// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "content/renderer/webcrypto/webcrypto_impl.h" #include <algorithm> #include <string> #include <vector> #include "base/basictypes.h" #include "base/json/json_writer.h" #include "base/logging.h" #include "base/memory/ref_counted.h" #include "base/strings/string_number_conversions.h" #include "content/public/renderer/content_renderer_client.h" #include "content/renderer/renderer_webkitplatformsupport_impl.h" #include "content/renderer/webcrypto/webcrypto_util.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/WebKit/public/platform/WebArrayBuffer.h" #include "third_party/WebKit/public/platform/WebCryptoAlgorithm.h" #include "third_party/WebKit/public/platform/WebCryptoAlgorithmParams.h" #include "third_party/WebKit/public/platform/WebCryptoKey.h" namespace content { namespace { std::vector<uint8> HexStringToBytes(const std::string& hex) { std::vector<uint8> bytes; base::HexStringToBytes(hex, &bytes); return bytes; } void ExpectArrayBufferMatchesHex(const std::string& expected_hex, const blink::WebArrayBuffer& array_buffer) { EXPECT_STRCASEEQ( expected_hex.c_str(), base::HexEncode(array_buffer.data(), array_buffer.byteLength()).c_str()); } std::vector<uint8> MakeJsonVector(const std::string& json_string) { return std::vector<uint8>(json_string.begin(), json_string.end()); } std::vector<uint8> MakeJsonVector(const base::DictionaryValue& dict) { std::string json; base::JSONWriter::Write(&dict, &json); return MakeJsonVector(json); } // Helper for ImportJwkFailures and ImportJwkOctFailures. Restores the JWK JSON // dictionary to a good state void RestoreJwkOctDictionary(base::DictionaryValue* dict) { dict->Clear(); dict->SetString("kty", "oct"); dict->SetString("alg", "A128CBC"); dict->SetString("use", "enc"); dict->SetBoolean("extractable", false); dict->SetString("k", "GADWrMRHwQfoNaXU5fZvTg=="); } #if !defined(USE_OPENSSL) // Helper for ImportJwkRsaFailures. Restores the JWK JSON // dictionary to a good state void RestoreJwkRsaDictionary(base::DictionaryValue* dict) { dict->Clear(); dict->SetString("kty", "RSA"); dict->SetString("alg", "RSA1_5"); dict->SetString("use", "enc"); dict->SetBoolean("extractable", false); dict->SetString("n", "qLOyhK-OtQs4cDSoYPFGxJGfMYdjzWxVmMiuSBGh4KvEx-CwgtaTpef87Wdc9GaFEncsDLxk" "p0LGxjD1M8jMcvYq6DPEC_JYQumEu3i9v5fAEH1VvbZi9cTg-rmEXLUUjvc5LdOq_5OuHmtm" "e7PUJHYW1PW6ENTP0ibeiNOfFvs"); dict->SetString("e", "AQAB"); } blink::WebCryptoAlgorithm CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmId algorithm_id, unsigned modulus_length, const std::vector<uint8>& public_exponent) { DCHECK(algorithm_id == blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5 || algorithm_id == blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 || algorithm_id == blink::WebCryptoAlgorithmIdRsaOaep); return blink::WebCryptoAlgorithm::adoptParamsAndCreate( algorithm_id, new blink::WebCryptoRsaKeyGenParams( modulus_length, webcrypto::Uint8VectorStart(public_exponent), public_exponent.size())); } // Determines if two ArrayBuffers have identical content. bool ArrayBuffersEqual( const blink::WebArrayBuffer& a, const blink::WebArrayBuffer& b) { return a.byteLength() == b.byteLength() && memcmp(a.data(), b.data(), a.byteLength()) == 0; } // Given a vector of WebArrayBuffers, determines if there are any copies. bool CopiesExist(std::vector<blink::WebArrayBuffer> bufs) { for (size_t i = 0; i < bufs.size(); ++i) { for (size_t j = i + 1; j < bufs.size(); ++j) { if (ArrayBuffersEqual(bufs[i], bufs[j])) return true; } } return false; } #endif // #if !defined(USE_OPENSSL) } // namespace class WebCryptoImplTest : public testing::Test { protected: blink::WebCryptoKey ImportSecretKeyFromRawHexString( const std::string& key_hex, const blink::WebCryptoAlgorithm& algorithm, blink::WebCryptoKeyUsageMask usage) { std::vector<uint8> key_raw = HexStringToBytes(key_hex); blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); bool extractable = true; EXPECT_TRUE(crypto_.ImportKeyInternal(blink::WebCryptoKeyFormatRaw, webcrypto::Uint8VectorStart(key_raw), key_raw.size(), algorithm, extractable, usage, &key)); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_FALSE(key.isNull()); EXPECT_TRUE(key.handle()); return key; } // Forwarding methods to gain access to protected methods of // WebCryptoImpl. bool DigestInternal( const blink::WebCryptoAlgorithm& algorithm, const std::vector<uint8>& data, blink::WebArrayBuffer* buffer) { return crypto_.DigestInternal( algorithm, webcrypto::Uint8VectorStart(data), data.size(), buffer); } bool GenerateKeyInternal( const blink::WebCryptoAlgorithm& algorithm, blink::WebCryptoKey* key) { bool extractable = true; blink::WebCryptoKeyUsageMask usage_mask = 0; return crypto_.GenerateKeyInternal(algorithm, extractable, usage_mask, key); } bool GenerateKeyPairInternal( const blink::WebCryptoAlgorithm& algorithm, bool extractable, blink::WebCryptoKeyUsageMask usage_mask, blink::WebCryptoKey* public_key, blink::WebCryptoKey* private_key) { return crypto_.GenerateKeyPairInternal( algorithm, extractable, usage_mask, public_key, private_key); } bool ImportKeyInternal( blink::WebCryptoKeyFormat format, const std::vector<uint8>& key_data, const blink::WebCryptoAlgorithm& algorithm, bool extractable, blink::WebCryptoKeyUsageMask usage_mask, blink::WebCryptoKey* key) { return crypto_.ImportKeyInternal(format, webcrypto::Uint8VectorStart(key_data), key_data.size(), algorithm, extractable, usage_mask, key); } bool ExportKeyInternal( blink::WebCryptoKeyFormat format, const blink::WebCryptoKey& key, blink::WebArrayBuffer* buffer) { return crypto_.ExportKeyInternal(format, key, buffer); } bool SignInternal( const blink::WebCryptoAlgorithm& algorithm, const blink::WebCryptoKey& key, const std::vector<uint8>& data, blink::WebArrayBuffer* buffer) { return crypto_.SignInternal( algorithm, key, webcrypto::Uint8VectorStart(data), data.size(), buffer); } bool VerifySignatureInternal( const blink::WebCryptoAlgorithm& algorithm, const blink::WebCryptoKey& key, const unsigned char* signature, unsigned signature_size, const std::vector<uint8>& data, bool* signature_match) { return crypto_.VerifySignatureInternal(algorithm, key, signature, signature_size, webcrypto::Uint8VectorStart(data), data.size(), signature_match); } bool EncryptInternal( const blink::WebCryptoAlgorithm& algorithm, const blink::WebCryptoKey& key, const unsigned char* data, unsigned data_size, blink::WebArrayBuffer* buffer) { return crypto_.EncryptInternal(algorithm, key, data, data_size, buffer); } bool EncryptInternal( const blink::WebCryptoAlgorithm& algorithm, const blink::WebCryptoKey& key, const std::vector<uint8>& data, blink::WebArrayBuffer* buffer) { return crypto_.EncryptInternal( algorithm, key, webcrypto::Uint8VectorStart(data), data.size(), buffer); } bool