// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "content/browser/byte_stream.h" #include <deque> #include <limits> #include "base/bind.h" #include "base/callback.h" #include "base/memory/ref_counted.h" #include "base/message_loop/message_loop.h" #include "base/test/test_simple_task_runner.h" #include "net/base/io_buffer.h" #include "testing/gtest/include/gtest/gtest.h" namespace content { namespace { void CountCallbacks(int* counter) { ++*counter; } } // namespace class ByteStreamTest : public testing::Test { public: ByteStreamTest(); // Create a new IO buffer of the given |buffer_size|. Details of the // contents of the created buffer will be kept, and can be validated // by ValidateIOBuffer. scoped_refptr<net::IOBuffer> NewIOBuffer(size_t buffer_size) { scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(buffer_size)); char *bufferp = buffer->data(); for (size_t i = 0; i < buffer_size; i++) bufferp[i] = (i + producing_seed_key_) % (1 << sizeof(char)); pointer_queue_.push_back(bufferp); length_queue_.push_back(buffer_size); ++producing_seed_key_; return buffer; } // Create an IOBuffer of the appropriate size and add it to the // ByteStream, returning the result of the ByteStream::Write. // Separate function to avoid duplication of buffer_size in test // calls. bool Write(ByteStreamWriter* byte_stream_input, size_t buffer_size) { return byte_stream_input->Write(NewIOBuffer(buffer_size), buffer_size); } // Validate that we have the IOBuffer we expect. This routine must be // called on buffers that were allocated from NewIOBuffer, and in the // order that they were allocated. Calls to NewIOBuffer && // ValidateIOBuffer may be interleaved. bool ValidateIOBuffer( scoped_refptr<net::IOBuffer> buffer, size_t buffer_size) { char *bufferp = buffer->data(); char *expected_ptr = pointer_queue_.front(); size_t expected_length = length_queue_.front(); pointer_queue_.pop_front(); length_queue_.pop_front(); ++consuming_seed_key_; EXPECT_EQ(expected_ptr, bufferp); if (expected_ptr != bufferp) return false; EXPECT_EQ(expected_length, buffer_size); if (expected_length != buffer_size) return false; for (size_t i = 0; i < buffer_size; i++) { // Already incremented, so subtract one from the key. EXPECT_EQ(static_cast<int>((i + consuming_seed_key_ - 1) % (1 << sizeof(char))), bufferp[i]); if (static_cast<int>((i + consuming_seed_key_ - 1) % (1 << sizeof(char))) != bufferp[i]) { return false; } } return true; } protected: base::MessageLoop message_loop_; private: int producing_seed_key_; int consuming_seed_key_; std::deque<char*> pointer_queue_; std::deque<size_t> length_queue_; }; ByteStreamTest::ByteStreamTest() : producing_seed_key_(0), consuming_seed_key_(0) { } // Confirm that filling and emptying the stream works properly, and that // we get full triggers when we expect. TEST_F(ByteStreamTest, ByteStream_PushBack) { scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 3 * 1024, &byte_stream_input, &byte_stream_output); // Push a series of IO buffers on; test pushback happening and // that it's advisory. EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); EXPECT_FALSE(Write(byte_stream_input.get(), 1)); EXPECT_FALSE(Write(byte_stream_input.get(), 1024)); // Flush byte_stream_input->Close(0); EXPECT_EQ(4 * 1024U + 1U, byte_stream_input->GetTotalBufferedBytes()); message_loop_.RunUntilIdle(); // Data already sent to reader is also counted in. EXPECT_EQ(4 * 1024U + 1U, byte_stream_input->GetTotalBufferedBytes()); // Pull the IO buffers out; do we get the same buffers and do they // have the same contents? scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); message_loop_.RunUntilIdle(); // Reader now knows that all data is read out. EXPECT_EQ(1024U, byte_stream_input->GetTotalBufferedBytes()); } // Confirm that Flush() method makes the writer to send written contents to // the reader. TEST_F(ByteStreamTest, ByteStream_Flush) { scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 1024, &byte_stream_input, &byte_stream_output); EXPECT_TRUE(Write(byte_stream_input.get(), 1)); message_loop_.RunUntilIdle(); scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length = 0; // Check that data is not sent to the reader yet. EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); byte_stream_input->Flush(); message_loop_.RunUntilIdle(); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); // Check that it's ok to Flush() an empty writer. byte_stream_input->Flush(); message_loop_.RunUntilIdle(); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); byte_stream_input->Close(0); message_loop_.RunUntilIdle(); EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); } // Same as above, only use knowledge of the internals to confirm // that we're getting pushback even when data's split across the two // objects TEST_F(ByteStreamTest, ByteStream_PushBackSplit) { scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 9 * 1024, &byte_stream_input, &byte_stream_output); // Push a series of IO buffers on; test pushback happening and // that it's advisory. EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); message_loop_.RunUntilIdle(); EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); message_loop_.RunUntilIdle(); EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); message_loop_.RunUntilIdle(); EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); message_loop_.RunUntilIdle(); EXPECT_FALSE(Write(byte_stream_input.get(), 