/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_UTILS_H_ #define ART_RUNTIME_UTILS_H_ #include <pthread.h> #include <string> #include <vector> #include "base/logging.h" #include "base/stringpiece.h" #include "base/stringprintf.h" #include "globals.h" #include "primitive.h" namespace art { class DexFile; namespace mirror { class ArtField; class ArtMethod; class Class; class Object; class String; } // namespace mirror enum TimeUnit { kTimeUnitNanosecond, kTimeUnitMicrosecond, kTimeUnitMillisecond, kTimeUnitSecond, }; template<typename T> static inline bool IsPowerOfTwo(T x) { return (x & (x - 1)) == 0; } template<int n, typename T> static inline bool IsAligned(T x) { COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two); return (x & (n - 1)) == 0; } template<int n, typename T> static inline bool IsAligned(T* x) { return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); } #define CHECK_ALIGNED(value, alignment) \ CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) #define DCHECK_ALIGNED(value, alignment) \ DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) // Check whether an N-bit two's-complement representation can hold value. static inline bool IsInt(int N, word value) { CHECK_LT(0, N); CHECK_LT(N, kBitsPerWord); word limit = static_cast<word>(1) << (N - 1); return (-limit <= value) && (value < limit); } static inline bool IsUint(int N, word value) { CHECK_LT(0, N); CHECK_LT(N, kBitsPerWord); word limit = static_cast<word>(1) << N; return (0 <= value) && (value < limit); } static inline bool IsAbsoluteUint(int N, word value) { CHECK_LT(0, N); CHECK_LT(N, kBitsPerWord); if (value < 0) value = -value; return IsUint(N, value); } static inline uint16_t Low16Bits(uint32_t value) { return static_cast<uint16_t>(value); } static inline uint16_t High16Bits(uint32_t value) { return static_cast<uint16_t>(value >> 16); } static inline uint32_t Low32Bits(uint64_t value) { return static_cast<uint32_t>(value); } static inline uint32_t High32Bits(uint64_t value) { return static_cast<uint32_t>(value >> 32); } // A static if which determines whether to return type A or B based on the condition boolean. template <const bool condition, typename A, typename B> struct TypeStaticIf { typedef A value; }; // Specialization to handle the false case. template <typename A, typename B> struct TypeStaticIf<false, A, B> { typedef B value; }; template<typename T> static inline T RoundDown(T x, int n) { CHECK(IsPowerOfTwo(n)); return (x & -n); } template<typename T> static inline T RoundUp(T x, int n) { return RoundDown(x + n - 1, n); } // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., // figure 3-3, page 48, where the function is called clp2. static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) { x = x - 1; x = x | (x >> 1); x = x | (x >> 2); x = x | (x >> 4); x = x | (x >> 8); x = x | (x >> 16); return x + 1; } // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., // figure 5-2, page 66, where the function is called pop. static inline int CountOneBits(uint32_t x) { x = x - ((x >> 1) & 0x55555555); x = (x & 0x33333333) + ((x >> 2) & 0x33333333); x = (x + (x >> 4)) & 0x0F0F0F0F; x = x + (x >> 8); x = x + (x >> 16); return static_cast<int>(x & 0x0000003F); } #define CLZ(x) __builtin_clz(x) #define CTZ(x) __builtin_ctz(x) static inline bool NeedsEscaping(uint16_t ch) { return (ch < ' ' || ch > '~'); } static inline std::string PrintableChar(uint16_t ch) { std::string result; result += '\''; if (NeedsEscaping(ch)) { StringAppendF(&result, "\\u%04x", ch); } else { result += ch; } result += '\''; return result; } // Returns an ASCII string corresponding to the given UTF-8 string. // Java escapes are used for non-ASCII characters. std::string PrintableString(const std::string& utf8); // Tests whether 's' starts with 'prefix'. bool StartsWith(const std::string& s, const char* prefix); // Tests whether 's' starts with 'suffix'. bool EndsWith(const std::string& s, const char* suffix); // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf, // one of which is probably more useful to you. // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int", // "[[I" would be "int[][]", "[Ljava/lang/String;" would be // "java.lang.String[]", and so forth. std::string PrettyDescriptor(const mirror::String* descriptor); std::string PrettyDescriptor(const std::string& descriptor); std::string PrettyDescriptor(Primitive::Type type); std::string PrettyDescriptor(const mirror::Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or // "int a.b.C.f" (depending on the value of 'with_type'). std::string PrettyField(const mirror::ArtField* f, bool with_type = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true); // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or // "a.b.C.m(II)V" (depending on the value of 'with_signature'). std::string PrettyMethod(const mirror::ArtMethod* m, bool with_signature = true) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true); // Returns a human-readable form of the name of the *class* of the given object. // So given an instance of java.lang.String, the output would // be "java.lang.String". Given an array of int, the output would be "int[]". // Given String.class, the output would be "java.lang.Class<java.lang.String>". std::string PrettyTypeOf(const mirror::Object* obj) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable form of the type at an index in the specified dex file. // Example outputs: char[], java.lang.String. std::string PrettyType(uint32_t type_idx, const DexFile& dex_file); // Returns a human-readable form of the name of the given class. // Given String.class, the output would be "java.lang.Class<java.lang.String>". std::string PrettyClass(const mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable form of the name of the given class with its class loader. std::string PrettyClassAndClassLoader(const mirror::Class* c) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns a human-readable size string such as "1MB". std::string PrettySize(size_t size_in_bytes); // Returns a human-readable time string which prints every nanosecond while trying to limit the // number of trailing zeros. Prints using the largest human readable unit up to a second. // e.g. "1ms", "1.000000001s", "1.001us" std::string PrettyDuration(uint64_t nano_duration); // Format a nanosecond time to specified units. std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit); // Get the appropriate unit for a nanosecond duration. TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration); // Get the divisor to convert from a nanoseconds to a time unit uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit); // Performs JNI name mangling as described in section 11.3 "Linking Native Methods" // of the JNI spec. std::string MangleForJni(const std::string& s); // Turn "java.lang.String" into "Ljava/lang/String;". std::string DotToDescriptor(const char* class_name); // Turn "Ljava/lang/String;" into "java.lang.String". std::string DescriptorToDot(const char* descriptor); // Turn "Ljava/lang/String;" into "java/lang/String". std::string DescriptorToName(const char* descriptor); // Tests for whether 's' is a valid class name in the three common forms: bool IsValidBinaryClassName(const char* s); // "java.lang.String" bool IsValidJniClassName(const char* s); // "java/lang/String" bool IsValidDescriptor(const char* s); // "Ljava/lang/String;" // Returns whether the given string is a valid field or method name, // additionally allowing names that begin with '<' and end with '>'. bool IsValidMemberName(const char* s); // Returns the JNI native function name for the non-overloaded method 'm'. std::string JniShortName(const mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Returns the JNI native function name for the overloaded method 'm'. std::string JniLongName(const mirror::ArtMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); bool ReadFileToString(const std::string& file_name, std::string* result); // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format. std::string GetIsoDate(); // Returns the monotonic time since some unspecified starting point in milliseconds. uint64_t MilliTime(); // Returns the monotonic time since some unspecified starting point in microseconds. uint64_t MicroTime(); // Returns the monotonic time since some unspecified starting point in nanoseconds. uint64_t NanoTime(); // Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable. uint64_t ThreadCpuNanoTime(); // Converts the given number of nanoseconds to milliseconds. static constexpr inline uint64_t NsToMs(uint64_t ns) { return ns / 1000 / 1000; } // Converts the given number of milliseconds to nanoseconds static constexpr inline uint64_t MsToNs(uint64_t ns) { return ns * 1000 * 1000; } #if defined(__APPLE__) // No clocks to specify on OS/X, fake value to pass to routines that require a clock. #define CLOCK_REALTIME 0xebadf00d #endif // Sleep for the given number of nanoseconds, a bad way to handle contention. void NanoSleep(uint64_t ns); // Initialize a timespec to either an absolute or relative time. void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts); // Splits a string using the given separator character into a vector of // strings. Empty strings will be omitted. void Split(const std::string& s, char separator, std::vector<std::string>& result); // Joins a vector of strings into a single string, using the given separator. template <typename StringT> std::string Join(std::vector<StringT>& strings, char separator); // Returns the calling thread's tid. (The C libraries don't expose this.) pid_t GetTid(); // Returns the given thread's name. std::string GetThreadName(pid_t tid); // Returns details of the given thread's stack. void GetThreadStack(pthread_t thread, void*& stack_base, size_t& stack_size); // Reads data from "/proc/self/task/${tid}/stat". void GetTaskStats(pid_t tid, char& state, int& utime, int& stime, int& task_cpu); // Returns the name of the scheduler group for the given thread the current process, or the empty string. std::string GetSchedulerGroupName(pid_t tid); // Sets the name of the current thread. The name may be truncated to an // implementation-defined limit. void SetThreadName(const char* thread_name); // Dumps the native stack for thread 'tid' to 'os'. void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true); // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86. void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true); // Find $ANDROID_ROOT, /system, or abort const char* GetAndroidRoot(); // Find $ANDROID_DATA, /data, or abort const char* GetAndroidData(); // Returns the dalvik-cache location, or dies trying. std::string GetDalvikCacheOrDie(const char* android_data); // Returns the dalvik-cache location for a DexFile or OatFile, or dies trying. std::string GetDalvikCacheFilenameOrDie(const std::string& location); // Check whether the given magic matches a known file type. bool IsZipMagic(uint32_t magic); bool IsDexMagic(uint32_t magic); bool IsOatMagic(uint32_t magic); class VoidFunctor { public: template <typename A> inline void operator() (A a) const { UNUSED(a); } template <typename A, typename B> inline void operator() (A a, B b) const { UNUSED(a); UNUSED(b); } template <typename A, typename B, typename C> inline void operator() (A a, B b, C c) const { UNUSED(a); UNUSED(b); UNUSED(c); } }; } // namespace art #endif // ART_RUNTIME_UTILS_H_