERR_RESPONSE_HEADERS_MULTIPLE_CONTENT_DISPOSITION; if (HeadersContainMultipleCopiesOfField(*headers.get(), "Location")) return ERR_RESPONSE_HEADERS_MULTIPLE_LOCATION; response_->headers = headers; response_->connection_info = HttpResponseInfo::CONNECTION_INFO_HTTP1; response_->vary_data.Init(*request_, *response_->headers.get()); DVLOG(1) << __FUNCTION__ << "()" << " content_length = \"" << response_->headers->GetContentLength() << "\n\"" << " headers = \"" << GetResponseHeaderLines(*response_->headers.get()) << "\""; return OK; } void HttpStreamParser::CalculateResponseBodySize() { // Figure how to determine EOF: // For certain responses, we know the content length is always 0. From // RFC 2616 Section 4.3 Message Body: // // For response messages, whether or not a message-body is included with // a message is dependent on both the request method and the response // status code (section 6.1.1). All responses to the HEAD request method // MUST NOT include a message-body, even though the presence of entity- // header fields might lead one to believe they do. All 1xx // (informational), 204 (no content), and 304 (not modified) responses // MUST NOT include a message-body. All other responses do include a // message-body, although it MAY be of zero length. if (response_->headers->response_code() / 100 == 1) { response_body_length_ = 0; } else { switch (response_->headers->response_code()) { case 204: // No Content case 205: // Reset Content case 304: // Not Modified response_body_length_ = 0; break; } } if (request_->method == "HEAD") response_body_length_ = 0; if (response_body_length_ == -1) { // "Transfer-Encoding: chunked" trumps "Content-Length: N" if (response_->headers->IsChunkEncoded()) { chunked_decoder_.reset(new HttpChunkedDecoder()); } else { response_body_length_ = response_->headers->GetContentLength(); // If response_body_length_ is still -1, then we have to wait // for the server to close the connection. } } } UploadProgress HttpStreamParser::GetUploadProgress() const { if (!request_->upload_data_stream) return UploadProgress(); return UploadProgress(request_->upload_data_stream->position(), request_->upload_data_stream->size()); } HttpResponseInfo* HttpStreamParser::GetResponseInfo() { return response_; } bool HttpStreamParser::IsResponseBodyComplete() const { if (chunked_decoder_.get()) return chunked_decoder_->reached_eof(); if (response_body_length_ != -1) return response_body_read_ >= response_body_length_; return false; // Must read to EOF. } bool HttpStreamParser::CanFindEndOfResponse() const { return chunked_decoder_.get() || response_body_length_ >= 0; } bool HttpStreamParser::IsMoreDataBuffered() const { return read_buf_->offset() > read_buf_unused_offset_; } bool HttpStreamParser::IsConnectionReused() const { ClientSocketHandle::SocketReuseType reuse_type = connection_->reuse_type(); return connection_->is_reused() || reuse_type == ClientSocketHandle::UNUSED_IDLE; } void HttpStreamParser::SetConnectionReused() { connection_->set_is_reused(true); } bool HttpStreamParser::IsConnectionReusable() const { return connection_->socket() && connection_->socket()->IsConnectedAndIdle(); } void HttpStreamParser::GetSSLInfo(SSLInfo* ssl_info) { if (request_->url.SchemeIsSecure() && connection_->socket()) { SSLClientSocket* ssl_socket = static_cast<SSLClientSocket*>(connection_->socket()); ssl_socket->GetSSLInfo(ssl_info); } } void HttpStreamParser::GetSSLCertRequestInfo( SSLCertRequestInfo* cert_request_info) { if (request_->url.SchemeIsSecure() && connection_->socket()) { SSLClientSocket* ssl_socket = static_cast<SSLClientSocket*>(connection_->socket()); ssl_socket->GetSSLCertRequestInfo(cert_request_info); } } int HttpStreamParser::EncodeChunk(const base::StringPiece& payload, char* output, size_t output_size) { if (output_size < payload.size() + kChunkHeaderFooterSize) return ERR_INVALID_ARGUMENT; char* cursor = output; // Add the header. const int num_chars = base::snprintf(output, output_size, "%X\r\n", static_cast<int>(payload.size())); cursor += num_chars; // Add the payload if any. if (payload.size() > 0) { memcpy(cursor, payload.data(), payload.size()); cursor += payload.size(); } // Add the trailing CRLF. memcpy(cursor, "\r\n", 2); cursor += 2; return cursor - output; } // static bool HttpStreamParser::ShouldMergeRequestHeadersAndBody( const std::string& request_headers, const UploadDataStream* request_body) { if (request_body != NULL && // IsInMemory() ensures that the request body is not chunked. request_body->IsInMemory() && request_body->size() > 0) { size_t merged_size = request_headers.size() + request_body->size(); if (merged_size <= kMaxMergedHeaderAndBodySize) return true; } return false; } } // namespace net