6 * 1024)); message_loop_.RunUntilIdle(); // Pull the IO buffers out; do we get the same buffers and do they // have the same contents? scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); } // Confirm that a Close() notification transmits in-order // with data on the stream. TEST_F(ByteStreamTest, ByteStream_CompleteTransmits) { scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; // Empty stream, non-error case. CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 3 * 1024, &byte_stream_input, &byte_stream_output); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); byte_stream_input->Close(0); message_loop_.RunUntilIdle(); ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_EQ(0, byte_stream_output->GetStatus()); // Non-empty stream, non-error case. CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 3 * 1024, &byte_stream_input, &byte_stream_output); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); byte_stream_input->Close(0); message_loop_.RunUntilIdle(); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_EQ(0, byte_stream_output->GetStatus()); const int kFakeErrorCode = 22; // Empty stream, error case. CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 3 * 1024, &byte_stream_input, &byte_stream_output); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); byte_stream_input->Close(kFakeErrorCode); message_loop_.RunUntilIdle(); ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_EQ(kFakeErrorCode, byte_stream_output->GetStatus()); // Non-empty stream, error case. CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 3 * 1024, &byte_stream_input, &byte_stream_output); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(Write(byte_stream_input.get(), 1024)); byte_stream_input->Close(kFakeErrorCode); message_loop_.RunUntilIdle(); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_EQ(kFakeErrorCode, byte_stream_output->GetStatus()); } // Confirm that callbacks on the sink side are triggered when they should be. TEST_F(ByteStreamTest, ByteStream_SinkCallback) { scoped_refptr<base::TestSimpleTaskRunner> task_runner( new base::TestSimpleTaskRunner()); scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), task_runner, 10000, &byte_stream_input, &byte_stream_output); scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; // Note that the specifics of when the callbacks are called with regard // to how much data is pushed onto the stream is not (currently) part // of the interface contract. If it becomes part of the contract, the // tests below should get much more precise. // Confirm callback called when you add more than 33% of the buffer. // Setup callback int num_callbacks = 0; byte_stream_output->RegisterCallback( base::Bind(CountCallbacks, &num_callbacks)); EXPECT_TRUE(Write(byte_stream_input.get(), 4000)); message_loop_.RunUntilIdle(); EXPECT_EQ(0, num_callbacks); task_runner->RunUntilIdle(); EXPECT_EQ(1, num_callbacks); // Check data and stream state. EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); // Confirm callback *isn't* called at less than 33% (by lack of // unexpected call on task runner). EXPECT_TRUE(Write(byte_stream_input.get(), 3000)); message_loop_.RunUntilIdle(); // This reflects an implementation artifact that data goes with callbacks, // which should not be considered part of the interface guarantee. EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); } // Confirm that callbacks on the source side are triggered when they should // be. TEST_F(ByteStreamTest, ByteStream_SourceCallback) { scoped_refptr<base::TestSimpleTaskRunner> task_runner( new base::TestSimpleTaskRunner()); scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( task_runner, message_loop_.message_loop_proxy(), 10000, &byte_stream_input, &byte_stream_output); scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; // Note that the specifics of when the callbacks are called with regard // to how much data is pulled from the stream is not (currently) part // of the interface contract. If it becomes part of the contract, the // tests below should get much more precise. // Confirm callback called when about 33% space available, and not // at other transitions. // Add data. int num_callbacks = 0; byte_stream_input->RegisterCallback( base::Bind(CountCallbacks, &num_callbacks)); EXPECT_TRUE(Write(byte_stream_input.get(), 2000)); EXPECT_TRUE(Write(byte_stream_input.get(), 2001)); EXPECT_FALSE(Write(byte_stream_input.get(), 6000)); // Allow bytes to transition (needed for message passing implementation), // and get and validate the data. message_loop_.RunUntilIdle(); EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); // Grab data, triggering callback. Recorded on dispatch, but doesn't // happen because it's caught by the mock. EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); // Confirm that the callback passed to the mock does what we expect. EXPECT_EQ(0, num_callbacks); task_runner->RunUntilIdle(); EXPECT_EQ(1, num_callbacks); // Same drill with final