DecryptInternal( const blink::WebCryptoAlgorithm& algorithm, const blink::WebCryptoKey& key, const unsigned char* data, unsigned data_size, blink::WebArrayBuffer* buffer) { return crypto_.DecryptInternal(algorithm, key, data, data_size, buffer); } bool DecryptInternal( const blink::WebCryptoAlgorithm& algorithm, const blink::WebCryptoKey& key, const std::vector<uint8>& data, blink::WebArrayBuffer* buffer) { return crypto_.DecryptInternal( algorithm, key, webcrypto::Uint8VectorStart(data), data.size(), buffer); } bool ImportKeyJwk( const std::vector<uint8>& key_data, const blink::WebCryptoAlgorithm& algorithm, bool extractable, blink::WebCryptoKeyUsageMask usage_mask, blink::WebCryptoKey* key) { return crypto_.ImportKeyJwk(webcrypto::Uint8VectorStart(key_data), key_data.size(), algorithm, extractable, usage_mask, key); } private: WebCryptoImpl crypto_; }; TEST_F(WebCryptoImplTest, DigestSampleSets) { // The results are stored here in hex format for readability. // // TODO(bryaneyler): Eventually, all these sample test sets should be replaced // with the sets here: http://csrc.nist.gov/groups/STM/cavp/index.html#03 // // Results were generated using the command sha{1,224,256,384,512}sum. struct TestCase { blink::WebCryptoAlgorithmId algorithm; const std::string hex_input; const char* hex_result; }; const TestCase kTests[] = { { blink::WebCryptoAlgorithmIdSha1, "", "da39a3ee5e6b4b0d3255bfef95601890afd80709" }, { blink::WebCryptoAlgorithmIdSha224, "", "d14a028c2a3a2bc9476102bb288234c415a2b01f828ea62ac5b3e42f" }, { blink::WebCryptoAlgorithmIdSha256, "", "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" }, { blink::WebCryptoAlgorithmIdSha384, "", "38b060a751ac96384cd9327eb1b1e36a21fdb71114be07434c0cc7bf63f6e1da274e" "debfe76f65fbd51ad2f14898b95b" }, { blink::WebCryptoAlgorithmIdSha512, "", "cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0" "d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e", }, { blink::WebCryptoAlgorithmIdSha1, "00", "5ba93c9db0cff93f52b521d7420e43f6eda2784f", }, { blink::WebCryptoAlgorithmIdSha224, "00", "fff9292b4201617bdc4d3053fce02734166a683d7d858a7f5f59b073", }, { blink::WebCryptoAlgorithmIdSha256, "00", "6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d", }, { blink::WebCryptoAlgorithmIdSha384, "00", "bec021b4f368e3069134e012c2b4307083d3a9bdd206e24e5f0d86e13d6636655933" "ec2b413465966817a9c208a11717", }, { blink::WebCryptoAlgorithmIdSha512, "00", "b8244d028981d693af7b456af8efa4cad63d282e19ff14942c246e50d9351d22704a" "802a71c3580b6370de4ceb293c324a8423342557d4e5c38438f0e36910ee", }, { blink::WebCryptoAlgorithmIdSha1, "000102030405", "868460d98d09d8bbb93d7b6cdd15cc7fbec676b9", }, { blink::WebCryptoAlgorithmIdSha224, "000102030405", "7d92e7f1cad1818ed1d13ab41f04ebabfe1fef6bb4cbeebac34c29bc", }, { blink::WebCryptoAlgorithmIdSha256, "000102030405", "17e88db187afd62c16e5debf3e6527cd006bc012bc90b51a810cd80c2d511f43", }, { blink::WebCryptoAlgorithmIdSha384, "000102030405", "79f4738706fce9650ac60266675c3cd07298b09923850d525604d040e6e448adc7dc" "22780d7e1b95bfeaa86a678e4552", }, { blink::WebCryptoAlgorithmIdSha512, "000102030405", "2f3831bccc94cf061bcfa5f8c23c1429d26e3bc6b76edad93d9025cb91c903af6cf9" "c935dc37193c04c2c66e7d9de17c358284418218afea2160147aaa912f4c", }, }; for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests); ++test_index) { SCOPED_TRACE(test_index); const TestCase& test = kTests[test_index]; blink::WebCryptoAlgorithm algorithm = webcrypto::CreateAlgorithm(test.algorithm); std::vector<uint8> input = HexStringToBytes(test.hex_input); blink::WebArrayBuffer output; ASSERT_TRUE(DigestInternal(algorithm, input, &output)); ExpectArrayBufferMatchesHex(test.hex_result, output); } } TEST_F(WebCryptoImplTest, HMACSampleSets) { struct TestCase { blink::WebCryptoAlgorithmId algorithm; const char* key; const char* message; const char* mac; }; const TestCase kTests[] = { // Empty sets. Result generated via OpenSSL commandline tool. These // particular results are also posted on the Wikipedia page examples: // http://en.wikipedia.org/wiki/Hash-based_message_authentication_code { blink::WebCryptoAlgorithmIdSha1, "", "", // openssl dgst -sha1 -hmac "" < /dev/null "fbdb1d1b18aa6c08324b7d64b71fb76370690e1d", }, { blink::WebCryptoAlgorithmIdSha256, "", "", // openssl dgst -sha256 -hmac "" < /dev/null "b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad", }, // For this data, see http://csrc.nist.gov/groups/STM/cavp/index.html#07 // Download: // http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmactestvectors.zip // L=20 set 45 { blink::WebCryptoAlgorithmIdSha1, // key "59785928d72516e31272", // message "a3ce8899df1022e8d2d539b47bf0e309c66f84095e21438ec355bf119ce5fdcb4e73a6" "19cdf36f25b369d8c38ff419997f0c59830108223606e31223483fd39edeaa4d3f0d21" "198862d239c9fd26074130ff6c86493f5227ab895c8f244bd42c7afce5d147a20a5907" "98c68e708e964902d124dadecdbda9dbd0051ed710e9bf", // mac "3c8162589aafaee024fc9a5ca50dd2336fe3eb28", }, // L=20 set 299 { blink::WebCryptoAlgorithmIdSha1, // key "ceb9aedf8d6efcf0ae52bea0fa99a9e26ae81bacea0cff4d5eecf201e3bca3c3577480" "621b818fd717ba99d6ff958ea3d59b2527b019c343bb199e648090225867d994607962" "f5866aa62930d75b58f6", // message "99958aa459604657c7bf6e4cdfcc8785f0abf06ffe636b5b64ecd931bd8a4563055924" "21fc28dbcccb8a82acea2be8e54161d7a78e0399a6067ebaca3f2510274dc9f92f2c8a" "e4265eec13d7d42e9f8612d7bc258f913ecb5a3a5c610339b49fb90e9037b02d684fc6" "0da835657cb24eab352750c8b463b1a8494660d36c3ab2", // mac "4ac41ab89f625c60125ed65ffa958c6b490ea670", }, // L=32, set 30 { blink::WebCryptoAlgorithmIdSha256, // key "9779d9120642797f1747025d5b22b7ac607cab08e1758f2f3a46c8be1e25c53b8c6a8f" "58ffefa176", // message "b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a" "92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92" "d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f" "22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e", // mac "769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b", }, // L=32, set 224 { blink::WebCryptoAlgorithmIdSha256, // key "4b7ab133efe99e02fc89a28409ee187d579e774f4cba6fc223e13504e3511bef8d4f63" "8b9aca55d4a43b8fbd64cf9d74dcc8c9e8d52034898c70264ea911a3fd70813fa73b08" "3371289b", // message "138efc832c64513d11b9873c6fd4d8a65dbf367092a826ddd587d141b401580b798c69" "025ad510cff05fcfbceb6cf0bb03201aaa32e423d5200925bddfadd418d8e30e18050e" "b4f0618eb9959d9f78c1157d4b3e02cd5961f138afd57459939917d9144c95d8e6a94c" "8f6d4eef3418c17b1ef0b46c2a7188305d9811dccb3d99", // mac "4f1ee7cb36c58803a8721d4ac8c4cf8cae5d8832392eed2a96dc59694252801b", }, }; for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests); ++test_index) { SCOPED_TRACE(test_index); const TestCase& test = kTests[test_index]; blink::WebCryptoAlgorithm