/* * Copyright 2011 Daniel Drown * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * translate.c - CLAT functions / partial implementation of rfc6145 */ #include <string.h> #include <sys/uio.h> #include "icmp.h" #include "translate.h" #include "checksum.h" #include "clatd.h" #include "config.h" #include "logging.h" #include "debug.h" /* function: packet_checksum * calculates the checksum over all the packet components starting from pos * checksum - checksum of packet components before pos * packet - packet to calculate the checksum of * pos - position to start counting from * returns - the completed 16-bit checksum, ready to write into a checksum header field */ uint16_t packet_checksum(uint32_t checksum, clat_packet packet, int pos) { int i; for (i = pos; i < CLAT_POS_MAX; i++) { if (packet[i].iov_len > 0) { checksum = ip_checksum_add(checksum, packet[i].iov_base, packet[i].iov_len); } } return ip_checksum_finish(checksum); } /* function: packet_length * returns the total length of all the packet components after pos * packet - packet to calculate the length of * pos - position to start counting after * returns: the total length of the packet components after pos */ uint16_t packet_length(clat_packet packet, int pos) { size_t len = 0; int i; for (i = pos + 1; i < CLAT_POS_MAX; i++) { len += packet[i].iov_len; } return len; } /* function: is_in_plat_subnet * returns true iff the given IPv6 address is in the plat subnet. * addr - IPv6 address */ int is_in_plat_subnet(const struct in6_addr *addr6) { // Assumes a /96 plat subnet. return (addr6 != NULL) && (memcmp(addr6, &Global_Clatd_Config.plat_subnet, 12) == 0); } /* function: ipv6_addr_to_ipv4_addr * return the corresponding ipv4 address for the given ipv6 address * addr6 - ipv6 address * returns: the IPv4 address */ uint32_t ipv6_addr_to_ipv4_addr(const struct in6_addr *addr6) { if (is_in_plat_subnet(addr6)) { // Assumes a /96 plat subnet. return addr6->s6_addr32[3]; } else if (IN6_ARE_ADDR_EQUAL(addr6, &Global_Clatd_Config.ipv6_local_subnet)) { // Special-case our own address. return Global_Clatd_Config.ipv4_local_subnet.s_addr; } else { // Third party packet. Let the caller deal with it. return INADDR_NONE; } } /* function: ipv4_addr_to_ipv6_addr * return the corresponding ipv6 address for the given ipv4 address * addr4 - ipv4 address */ struct in6_addr ipv4_addr_to_ipv6_addr(uint32_t addr4) { struct in6_addr addr6; // Both addresses are in network byte order (addr4 comes from a network packet, and the config // file entry is read using inet_ntop). if (addr4 == Global_Clatd_Config.ipv4_local_subnet.s_addr) { return Global_Clatd_Config.ipv6_local_subnet; } else { // Assumes a /96 plat subnet. addr6 = Global_Clatd_Config.plat_subnet; addr6.s6_addr32[3] = addr4; return addr6; } } /* function: fill_tun_header * fill in the header for the tun fd * tun_header - tunnel header, already allocated * proto - ethernet protocol id: ETH_P_IP(ipv4) or ETH_P_IPV6(ipv6) */ void fill_tun_header(struct tun_pi *tun_header, uint16_t proto) { tun_header->flags = 0; tun_header->proto = htons(proto); } /* function: fill_ip_header * generate an ipv4 header from an ipv6 header * ip_targ - (ipv4) target packet header, source: original ipv4 addr, dest: local subnet addr * payload_len - length of other data inside packet * protocol - protocol number (tcp, udp, etc) * old_header - (ipv6) source packet header, source: nat64 prefix, dest: local subnet prefix */ void