buffer. EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_EQ(1, num_callbacks); task_runner->RunUntilIdle(); // Should have updated the internal structures but not called the // callback. EXPECT_EQ(1, num_callbacks); } // Confirm that racing a change to a sink callback with a post results // in the new callback being called. TEST_F(ByteStreamTest, ByteStream_SinkInterrupt) { scoped_refptr<base::TestSimpleTaskRunner> task_runner( new base::TestSimpleTaskRunner()); scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), task_runner, 10000, &byte_stream_input, &byte_stream_output); scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; base::Closure intermediate_callback; // Record initial state. int num_callbacks = 0; byte_stream_output->RegisterCallback( base::Bind(CountCallbacks, &num_callbacks)); // Add data, and pass it across. EXPECT_TRUE(Write(byte_stream_input.get(), 4000)); message_loop_.RunUntilIdle(); // The task runner should have been hit, but the callback count // isn't changed until we actually run the callback. EXPECT_EQ(0, num_callbacks); // If we change the callback now, the new one should be run // (simulates race with post task). int num_alt_callbacks = 0; byte_stream_output->RegisterCallback( base::Bind(CountCallbacks, &num_alt_callbacks)); task_runner->RunUntilIdle(); EXPECT_EQ(0, num_callbacks); EXPECT_EQ(1, num_alt_callbacks); // Final cleanup. EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); } // Confirm that racing a change to a source callback with a post results // in the new callback being called. TEST_F(ByteStreamTest, ByteStream_SourceInterrupt) { scoped_refptr<base::TestSimpleTaskRunner> task_runner( new base::TestSimpleTaskRunner()); scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( task_runner, message_loop_.message_loop_proxy(), 10000, &byte_stream_input, &byte_stream_output); scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; base::Closure intermediate_callback; // Setup state for test. int num_callbacks = 0; byte_stream_input->RegisterCallback( base::Bind(CountCallbacks, &num_callbacks)); EXPECT_TRUE(Write(byte_stream_input.get(), 2000)); EXPECT_TRUE(Write(byte_stream_input.get(), 2001)); EXPECT_FALSE(Write(byte_stream_input.get(), 6000)); message_loop_.RunUntilIdle(); // Initial get should not trigger callback. EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); message_loop_.RunUntilIdle(); // Second get *should* trigger callback. EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); // Which should do the right thing when it's run. int num_alt_callbacks = 0; byte_stream_input->RegisterCallback( base::Bind(CountCallbacks, &num_alt_callbacks)); task_runner->RunUntilIdle(); EXPECT_EQ(0, num_callbacks); EXPECT_EQ(1, num_alt_callbacks); // Third get should also trigger callback. EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA, byte_stream_output->Read(&output_io_buffer, &output_length)); EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length)); EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); } // Confirm that callback is called on zero data transfer but source // complete. TEST_F(ByteStreamTest, ByteStream_ZeroCallback) { scoped_refptr<base::TestSimpleTaskRunner> task_runner( new base::TestSimpleTaskRunner()); scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), task_runner, 10000, &byte_stream_input, &byte_stream_output); base::Closure intermediate_callback; // Record initial state. int num_callbacks = 0; byte_stream_output->RegisterCallback( base::Bind(CountCallbacks, &num_callbacks)); // Immediately close the stream. byte_stream_input->Close(0); task_runner->RunUntilIdle(); EXPECT_EQ(1, num_callbacks); } TEST_F(ByteStreamTest, ByteStream_CloseWithoutAnyWrite) { scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 3 * 1024, &byte_stream_input, &byte_stream_output); byte_stream_input->Close(0); message_loop_.RunUntilIdle(); scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); } TEST_F(ByteStreamTest, ByteStream_FlushWithoutAnyWrite) { scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), 3 * 1024, &byte_stream_input, &byte_stream_output); byte_stream_input->Flush(); message_loop_.RunUntilIdle(); scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); byte_stream_input->Close(0); message_loop_.RunUntilIdle(); EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE, byte_stream_output->Read(&output_io_buffer, &output_length)); } TEST_F(ByteStreamTest, ByteStream_WriteOverflow) { scoped_ptr<ByteStreamWriter> byte_stream_input; scoped_ptr<ByteStreamReader> byte_stream_output; CreateByteStream( message_loop_.message_loop_proxy(), message_loop_.message_loop_proxy(), std::numeric_limits<size_t>::max(), &byte_stream_input, &byte_stream_output); EXPECT_TRUE(Write(byte_stream_input.get(), 1)); // 1 + size_t max -> Overflow. scoped_refptr<net::IOBuffer> empty_io_buffer; EXPECT_FALSE(byte_stream_input->Write(empty_io_buffer, std::numeric_limits<size_t>::max())); message_loop_.RunUntilIdle(); // The first write is below PostToPeer threshold. We shouldn't get anything // from the output. scoped_refptr<net::IOBuffer> output_io_buffer; size_t output_length; EXPECT_EQ(ByteStreamReader::STREAM_EMPTY, byte_stream_output->Read(&output_io_buffer, &output_length)); } } // namespace content