algorithm = webcrypto::CreateHmacAlgorithmByHashId(test.algorithm); blink::WebCryptoKey key = ImportSecretKeyFromRawHexString( test.key, algorithm, blink::WebCryptoKeyUsageSign); // Verify exported raw key is identical to the imported data blink::WebArrayBuffer raw_key; EXPECT_TRUE(ExportKeyInternal(blink::WebCryptoKeyFormatRaw, key, &raw_key)); ExpectArrayBufferMatchesHex(test.key, raw_key); std::vector<uint8> message_raw = HexStringToBytes(test.message); blink::WebArrayBuffer output; ASSERT_TRUE(SignInternal(algorithm, key, message_raw, &output)); ExpectArrayBufferMatchesHex(test.mac, output); bool signature_match = false; EXPECT_TRUE(VerifySignatureInternal( algorithm, key, static_cast<const unsigned char*>(output.data()), output.byteLength(), message_raw, &signature_match)); EXPECT_TRUE(signature_match); // Ensure truncated signature does not verify by passing one less byte. EXPECT_TRUE(VerifySignatureInternal( algorithm, key, static_cast<const unsigned char*>(output.data()), output.byteLength() - 1, message_raw, &signature_match)); EXPECT_FALSE(signature_match); // Ensure extra long signature does not cause issues and fails. const unsigned char kLongSignature[1024] = { 0 }; EXPECT_TRUE(VerifySignatureInternal( algorithm, key, kLongSignature, sizeof(kLongSignature), message_raw, &signature_match)); EXPECT_FALSE(signature_match); } } #if !defined(USE_OPENSSL) TEST_F(WebCryptoImplTest, AesCbcFailures) { const std::string key_hex = "2b7e151628aed2a6abf7158809cf4f3c"; blink::WebCryptoKey key = ImportSecretKeyFromRawHexString( key_hex, webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc), blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt); // Verify exported raw key is identical to the imported data blink::WebArrayBuffer raw_key; EXPECT_TRUE(ExportKeyInternal(blink::WebCryptoKeyFormatRaw, key, &raw_key)); ExpectArrayBufferMatchesHex(key_hex, raw_key); blink::WebArrayBuffer output; // Use an invalid |iv| (fewer than 16 bytes) { std::vector<uint8> input(32); std::vector<uint8> iv; EXPECT_FALSE(EncryptInternal( webcrypto::CreateAesCbcAlgorithm(iv), key, input, &output)); EXPECT_FALSE(DecryptInternal( webcrypto::CreateAesCbcAlgorithm(iv), key, input, &output)); } // Use an invalid |iv| (more than 16 bytes) { std::vector<uint8> input(32); std::vector<uint8> iv(17); EXPECT_FALSE(EncryptInternal( webcrypto::CreateAesCbcAlgorithm(iv), key, input, &output)); EXPECT_FALSE(DecryptInternal( webcrypto::CreateAesCbcAlgorithm(iv), key, input, &output)); } // Give an input that is too large (would cause integer overflow when // narrowing to an int). { std::vector<uint8> iv(16); // Pretend the input is large. Don't pass data pointer as NULL in case that // is special cased; the implementation shouldn't actually dereference the // data. const unsigned char* input = &iv[0]; unsigned input_len = INT_MAX - 3; EXPECT_FALSE(EncryptInternal( webcrypto::CreateAesCbcAlgorithm(iv), key, input, input_len, &output)); EXPECT_FALSE(DecryptInternal( webcrypto::CreateAesCbcAlgorithm(iv), key, input, input_len, &output)); } // Fail importing the key (too few bytes specified) { std::vector<uint8> key_raw(1); std::vector<uint8> iv(16); blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); EXPECT_FALSE(ImportKeyInternal(blink::WebCryptoKeyFormatRaw, key_raw, webcrypto::CreateAesCbcAlgorithm(iv), true, blink::WebCryptoKeyUsageEncrypt, &key)); } // Fail exporting the key in SPKI and PKCS#8 formats (not allowed for secret // keys). EXPECT_FALSE(ExportKeyInternal(blink::WebCryptoKeyFormatSpki, key, &output)); EXPECT_FALSE(ExportKeyInternal(blink::WebCryptoKeyFormatPkcs8, key, &output)); } TEST_F(WebCryptoImplTest, AesCbcSampleSets) { struct TestCase { const char* key; const char* iv; const char* plain_text; const char* cipher_text; }; TestCase kTests[] = { // F.2.1 (CBC-AES128.Encrypt) // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf { // key "2b7e151628aed2a6abf7158809cf4f3c", // iv "000102030405060708090a0b0c0d0e0f", // plain_text "6bc1bee22e409f96e93d7e117393172a" "ae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52ef" "f69f2445df4f9b17ad2b417be66c3710", // cipher_text "7649abac8119b246cee98e9b12e9197d" "5086cb9b507219ee95db113a917678b2" "73bed6b8e3c1743b7116e69e22229516" "3ff1caa1681fac09120eca307586e1a7" // Padding block: encryption of {0x10, 0x10, ... 0x10}) (not given by the // NIST test vector) "8cb82807230e1321d3fae00d18cc2012" }, // F.2.6 CBC-AES256.Decrypt [*] // http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf // // [*] Truncated 3 bytes off the plain text, so block 4 differs from the // NIST vector. { // key "603deb1015ca71be2b73aef0857d7781" "1f352c073b6108d72d9810a30914dff4", // iv "000102030405060708090a0b0c0d0e0f", // plain_text "6bc1bee22e409f96e93d7e117393172a" "ae2d8a571e03ac9c9eb76fac45af8e51" "30c81c46a35ce411e5fbc1191a0a52ef" // Truncated this last block to make it more interesting. "f69f2445df4f9b17ad2b417be6", // cipher_text "f58c4c04d6e5f1ba779eabfb5f7bfbd6" "9cfc4e967edb808d679f777bc6702c7d" "39f23369a9d9bacfa530e26304231461" // This block differs from source vector (due to truncation) "c9aaf02a6a54e9e242ccbf48c59daca6" }, // Taken from encryptor_unittest.cc (EncryptorTest.EmptyEncrypt()) { // key "3132383d5369787465656e4279746573", // iv "5377656574205369787465656e204956", // plain_text "", // cipher_text "8518b8878d34e7185e300d0fcc426396" }, }; for (size_t index = 0; index < ARRAYSIZE_UNSAFE(kTests); index++) { SCOPED_TRACE(index); const TestCase& test = kTests[index]; blink::WebCryptoKey key = ImportSecretKeyFromRawHexString( test.key, webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc), blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt); // Verify exported raw key is identical to the imported data blink::WebArrayBuffer raw_key; EXPECT_TRUE(ExportKeyInternal(blink::WebCryptoKeyFormatRaw, key, &raw_key)); ExpectArrayBufferMatchesHex(test.key, raw_key); std::vector<uint8> plain_text = HexStringToBytes(test.plain_text); std::vector<uint8> iv = HexStringToBytes(test.iv); blink::WebArrayBuffer output; // Test encryption. EXPECT_TRUE(EncryptInternal(webcrypto::CreateAesCbcAlgorithm(iv), key, plain_text, &output)); ExpectArrayBufferMatchesHex(test.cipher_text, output); // Test decryption. std::vector<uint8> cipher_text = HexStringToBytes(test.cipher_text); EXPECT_TRUE(DecryptInternal(webcrypto::CreateAesCbcAlgorithm(iv), key, cipher_text, &output)); ExpectArrayBufferMatchesHex(test.plain_text, output); const unsigned kAesCbcBlockSize = 16; // Decrypt with a padding error by stripping the last block. This also ends // up testing decryption over empty cipher text. if (cipher_text.size() >= kAesCbcBlockSize) { EXPECT_FALSE(DecryptInternal(webcrypto::CreateAesCbcAlgorithm(iv), key, &cipher_text[0], cipher_text.size() - kAesCbcBlockSize, &output)); } // Decrypt