fill_ip_header(struct iphdr *ip, uint16_t payload_len, uint8_t protocol, const struct ip6_hdr *old_header) { int ttl_guess; memset(ip, 0, sizeof(struct iphdr)); ip->ihl = 5; ip->version = 4; ip->tos = 0; ip->tot_len = htons(sizeof(struct iphdr) + payload_len); ip->id = 0; ip->frag_off = htons(IP_DF); ip->ttl = old_header->ip6_hlim; ip->protocol = protocol; ip->check = 0; ip->saddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_src); ip->daddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_dst); // Third-party ICMPv6 message. This may have been originated by an native IPv6 address. // In that case, the source IPv6 address can't be translated and we need to make up an IPv4 // source address. For now, use 255.0.0.<ttl>, which at least looks useful in traceroute. if ((uint32_t) ip->saddr == INADDR_NONE) { ttl_guess = icmp_guess_ttl(old_header->ip6_hlim); ip->saddr = htonl((0xff << 24) + ttl_guess); } } /* function: fill_ip6_header * generate an ipv6 header from an ipv4 header * ip6 - (ipv6) target packet header, source: local subnet prefix, dest: nat64 prefix * payload_len - length of other data inside packet * protocol - protocol number (tcp, udp, etc) * old_header - (ipv4) source packet header, source: local subnet addr, dest: internet's ipv4 addr */ void fill_ip6_header(struct ip6_hdr *ip6, uint16_t payload_len, uint8_t protocol, const struct iphdr *old_header) { memset(ip6, 0, sizeof(struct ip6_hdr)); ip6->ip6_vfc = 6 << 4; ip6->ip6_plen = htons(payload_len); ip6->ip6_nxt = protocol; ip6->ip6_hlim = old_header->ttl; ip6->ip6_src = ipv4_addr_to_ipv6_addr(old_header->saddr); ip6->ip6_dst = ipv4_addr_to_ipv6_addr(old_header->daddr); } /* function: maybe_fill_frag_header * fills a fragmentation header * generate an ipv6 fragment header from an ipv4 header * frag_hdr - target (ipv6) fragmentation header * ip6_targ - target (ipv6) header * old_header - (ipv4) source packet header * returns: the length of the fragmentation header if present, or zero if not present */ size_t maybe_fill_frag_header(struct ip6_frag *frag_hdr, struct ip6_hdr *ip6_targ, const struct iphdr *old_header) { uint16_t frag_flags = ntohs(old_header->frag_off); uint16_t frag_off = frag_flags & IP_OFFMASK; if (frag_off == 0 && (frag_flags & IP_MF) == 0) { // Not a fragment. return 0; } frag_hdr->ip6f_nxt = ip6_targ->ip6_nxt; frag_hdr->ip6f_reserved = 0; // In IPv4, the offset is the bottom 13 bits; in IPv6 it's the top 13 bits. frag_hdr->ip6f_offlg = htons(frag_off << 3); if (frag_flags & IP_MF) { frag_hdr->ip6f_offlg |= IP6F_MORE_FRAG; } frag_hdr->ip6f_ident = htonl(ntohs(old_header->id)); ip6_targ->ip6_nxt = IPPROTO_FRAGMENT; return sizeof(*frag_hdr); } /* function: parse_frag_header * return the length of the fragmentation header if present, or zero if not present * generate an ipv6 fragment header from an ipv4 header * frag_hdr - (ipv6) fragmentation header * ip_targ - target (ipv4) header * returns: the next header value */ uint8_t parse_frag_header(const struct ip6_frag *frag_hdr, struct iphdr *ip_targ) { uint16_t frag_off = (ntohs(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) >> 3); if (frag_hdr->ip6f_offlg & IP6F_MORE_FRAG) { frag_off |= IP_MF; } ip_targ->frag_off = htons(frag_off); ip_targ->id = htons(ntohl(frag_hdr->ip6f_ident) & 0xffff); ip_targ->protocol = frag_hdr->ip6f_nxt; return frag_hdr->ip6f_nxt; } /* function: icmp_to_icmp6 * translate ipv4 icmp to ipv6 icmp * out - output packet * icmp - source packet icmp header * checksum - pseudo-header checksum * payload - icmp payload * payload_size - size of payload * returns: the highest position in the output clat_packet that's filled in */ int icmp_to_icmp6(clat_packet out, int pos, const struct icmphdr *icmp, uint32_t checksum, const char *payload, size_t payload_size) { struct icmp6_hdr *icmp6_targ = out[pos].iov_base; uint8_t icmp6_type; int clat_packet_len; memset(icmp6_targ, 0, sizeof(struct icmp6_hdr)); icmp6_type = icmp_to_icmp6_type(icmp->type, icmp->code); icmp6_targ->icmp6_type = icmp6_type; icmp6_targ->icmp6_code = icmp_to_icmp6_code(icmp->type, icmp->code); out[pos].iov_len = sizeof(struct icmp6_hdr); if (pos == CLAT_POS_TRANSPORTHDR && is_icmp_error(icmp->type) && icmp6_type != ICMP6_PARAM_PROB) { // An ICMP error we understand, one level deep. // Translate the nested packet (the one that caused the error). clat_packet_len = ipv4_packet(out, pos + 1, payload, payload_size); // The pseudo-header checksum was calculated on the transport length of the original IPv4 // packet that we were asked to translate. This transport length is 20 bytes smaller than it // needs to be, because the ICMP error contains an IPv4 header, which we will be translating to // an IPv6 header, which is 20 bytes longer. Fix it up here. // We only need to do this for ICMP->ICMPv6, not ICMPv6->ICMP, because ICMP does not use the // pseudo-header when calculating its checksum (as the IPv4 header has its own checksum). checksum = checksum + htons(20); } else if (icmp6_type == ICMP6_ECHO_REQUEST || icmp6_type == ICMP6_ECHO_REPLY) { // Ping packet. icmp6_targ->icmp6_id = icmp->un.echo.id; icmp6_targ->icmp6_seq = icmp->un.echo.sequence; out[CLAT_POS_PAYLOAD].iov_base = (char *) payload; out[CLAT_POS_PAYLOAD].iov_len = payload_size; clat_packet_len = CLAT_POS_PAYLOAD + 1; } else { // Unknown type/code. The type/code conversion functions have already logged an error. return 0; } icmp6_targ->icmp6_cksum = 0; // Checksum field must be 0 when calculating checksum. icmp6_targ->icmp6_cksum = packet_checksum(checksum, out, pos); return clat_packet_len; } /* function: icmp6_to_icmp * translate ipv6 icmp to ipv4 icmp * out - output packet * icmp6 - source packet icmp6 header * payload - icmp6 payload * payload_size - size of payload * returns: the highest position in the output clat_packet that's filled in */ int icmp6_to_icmp(clat_packet out, int pos, const struct icmp6_hdr *icmp6, const char *payload, size_t payload_size) { struct icmphdr *icmp_targ = out[pos].iov_base; uint8_t icmp_type; int clat_packet_len; memset(icmp_targ, 0, sizeof(struct icmphdr)); icmp_type = icmp6_to_icmp_type(icmp6->icmp6_type, icmp6->icmp6_code); icmp_targ->type = icmp_type; icmp_targ->code = icmp6_to_icmp_code(icmp6->icmp6_type, icmp6->icmp6_code); out[pos].iov_len = sizeof(struct icmphdr); if (pos == CLAT_POS_TRANSPORTHDR && is_icmp6_error(icmp6->icmp6_type) && icmp_type != ICMP_PARAMETERPROB) { // An ICMPv6 error we understand, one level deep. // Translate the nested packet (the one that caused the error). clat_packet_len = ipv6_packet(out, pos + 1, payload, payload_size); } else if (icmp_type == ICMP_ECHO || icmp_type == ICMP_ECHOREPLY) { // Ping packet. icmp_targ->un.echo.id = icmp6->icmp6_id; icmp_targ->un.echo.sequence = icmp6->icmp6_seq; out[CLAT_POS_PAYLOAD].iov_base = (char *) payload; out[CLAT_POS_PAYLOAD].iov_len = payload_size; clat_packet_len = CLAT_POS_PAYLOAD + 1; } else { // Unknown type/code. The type/code conversion functions have already logged an error. return 0; } icmp_targ->checksum = 0; // Checksum field must be 0 when calculating checksum. icmp_targ->checksum = packet_checksum(0, out, pos); return clat_packet_len; } /* function: generic_packet * takes a generic IP packet and sets it up for translation * out - output packet * pos - position in the output packet of the transport header * payload - pointer to IP payload * len - size of ip payload * returns: the highest position in the output clat_packet that's filled in */ int generic_packet(clat_packet out, int pos, const char *payload, size_t len) { out[pos].iov_len = 0; out[CLAT_POS_PAYLOAD].iov_base = (char *) payload; out[CLAT_POS_PAYLOAD].iov_len = len; return CLAT_POS_PAYLOAD + 1; } /* function: udp_packet * takes a udp packet and sets it up for translation * out - output packet * udp - pointer to udp header in packet * old_sum - pseudo-header checksum of old header * new_sum - pseudo-header checksum of new header * len - size of ip payload */ int udp_packet(clat_packet out, int pos, const struct udphdr *udp, uint32_t old_sum, uint32_t new_sum, size_t len) { const char *payload; size_t payload_size; if(len < sizeof(struct udphdr)) { logmsg_dbg(ANDROID_LOG_ERROR,"udp_packet/(too small)"); return 0; } payload = (const char *) (udp + 1); payload_size = len - sizeof(struct udphdr); return udp_translate(out, pos, udp, old_sum, new_sum, payload, payload_size); } /* function: tcp_packet * takes a tcp packet and sets it up for translation * out - output packet * tcp - pointer to tcp header in packet * checksum - pseudo-header checksum * len - size of ip payload * returns: the highest position in the output clat_packet that's filled in */ int tcp_packet(clat_packet out, int pos, const struct tcphdr *tcp, uint32_t old_sum, uint32_t new_sum, size_t len) { const char *payload; size_t payload_size, header_size; if(len < sizeof(struct tcphdr)) { logmsg_dbg(ANDROID_LOG_ERROR,"tcp_packet/(too small)"); return 0; } if(tcp->doff < 5) { logmsg_dbg(ANDROID_LOG_ERROR,"tcp_packet/tcp header length set to less than 5: %x", tcp->doff); return 0; } if((size_t) tcp->doff*4 > len) { logmsg_dbg(ANDROID_LOG_ERROR,"tcp_packet/tcp header length set too large: %x", tcp->doff); return 0; } header_size = tcp->doff * 4; payload = ((const char *) tcp) + header_size; payload_size = len - header_size; return tcp_translate(out, pos, tcp, header_size, old_sum, new_sum, payload, payload_size); } /* function: udp_translate * common between ipv4/ipv6 - setup checksum and send udp packet * out - output packet * udp - udp header * old_sum - pseudo-header checksum of old header * new_sum - pseudo-header checksum of new header * payload - tcp payload * payload_size - size of payload * returns: the highest position in the output clat_packet that's filled in */ int udp_translate(clat_packet out, int pos, const struct udphdr *udp, uint32_t old_sum, uint32_t new_sum, const char *payload, size_t payload_size) { struct udphdr *udp_targ = out[pos].iov_base; memcpy(udp_targ, udp, sizeof(struct udphdr)); out[pos].iov_len = sizeof(struct udphdr); out[CLAT_POS_PAYLOAD].iov_base = (char *) payload; out[CLAT_POS_PAYLOAD].iov_len = payload_size; if (udp_targ->check) { udp_targ->check = ip_checksum_adjust(udp->check, old_sum, new_sum); } else { // Zero checksums are special. RFC 768 says, "An all zero transmitted checksum value means that // the transmitter generated no checksum (for debugging or for