cipher text which is not a multiple of block size by stripping // a few bytes off the cipher text. if (cipher_text.size() > 3) { EXPECT_FALSE(DecryptInternal(webcrypto::CreateAesCbcAlgorithm(iv), key, &cipher_text[0], cipher_text.size() - 3, &output)); } } } TEST_F(WebCryptoImplTest, GenerateKeyAes) { // Generate a small sample of AES keys. std::vector<blink::WebArrayBuffer> keys; blink::WebArrayBuffer key_bytes; for (int i = 0; i < 16; ++i) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); ASSERT_TRUE( GenerateKeyInternal(webcrypto::CreateAesCbcKeyGenAlgorithm(128), &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); ASSERT_TRUE( ExportKeyInternal(blink::WebCryptoKeyFormatRaw, key, &key_bytes)); keys.push_back(key_bytes); } // Ensure all entries in the key sample set are unique. This is a simplistic // estimate of whether the generated keys appear random. EXPECT_FALSE(CopiesExist(keys)); } TEST_F(WebCryptoImplTest, GenerateKeyAesBadLength) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); EXPECT_FALSE( GenerateKeyInternal(webcrypto::CreateAesCbcKeyGenAlgorithm(0), &key)); EXPECT_FALSE( GenerateKeyInternal(webcrypto::CreateAesCbcKeyGenAlgorithm(0), &key)); EXPECT_FALSE( GenerateKeyInternal(webcrypto::CreateAesCbcKeyGenAlgorithm(129), &key)); } TEST_F(WebCryptoImplTest, GenerateKeyHmac) { // Generate a small sample of HMAC keys. std::vector<blink::WebArrayBuffer> keys; for (int i = 0; i < 16; ++i) { blink::WebArrayBuffer key_bytes; blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); blink::WebCryptoAlgorithm algorithm = webcrypto::CreateHmacKeyGenAlgorithm( blink::WebCryptoAlgorithmIdSha1, 128); ASSERT_TRUE(GenerateKeyInternal(algorithm, &key)); EXPECT_FALSE(key.isNull()); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); } // Ensure all entries in the key sample set are unique. This is a simplistic // estimate of whether the generated keys appear random. EXPECT_FALSE(CopiesExist(keys)); } TEST_F(WebCryptoImplTest, GenerateKeyHmacNoLength) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); blink::WebCryptoAlgorithm algorithm = webcrypto::CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 0); ASSERT_TRUE(GenerateKeyInternal(algorithm, &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); } TEST_F(WebCryptoImplTest, ImportSecretKeyNoAlgorithm) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); // This fails because the algorithm is null. EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatRaw, HexStringToBytes("00000000000000000000"), blink::WebCryptoAlgorithm::createNull(), true, blink::WebCryptoKeyUsageEncrypt, &key)); } #endif //#if !defined(USE_OPENSSL) TEST_F(WebCryptoImplTest, ImportJwkFailures) { blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); blink::WebCryptoAlgorithm algorithm = webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc); blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt; // Baseline pass: each test below breaks a single item, so we start with a // passing case to make sure each failure is caused by the isolated break. // Each breaking subtest below resets the dictionary to this passing case when // complete. base::DictionaryValue dict; RestoreJwkOctDictionary(&dict); EXPECT_TRUE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); // Fail on empty JSON. EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(""), algorithm, false, usage_mask, &key)); // Fail on invalid JSON. const std::vector<uint8> bad_json_vec = MakeJsonVector( "{" "\"kty\" : \"oct\"," "\"alg\" : \"HS256\"," "\"use\" : " ); EXPECT_FALSE(ImportKeyJwk(bad_json_vec, algorithm, false, usage_mask, &key)); // Fail on JWK alg present but unrecognized. dict.SetString("alg", "A127CBC"); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); // Fail on both JWK and input algorithm missing. dict.Remove("alg", NULL); EXPECT_FALSE(ImportKeyJwk(MakeJsonVector(dict), blink::WebCryptoAlgorithm::createNull(), false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); // Fail on invalid kty. dict.SetString("kty", "foo"); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); // Fail on missing kty. dict.Remove("kty", NULL); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); // Fail on invalid use. dict.SetString("use", "foo"); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); } TEST_F(WebCryptoImplTest, ImportJwkOctFailures) { base::DictionaryValue dict; RestoreJwkOctDictionary(&dict); blink::WebCryptoAlgorithm algorithm = webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc); blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt; blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); // Baseline pass. EXPECT_TRUE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); EXPECT_EQ(algorithm.id(), key.algorithm().id()); EXPECT_FALSE(key.extractable()); EXPECT_EQ(blink::WebCryptoKeyUsageEncrypt, key.usages()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); // The following are specific failure cases for when kty = "oct". // Fail on missing k. dict.Remove("k", NULL); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); // Fail on bad b64 encoding for k. dict.SetString("k", "Qk3f0DsytU8lfza2au #$% Htaw2xpop9GYyTuH0p5GghxTI="); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); // Fail on empty k. dict.SetString("k", ""); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); // Fail on k actual length (120 bits) inconsistent with the embedded JWK alg // value (128) for an AES key. dict.SetString("k", "AVj42h0Y5aqGtE3yluKL"); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkOctDictionary(&dict); } #if !defined(USE_OPENSSL) TEST_F(WebCryptoImplTest, ImportJwkRsaFailures) { base::DictionaryValue dict; RestoreJwkRsaDictionary(&dict); blink::WebCryptoAlgorithm algorithm = webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5); blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt; blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); // An RSA public key JWK _must_ have an "n" (modulus) and an "e" (exponent) // entry, while an RSA private key must have those plus at least a "d" // (private exponent) entry. // See http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-18, // section 6.3. // Baseline pass. EXPECT_TRUE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); EXPECT_EQ(algorithm.id(), key.algorithm().id()); EXPECT_FALSE(key.extractable()); EXPECT_EQ(blink::WebCryptoKeyUsageEncrypt, key.usages()); EXPECT_EQ(blink::WebCryptoKeyTypePublic, key.type()); // The following are specific failure cases for when kty = "RSA". // Fail if either "n" or "e" is not present or malformed. const std::string kKtyParmName[] = {"n", "e"}; for (size_t idx = 0; idx < ARRAYSIZE_UNSAFE(kKtyParmName); ++idx) { // Fail on missing