higher level protocols that // don't care)." However, in IPv6 zero UDP checksums were only permitted by RFC 6935 (2013). So // for safety we recompute it. udp_targ->check = 0; // Checksum field must be 0 when calculating checksum. udp_targ->check = packet_checksum(new_sum, out, pos); } // RFC 768: "If the computed checksum is zero, it is transmitted as all ones (the equivalent // in one's complement arithmetic)." if (!udp_targ->check) { udp_targ->check = 0xffff; } return CLAT_POS_PAYLOAD + 1; } /* function: tcp_translate * common between ipv4/ipv6 - setup checksum and send tcp packet * out - output packet * tcp - tcp header * header_size - size of tcp header including options * checksum - partial checksum covering ipv4/ipv6 header * payload - tcp payload * payload_size - size of payload * returns: the highest position in the output clat_packet that's filled in */ int tcp_translate(clat_packet out, int pos, const struct tcphdr *tcp, size_t header_size, uint32_t old_sum, uint32_t new_sum, const char *payload, size_t payload_size) { struct tcphdr *tcp_targ = out[pos].iov_base; out[pos].iov_len = header_size; if (header_size > MAX_TCP_HDR) { // A TCP header cannot be more than MAX_TCP_HDR bytes long because it's a 4-bit field that // counts in 4-byte words. So this can never happen unless there is a bug in the caller. logmsg(ANDROID_LOG_ERROR, "tcp_translate: header too long %d > %d, truncating", header_size, MAX_TCP_HDR); header_size = MAX_TCP_HDR; } memcpy(tcp_targ, tcp, header_size); out[CLAT_POS_PAYLOAD].iov_base = (char *)payload; out[CLAT_POS_PAYLOAD].iov_len = payload_size; tcp_targ->check = ip_checksum_adjust(tcp->check, old_sum, new_sum); return CLAT_POS_PAYLOAD + 1; } /* function: translate_packet * takes a tun header and a packet and sends it down the stack * tunnel - tun device data * tun_header - tun header * packet - packet * packetsize - size of packet */ void translate_packet(const struct tun_data *tunnel, struct tun_pi *tun_header, const char *packet, size_t packetsize) { int fd; int iov_len = 0; // Allocate buffers for all packet headers. struct tun_pi tun_targ; char iphdr[sizeof(struct ip6_hdr)]; char fraghdr[sizeof(struct ip6_frag)]; char transporthdr[MAX_TCP_HDR]; char icmp_iphdr[sizeof(struct ip6_hdr)]; char icmp_fraghdr[sizeof(struct ip6_frag)]; char icmp_transporthdr[MAX_TCP_HDR]; // iovec of the packets we'll send. This gets passed down to the translation functions. clat_packet out = { { &tun_targ, sizeof(tun_targ) }, // Tunnel header. { iphdr, 0 }, // IP header. { fraghdr, 0 }, // Fragment header. { transporthdr, 0 }, // Transport layer header. { icmp_iphdr, 0 }, // ICMP error inner IP header. { icmp_fraghdr, 0 }, // ICMP error fragmentation header. { icmp_transporthdr, 0 }, // ICMP error transport layer header. { NULL, 0 }, // Payload. No buffer, it's a pointer to the original payload. }; if(tun_header->flags != 0) { logmsg(ANDROID_LOG_WARN, "translate_packet: unexpected flags = %d", tun_header->flags); } if(ntohs(tun_header->proto) == ETH_P_IP) { fd = tunnel->fd6; fill_tun_header(&tun_targ, ETH_P_IPV6); iov_len = ipv4_packet(out, CLAT_POS_IPHDR, packet, packetsize); } else if(ntohs(tun_header->proto) == ETH_P_IPV6) { fd = tunnel->fd4; fill_tun_header(&tun_targ, ETH_P_IP); iov_len = ipv6_packet(out, CLAT_POS_IPHDR, packet, packetsize); } else { logmsg(ANDROID_LOG_WARN, "translate_packet: unknown packet type = %x",tun_header->proto); } if (iov_len > 0) { writev(fd, out, iov_len); } }