parameter. dict.Remove(kKtyParmName[idx], NULL); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkRsaDictionary(&dict); // Fail on bad b64 parameter encoding. dict.SetString(kKtyParmName[idx], "Qk3f0DsytU8lfza2au #$% Htaw2xpop9yTuH0"); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkRsaDictionary(&dict); // Fail on empty parameter. dict.SetString(kKtyParmName[idx], ""); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkRsaDictionary(&dict); } // Fail if "d" parameter is present, implying the JWK is a private key, which // is not supported. dict.SetString("d", "Qk3f0Dsyt"); EXPECT_FALSE(ImportKeyJwk( MakeJsonVector(dict), algorithm, false, usage_mask, &key)); RestoreJwkRsaDictionary(&dict); } #endif // #if !defined(USE_OPENSSL) TEST_F(WebCryptoImplTest, ImportJwkInputConsistency) { // The Web Crypto spec says that if a JWK value is present, but is // inconsistent with the input value, the operation must fail. // Consistency rules when JWK value is not present: Inputs should be used. blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); bool extractable = false; blink::WebCryptoAlgorithm algorithm = webcrypto::CreateHmacAlgorithmByHashId(blink::WebCryptoAlgorithmIdSha256); blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageVerify; base::DictionaryValue dict; dict.SetString("kty", "oct"); dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg"); std::vector<uint8> json_vec = MakeJsonVector(dict); EXPECT_TRUE(ImportKeyJwk(json_vec, algorithm, extractable, usage_mask, &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type()); EXPECT_EQ(extractable, key.extractable()); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id()); EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256, key.algorithm().hmacParams()->hash().id()); EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages()); key = blink::WebCryptoKey::createNull(); // Consistency rules when JWK value exists: Fail if inconsistency is found. // Pass: All input values are consistent with the JWK values. dict.Clear(); dict.SetString("kty", "oct"); dict.SetString("alg", "HS256"); dict.SetString("use", "sig"); dict.SetBoolean("extractable", false); dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg"); json_vec = MakeJsonVector(dict); EXPECT_TRUE(ImportKeyJwk(json_vec, algorithm, extractable, usage_mask, &key)); // Extractable cases: // 1. input=T, JWK=F ==> fail (inconsistent) // 4. input=F, JWK=F ==> pass, result extractable is F // 2. input=T, JWK=T ==> pass, result extractable is T // 3. input=F, JWK=T ==> pass, result extractable is F EXPECT_FALSE(ImportKeyJwk(json_vec, algorithm, true, usage_mask, &key)); EXPECT_TRUE(ImportKeyJwk(json_vec, algorithm, false, usage_mask, &key)); EXPECT_FALSE(key.extractable()); dict.SetBoolean("extractable", true); EXPECT_TRUE( ImportKeyJwk(MakeJsonVector(dict), algorithm, true, usage_mask, &key)); EXPECT_TRUE(key.extractable()); EXPECT_TRUE( ImportKeyJwk(MakeJsonVector(dict), algorithm, false, usage_mask, &key)); EXPECT_FALSE(key.extractable()); dict.SetBoolean("extractable", true); // restore previous value // Fail: Input algorithm (AES-CBC) is inconsistent with JWK value // (HMAC SHA256). EXPECT_FALSE(ImportKeyJwk( json_vec, webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc), extractable, usage_mask, &key)); // Fail: Input algorithm (HMAC SHA1) is inconsistent with JWK value // (HMAC SHA256). EXPECT_FALSE(ImportKeyJwk( json_vec, webcrypto::CreateHmacAlgorithmByHashId(blink::WebCryptoAlgorithmIdSha1), extractable, usage_mask, &key)); // Pass: JWK alg valid but input algorithm isNull: use JWK algorithm value. EXPECT_TRUE(ImportKeyJwk(json_vec, blink::WebCryptoAlgorithm::createNull(), extractable, usage_mask, &key)); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, algorithm.id()); // Pass: JWK alg missing but input algorithm specified: use input value dict.Remove("alg", NULL); EXPECT_TRUE(ImportKeyJwk( MakeJsonVector(dict), webcrypto::CreateHmacAlgorithmByHashId(blink::WebCryptoAlgorithmIdSha256), extractable, usage_mask, &key)); EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, algorithm.id()); dict.SetString("alg", "HS256"); // Fail: Input usage_mask (encrypt) is not a subset of the JWK value // (sign|verify) EXPECT_FALSE(ImportKeyJwk( json_vec, algorithm, extractable, blink::WebCryptoKeyUsageEncrypt, &key)); // Fail: Input usage_mask (encrypt|sign|verify) is not a subset of the JWK // value (sign|verify) usage_mask = blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify; EXPECT_FALSE( ImportKeyJwk(json_vec, algorithm, extractable, usage_mask, &key)); usage_mask = blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify; // TODO(padolph): kty vs alg consistency tests: Depending on the kty value, // only certain alg values are permitted. For example, when kty = "RSA" alg // must be of the RSA family, or when kty = "oct" alg must be symmetric // algorithm. } TEST_F(WebCryptoImplTest, ImportJwkHappy) { // This test verifies the happy path of JWK import, including the application // of the imported key material. blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); bool extractable = false; blink::WebCryptoAlgorithm algorithm = webcrypto::CreateHmacAlgorithmByHashId(blink::WebCryptoAlgorithmIdSha256); blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageSign; // Import a symmetric key JWK and HMAC-SHA256 sign() // Uses the first SHA256 test vector from the HMAC sample set above. base::DictionaryValue dict; dict.SetString("kty", "oct"); dict.SetString("alg", "HS256"); dict.SetString("use", "sig"); dict.SetBoolean("extractable", false); dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg"); std::vector<uint8> json_vec = MakeJsonVector(dict); ASSERT_TRUE(ImportKeyJwk(json_vec, algorithm, extractable, usage_mask, &key)); const std::vector<uint8> message_raw = HexStringToBytes( "b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a" "92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92" "d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f" "22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e"); blink::WebArrayBuffer output; ASSERT_TRUE(SignInternal(algorithm, key, message_raw, &output)); const std::string mac_raw = "769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b"; ExpectArrayBufferMatchesHex(mac_raw, output); // TODO(padolph): Import an RSA public key JWK and use it } #if !defined(USE_OPENSSL) TEST_F(WebCryptoImplTest, ImportExportSpki) { // openssl genrsa -out pair.pem 2048 // openssl rsa -in pair.pem -out pubkey.der -outform DER -pubout // xxd -p pubkey.der const std::string hex_rsa_spki_der = "30820122300d06092a864886f70d01010105000382010f003082010a0282" "010100f19e40f94e3780858701577a571cca000cb9795db89ddf8e98ab0e" "5eecfa47516cb08dc591cae5ab7fa43d6db402e95991d4a2de52e7cd3a66" "4f58284be2eb4675d5a849a2582c585d2b3c6c225a8f2c53a0414d5dbd06" "172371cefdf953e9ec3000fc9ad000743023f74e82d12aa93917a2c9b832" "696085ee0711154cf98a6d098f44cee00ea3b7584236503a5483ba8b6792" "fee588d1a8f4a0618333c4cb3447d760b43d5a0d9ed6ef79763df670cd8b" "5eb869a20833f1e3e6d8b88240a5d4335c73fd20487f2a7d112af8692357" "6425e44a273e5ad2e93d6b50a28e65f9e133958e4f0c7d12e0adc90fedd4" "f6b6848e7b6900666642a08b520a6534a35d4f0203010001"; // Passing case: Import a valid RSA key in SPKI format. blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); ASSERT_TRUE(ImportKeyInternal( blink::WebCryptoKeyFormatSpki, HexStringToBytes(hex_rsa_spki_der), webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5), true, blink::WebCryptoKeyUsageEncrypt, &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypePublic, key.type()); EXPECT_TRUE(key.extractable()); EXPECT_EQ(blink::WebCryptoKeyUsageEncrypt, key.usages()); // Failing case: Empty SPKI data EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatSpki, std::vector<uint8>(), blink::WebCryptoAlgorithm::createNull(), true, blink::WebCryptoKeyUsageEncrypt, &key)); // Failing case: Import RSA key with NULL input algorithm. This is not // allowed because the SPKI ASN.1 format for RSA keys is not specific enough // to map to a Web Crypto algorithm. EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatSpki, HexStringToBytes(hex_rsa_spki_der), blink::WebCryptoAlgorithm::createNull(), true, blink::WebCryptoKeyUsageEncrypt, &key)); // Failing case: Bad DER encoding. EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatSpki, HexStringToBytes("618333c4cb"), webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5), true, blink::WebCryptoKeyUsageEncrypt, &key)); // Failing case: Import RSA key but provide an inconsistent input algorithm. EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatSpki, HexStringToBytes(hex_rsa_spki_der), webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc), true, blink::WebCryptoKeyUsageEncrypt, &key)); // Passing case: Export a previously imported RSA public key in SPKI format // and compare to original data. blink::WebArrayBuffer output; ASSERT_TRUE(ExportKeyInternal(blink::WebCryptoKeyFormatSpki, key, &output)); ExpectArrayBufferMatchesHex(hex_rsa_spki_der, output); // Failing case: Try to export a previously imported RSA public key in raw // format (not allowed for a public key). EXPECT_FALSE(ExportKeyInternal(blink::WebCryptoKeyFormatRaw, key, &output)); // Failing case: Try to export a non-extractable key ASSERT_TRUE(ImportKeyInternal( blink::WebCryptoKeyFormatSpki, HexStringToBytes(hex_rsa_spki_der), webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5), false, blink::WebCryptoKeyUsageEncrypt, &key)); EXPECT_TRUE(key.handle()); EXPECT_FALSE(key.extractable()); EXPECT_FALSE(ExportKeyInternal(blink::WebCryptoKeyFormatSpki, key, &output)); } TEST_F(WebCryptoImplTest, ImportPkcs8) { // The following is a DER-encoded PKCS#8 representation of the RSA key from // Example 1 of NIST's "Test vectors for RSA PKCS#1 v1.5 Signature". // ftp://ftp.rsa.com/pub/rsalabs/tmp/pkcs1v15sign-vectors.txt const std::string hex_rsa_pkcs8_der = "30820275020100300D06092A864886F70D01010105000482025F3082025B020100028181" "00A56E4A0E701017589A5187DC7EA841D156F2EC0E36AD52A44DFEB1E61F7AD991D8C510" "56FFEDB162B4C0F283A12A88A394DFF526AB7291CBB307CEABFCE0B1DFD5CD9508096D5B" "2B8B6DF5D671EF6377C0921CB23C270A70E2598E6FF89D19F105ACC2D3F0CB35F29280E1" "386B6F64C4EF22E1E1F20D0CE8CFFB2249BD9A2137020301000102818033A5042A90B27D" "4F5451CA9BBBD0B44771A101AF884340AEF9885F2A4BBE92E894A724AC3C568C8F97853A" "D07C0266C8C6A3CA0929F1E8F11231884429FC4D9AE55FEE896A10CE707C3ED7E734E447" "27A39574501A532683109C2ABACABA283C31B4BD2F53C3EE37E352CEE34F9E503BD80C06" "22AD79C6DCEE883547C6A3B325024100E7E8942720A877517273A356053EA2A1BC0C94AA" "72D55C6E86296B2DFC967948C0A72CBCCCA7EACB35706E09A1DF55A1535BD9B3CC34160B" "3B6DCD3EDA8E6443024100B69DCA1CF7D4D7EC81E75B90FCCA874ABCDE123FD2700180AA" "90479B6E48DE8D67ED24F9F19D85BA275874F542CD20DC723E6963364A1F9425452B269A" "6799FD024028FA13938655BE1F8A159CBACA5A72EA190C30089E19CD274A556F36C4F6E1" "9F554B34C077790427BBDD8DD3EDE2448328F385D81B30E8E43B2FFFA02786197902401A" "8B38F398FA712049898D7FB79EE0A77668791299CDFA09EFC0E507ACB21ED74301EF5BFD" "48BE455EAEB6E1678255827580A8E4E8E14151D1510A82A3F2E729024027156ABA4126D2" "4A81F3A528CBFB27F56886F840A9F6E86E17A44B94FE9319584B8E22FDDE1E5A2E3BD8AA" "5BA8D8584194EB2190ACF832B847F13A3D24A79F4D"; // Passing case: Import a valid RSA key in PKCS#8 format. blink::WebCryptoKey key = blink::WebCryptoKey::createNull(); ASSERT_TRUE(ImportKeyInternal( blink::WebCryptoKeyFormatPkcs8, HexStringToBytes(hex_rsa_pkcs8_der), webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5), true, blink::WebCryptoKeyUsageSign, &key)); EXPECT_TRUE(key.handle()); EXPECT_EQ(blink::WebCryptoKeyTypePrivate, key.type()); EXPECT_TRUE(key.extractable()); EXPECT_EQ(blink::WebCryptoKeyUsageSign, key.usages()); // Failing case: Empty PKCS#8 data EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatPkcs8, std::vector<uint8>(), blink::WebCryptoAlgorithm::createNull(), true, blink::WebCryptoKeyUsageSign, &key)); // Failing case: Import RSA key with NULL input algorithm. This is not // allowed because the PKCS#8 ASN.1 format for RSA keys is not specific enough // to map to a Web Crypto algorithm. EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatPkcs8, HexStringToBytes(hex_rsa_pkcs8_der), blink::WebCryptoAlgorithm::createNull(), true, blink::WebCryptoKeyUsageSign, &key)); // Failing case: Bad DER encoding. EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatPkcs8, HexStringToBytes("618333c4cb"), webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5), true, blink::WebCryptoKeyUsageSign, &key)); // Failing case: Import RSA key but provide an inconsistent input algorithm. EXPECT_FALSE(ImportKeyInternal( blink::WebCryptoKeyFormatPkcs8, HexStringToBytes(hex_rsa_pkcs8_der), webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc), true, blink::WebCryptoKeyUsageSign, &key)); } TEST_F(WebCryptoImplTest, GenerateKeyPairRsa) { // Note: using unrealistic short key lengths here to avoid bogging down tests. // Successful WebCryptoAlgorithmIdRsaEsPkcs1v1_5 key generation. const unsigned modulus_length = 256; const std::vector<uint8> public_exponent = HexStringToBytes("010001"); blink::WebCryptoAlgorithm algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, modulus_length, public_exponent); bool extractable = false; const blink::WebCryptoKeyUsageMask usage_mask = 0; blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull(); blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull(); EXPECT_TRUE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); EXPECT_FALSE(public_key.isNull()); EXPECT_FALSE(private_key.isNull()); EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type()); EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type()); EXPECT_EQ(true, public_key.extractable()); EXPECT_EQ(extractable, private_key.extractable()); EXPECT_EQ(usage_mask, public_key.usages()); EXPECT_EQ(usage_mask, private_key.usages()); // Fail with bad modulus. algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, 0, public_exponent); EXPECT_FALSE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); // Fail with bad exponent: larger than unsigned long. unsigned exponent_length = sizeof(unsigned long) + 1; // NOLINT const std::vector<uint8> long_exponent(exponent_length, 0x01); algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, modulus_length, long_exponent); EXPECT_FALSE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); // Fail with bad exponent: empty. const std::vector<uint8> empty_exponent; algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, modulus_length, empty_exponent); EXPECT_FALSE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); // Fail with bad exponent: all zeros. std::vector<uint8> exponent_with_leading_zeros(15, 0x00); algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, modulus_length, exponent_with_leading_zeros); EXPECT_FALSE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); // Key generation success using exponent with leading zeros. exponent_with_leading_zeros.insert(exponent_with_leading_zeros.end(), public_exponent.begin(), public_exponent.end()); algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, modulus_length, exponent_with_leading_zeros); EXPECT_TRUE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); EXPECT_FALSE(public_key.isNull()); EXPECT_FALSE(private_key.isNull()); EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type()); EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type()); EXPECT_EQ(true, public_key.extractable()); EXPECT_EQ(extractable, private_key.extractable()); EXPECT_EQ(usage_mask, public_key.usages()); EXPECT_EQ(usage_mask, private_key.usages()); // Successful WebCryptoAlgorithmIdRsaOaep key generation. algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaOaep, modulus_length, public_exponent); EXPECT_TRUE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); EXPECT_FALSE(public_key.isNull()); EXPECT_FALSE(private_key.isNull()); EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type()); EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type()); EXPECT_EQ(true, public_key.extractable()); EXPECT_EQ(extractable, private_key.extractable()); EXPECT_EQ(usage_mask, public_key.usages()); EXPECT_EQ(usage_mask, private_key.usages()); // Successful WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 key generation. algorithm = webcrypto::CreateRsaKeyGenAlgorithm( blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5, modulus_length, public_exponent); EXPECT_TRUE(GenerateKeyPairInternal( algorithm, extractable, usage_mask, &public_key, &private_key)); EXPECT_FALSE(public_key.isNull()); EXPECT_FALSE(private_key.isNull()); EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type()); EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type()); EXPECT_EQ(true, public_key.extractable()); EXPECT_EQ(extractable, private_key.extractable()); EXPECT_EQ(usage_mask, public_key.usages()); EXPECT_EQ(usage_mask, private_key.usages()); // Fail SPKI export of private key. This is an ExportKey test, but do it here // since it is expensive to generate an RSA key pair and we already have a // private key here. blink::WebArrayBuffer output; EXPECT_FALSE( ExportKeyInternal(blink::WebCryptoKeyFormatSpki, private_key, &output)); } TEST_F(WebCryptoImplTest, RsaEsRoundTrip) { // Note: using unrealistic short key length here to avoid bogging down tests. // Create a key pair. const unsigned kModulusLength = 256; blink::WebCryptoAlgorithm algorithm = CreateRsaKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, kModulusLength, HexStringToBytes("010001")); const blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt; blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull(); blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull(); EXPECT_TRUE(GenerateKeyPairInternal( algorithm, false, usage_mask, &public_key, &private_key)); EXPECT_FALSE(public_key.isNull()); EXPECT_FALSE(private_key.isNull()); // Make a maximum-length data message. RSAES can operate on messages up to // length of k - 11 bytes, where k is the octet length of the RSA modulus. const unsigned kMaxMsgSizeBytes = kModulusLength / 8 - 11; // There are two hex chars for each byte. const unsigned kMsgHexSize = kMaxMsgSizeBytes * 2; char max_data_hex[kMsgHexSize+1]; std::fill(&max_data_hex[0], &max_data_hex[0] + kMsgHexSize, 'a'); max_data_hex[kMsgHexSize] = '\0'; // Verify encrypt / decrypt round trip on a few messages. Note that RSA // encryption does not support empty input. algorithm = webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5); const char* const kTestDataHex[] = { "ff", "0102030405060708090a0b0c0d0e0f", max_data_hex }; blink::WebArrayBuffer encrypted_data; blink::WebArrayBuffer decrypted_data; for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kTestDataHex); ++i) { SCOPED_TRACE(i); ASSERT_TRUE(EncryptInternal( algorithm, public_key, HexStringToBytes(kTestDataHex[i]), &encrypted_data)); EXPECT_EQ(kModulusLength/8, encrypted_data.byteLength()); ASSERT_TRUE(DecryptInternal( algorithm, private_key, reinterpret_cast<const unsigned char*>(encrypted_data.data()), encrypted_data.byteLength(), &decrypted_data)); ExpectArrayBufferMatchesHex(kTestDataHex[i], decrypted_data); } } TEST_F(WebCryptoImplTest, RsaEsKnownAnswer) { // Because the random data in PKCS1.5 padding makes the encryption output non- // deterministic, we cannot easily do a typical known-answer test for RSA // encryption / decryption. Instead we will take a known-good encrypted // message, decrypt it, re-encrypt it, then decrypt again, verifying that the // original known cleartext is the result. // The RSA public and private keys used for this test are produced by the // openssl command line: // % openssl genrsa -out pair.pem 1024 // % openssl rsa -in pair.pem -out spki.der -outform DER -pubout // % openssl pkcs8 -topk8 -inform PEM -outform DER -in pair.pem -out // pkcs8.der -nocrypt // % xxd -p spki.der // % xxd -p pkcs8.der const std::string rsa_spki_der_hex = "30819f300d06092a864886f70d010101050003818d0030818902818100a8" "d30894b93f376f7822229bfd2483e50da944c4ab803ca31979e0f47e70bf" "683c687c6b3e80f280a237cea3643fd1f7f10f7cc664dbc2ecd45be53e1c" "9b15a53c37dbdad846c0f8340c472abc7821e4aa7df185867bf38228ac3e" "cc1d97d3c8b57e21ea6ba57b2bc3814a436e910ee8ab64a0b7743a927e94" "4d3420401f7dd50203010001"; const std::string rsa_pkcs8_der_hex = "30820276020100300d06092a864886f70d0101010500048202603082025c" "02010002818100a8d30894b93f376f7822229bfd2483e50da944c4ab803c" "a31979e0f47e70bf683c687c6b3e80f280a237cea3643fd1f7f10f7cc664" "dbc2ecd45be53e1c9b15a53c37dbdad846c0f8340c472abc7821e4aa7df1" "85867bf38228ac3ecc1d97d3c8b57e21ea6ba57b2bc3814a436e910ee8ab" "64a0b7743a927e944d3420401f7dd5020301000102818100896cdffb50a0" "691bd00ad9696933243a7c5861a64684e8d74b91aed0d76c28234da9303e" "8c6ea2f89b141a9d5ea9a4ddd3d8eb9503dcf05ba0b1fd76060b281e3ae4" "b9d497fb5519bdf1127db8ad412d6a722686c78df3e3002acca960c6b2a2" "42a83ace5410693c03ce3d74cb9c9a7bacc8e271812920d1f53fee9312ef" "4eb1024100d09c14418ce92af7cc62f7cdc79836d8c6e3d0d33e7229cc11" "d732cbac75aa4c56c92e409a3ccbe75d4ce63ac5adca33080690782c6371" "e3628134c3534ca603024100cf2d3206f6deea2f39b70351c51f85436200" "5aa8f643e49e22486736d536e040dc30a2b4f9be3ab212a88d1891280874" "b9a170cdeb22eaf61c27c4b082c7d1470240638411a5b3b307ec6e744802" "c2d4ba556f8bfe72c7b76e790b89bd91ac13f5c9b51d04138d80b3450c1d" "4337865601bf96748b36c8f627be719f71ac3c70b441024065ce92cfe34e" "a58bf173a2b8f3024b4d5282540ac581957db3e11a7f528535ec098808dc" "a0013ffcb3b88a25716757c86c540e07d2ad8502cdd129118822c30f0240" "420a4983040e9db46eb29f1315a0d7b41cf60428f7460fce748e9a1a7d22" "d7390fa328948e7e9d1724401374e99d45eb41474781201378a4330e8e80" "8ce63551"; // Similarly, the cleartext and public key encrypted ciphertext for this test // are also produced by openssl. Note that since we are using a 1024-bit key, // the cleartext size must be less than or equal to 117 bytes (modulusLength / // 8 - 11). // % openssl rand -out cleartext.bin 64 // % openssl rsautl -encrypt -inkey spki.der -keyform DER -pubin -in // cleartext.bin -out ciphertext.bin // % xxd -p cleartext.bin // % xxd -p ciphertext.bin const std::string cleartext_hex = "ec358ed141c45d7e03d4c6338aebad718e8bcbbf8f8ee6f8d9f4b9ef06d8" "84739a398c6bcbc688418b2ff64761dc0ccd40e7d52bed03e06946d0957a" "eef9e822"; const std::string ciphertext_hex = "6106441c2b7a4b1a16260ed1ae4fe6135247345dc8e674754bbda6588c6c" "0d95a3d4d26bb34cdbcbe327723e80343bd7a15cd4c91c3a44e6cb9c6cd6" "7ad2e8bf41523188d9b36dc364a838642dcbc2c25e85dfb2106ba47578ca" "3bbf8915055aea4fa7c3cbfdfbcc163f04c234fb6d847f39bab9612ecbee" "04626e945c3ccf42"; // Import the public key. const blink::WebCryptoAlgorithm algorithm = webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5); blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull(); ASSERT_TRUE(ImportKeyInternal( blink::WebCryptoKeyFormatSpki, HexStringToBytes(rsa_spki_der_hex), algorithm, true, blink::WebCryptoKeyUsageEncrypt, &public_key)); EXPECT_FALSE(public_key.isNull()); EXPECT_TRUE(public_key.handle()); // Import the private key. blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull(); ASSERT_TRUE(ImportKeyInternal( blink::WebCryptoKeyFormatPkcs8, HexStringToBytes(rsa_pkcs8_der_hex), algorithm, true, blink::WebCryptoKeyUsageDecrypt, &private_key)); EXPECT_FALSE(private_key.isNull()); EXPECT_TRUE(private_key.handle()); // Decrypt the known-good ciphertext with the private key. As a check we must // get the known original cleartext. blink::WebArrayBuffer decrypted_data; ASSERT_TRUE(DecryptInternal( algorithm, private_key, HexStringToBytes(ciphertext_hex), &decrypted_data)); EXPECT_FALSE(decrypted_data.isNull()); ExpectArrayBufferMatchesHex(cleartext_hex, decrypted_data); // Encrypt this decrypted data with the public key. blink::WebArrayBuffer encrypted_data; ASSERT_TRUE(EncryptInternal( algorithm, public_key, reinterpret_cast<const unsigned char*>(decrypted_data.data()), decrypted_data.byteLength(), &encrypted_data)); EXPECT_EQ(128u, encrypted_data.byteLength()); // Finally, decrypt the newly encrypted result with the private key, and // compare to the known original cleartext. decrypted_data.reset(); ASSERT_TRUE(DecryptInternal( algorithm, private_key, reinterpret_cast<const unsigned char*>(encrypted_data.data()), encrypted_data.byteLength(), &decrypted_data)); EXPECT_FALSE(decrypted_data.isNull()); ExpectArrayBufferMatchesHex(cleartext_hex, decrypted_data); } TEST_F(WebCryptoImplTest, RsaEsFailures) { // Note: using unrealistic short key length here to avoid bogging down tests. // Create a key pair. const unsigned kModulusLength = 256; blink::WebCryptoAlgorithm algorithm = CreateRsaKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, kModulusLength, HexStringToBytes("010001")); const blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt; blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull(); blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull(); EXPECT_TRUE(GenerateKeyPairInternal( algorithm, false, usage_mask, &public_key, &private_key)); EXPECT_FALSE(public_key.isNull()); EXPECT_FALSE(private_key.isNull()); // Fail encrypt with a private key. algorithm = webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaEsPkcs1v1_5); blink::WebArrayBuffer encrypted_data; const std::string message_hex_str("0102030405060708090a0b0c0d0e0f"); const std::vector<uint8> message_hex(HexStringToBytes(message_hex_str)); EXPECT_FALSE( EncryptInternal(algorithm, private_key, message_hex, &encrypted_data)); // Fail encrypt with empty message. EXPECT_FALSE(EncryptInternal( algorithm, public_key, std::vector<uint8>(), &encrypted_data)); // Fail encrypt with message too large. RSAES can operate on messages up to // length of k - 11 bytes, where k is the octet length of the RSA modulus. const unsigned kMaxMsgSizeBytes = kModulusLength / 8 - 11; EXPECT_FALSE(EncryptInternal(algorithm, public_key, std::vector<uint8>(kMaxMsgSizeBytes + 1, '0'), &encrypted_data)); // Generate encrypted data. EXPECT_TRUE( EncryptInternal(algorithm, public_key, message_hex, &encrypted_data)); // Fail decrypt with a public key. blink::WebArrayBuffer decrypted_data; EXPECT_FALSE(DecryptInternal( algorithm, public_key, reinterpret_cast<const unsigned char*>(encrypted_data.data()), encrypted_data.byteLength(), &decrypted_data)); // Corrupt encrypted data; ensure decrypt fails because padding was disrupted. std::vector<uint8> corrupted_data( static_cast<uint8*>(encrypted_data.data()), static_cast<uint8*>(encrypted_data.data()) + encrypted_data.byteLength()); corrupted_data[corrupted_data.size() / 2] ^= 0x01; EXPECT_FALSE( DecryptInternal(algorithm, private_key, corrupted_data, &decrypted_data)); // TODO(padolph): Are there other specific data corruption scenarios to // consider? // Do a successful decrypt with good data just for confirmation. EXPECT_TRUE(DecryptInternal( algorithm, private_key, reinterpret_cast<const unsigned char*>(encrypted_data.data()), encrypted_data.byteLength(), &decrypted_data)); ExpectArrayBufferMatchesHex(message_hex_str, decrypted_data); } #endif // #if !defined(USE_OPENSSL) } // namespace content