/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "common_throws.h" #include "gc/accounting/card_table-inl.h" #include "jni_internal.h" #include "mirror/array.h" #include "mirror/class.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "scoped_thread_state_change.h" /* * We make guarantees about the atomicity of accesses to primitive * variables. These guarantees also apply to elements of arrays. * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and * must not cause "word tearing". Accesses to 64-bit array elements must * either be atomic or treated as two 32-bit operations. References are * always read and written atomically, regardless of the number of bits * used to represent them. * * We can't rely on standard libc functions like memcpy(3) and memmove(3) * in our implementation of System.arraycopy, because they may copy * byte-by-byte (either for the full run or for "unaligned" parts at the * start or end). We need to use functions that guarantee 16-bit or 32-bit * atomicity as appropriate. * * System.arraycopy() is heavily used, so having an efficient implementation * is important. The bionic libc provides a platform-optimized memory move * function that should be used when possible. If it's not available, * the trivial "reference implementation" versions below can be used until * a proper version can be written. * * For these functions, The caller must guarantee that dst/src are aligned * appropriately for the element type, and that n is a multiple of the * element size. */ /* * Works like memmove(), except: * - if all arguments are at least 32-bit aligned, we guarantee that we * will use operations that preserve atomicity of 32-bit values * - if not, we guarantee atomicity of 16-bit values * * If all three arguments are not at least 16-bit aligned, the behavior * of this function is undefined. (We could remove this restriction by * testing for unaligned values and punting to memmove(), but that's * not currently useful.) * * TODO: add loop for 64-bit alignment * TODO: use __builtin_prefetch * TODO: write ARM/MIPS/x86 optimized versions */ void MemmoveWords(void* dst, const void* src, size_t n) { DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x01), 0U); char* d = reinterpret_cast<char*>(dst); const char* s = reinterpret_cast<const char*>(src); size_t copyCount; // If the source and destination pointers are the same, this is // an expensive no-op. Testing for an empty move now allows us // to skip a check later. if (n == 0 || d == s) { return; } // Determine if the source and destination buffers will overlap if // we copy data forward (i.e. *dst++ = *src++). // // It's okay if the destination buffer starts before the source and // there is some overlap, because the reader is always ahead of the // writer. if (LIKELY((d < s) || ((size_t)(d - s) >= n))) { // Copy forward. We prefer 32-bit loads and stores even for 16-bit // data, so sort that out. if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { // Not 32-bit aligned. Two possibilities: // (1) Congruent, we can align to 32-bit by copying one 16-bit val // (2) Non-congruent, we can do one of: // a. copy whole buffer as a series of 16-bit values // b. load/store 32 bits, using shifts to ensure alignment // c. just copy the as 32-bit values and assume the CPU // will do a reasonable job // // We're currently using (a), which is suboptimal. if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { copyCount = n; } else { copyCount = 2; } n -= copyCount; copyCount /= sizeof(uint16_t); while (copyCount--) { *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); d += sizeof(uint16_t); s += sizeof(uint16_t); } } // Copy 32-bit aligned words. copyCount = n / sizeof(uint32_t); while (copyCount--) { *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s); d += sizeof(uint32_t); s += sizeof(uint32_t); } // Check for leftovers. Either we finished exactly, or we have one remaining 16-bit chunk. if ((n & 0x02) != 0) { *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); } } else { // Copy backward, starting at the end. d += n; s += n; if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { // try for 32-bit alignment. if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) { copyCount = n; } else { copyCount = 2; } n -= copyCount; copyCount /= sizeof(uint16_t); while (copyCount--) { d -= sizeof(uint16_t); s -= sizeof(uint16_t); *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); } } // Copy 32-bit aligned words. copyCount = n / sizeof(uint32_t); while (copyCount--) { d -= sizeof(uint32_t); s -= sizeof(uint32_t); *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s); } // Copy leftovers. if ((n & 0x02) != 0) { d -= sizeof(uint16_t); s -= sizeof(uint16_t); *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s); } } } #define move16 MemmoveWords #define move32 MemmoveWords namespace art { static void ThrowArrayStoreException_NotAnArray(const char* identifier, mirror::Object* array) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { std::string actualType(PrettyTypeOf(array)); Thread* self = Thread::Current(); ThrowLocation throw_location = self->GetCurrentLocationForThrow(); self->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", "%s of type %s is not an array", identifier, actualType.c_str()); } static void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) { ScopedObjectAccess soa(env); // Null pointer checks. if (UNLIKELY(javaSrc == NULL)) { ThrowNullPointerException(NULL, "src == null"); return; } if (UNLIKELY(javaDst == NULL)) { ThrowNullPointerException(NULL, "dst == null"); return; } // Make sure source and destination are both arrays. mirror::Object* srcObject = soa.Decode<mirror::Object*>(javaSrc); mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst); if (UNLIKELY(!srcObject->IsArrayInstance())) { ThrowArrayStoreException_NotAnArray("source", srcObject); return; } if (UNLIKELY(!dstObject->IsArrayInstance())) { ThrowArrayStoreException_NotAnArray("destination", dstObject); return; } mirror::Array* srcArray = srcObject->AsArray(); mirror::Array* dstArray = dstObject->AsArray(); mirror::Class* srcComponentType = srcArray->GetClass()->GetComponentType(); mirror::Class* dstComponentType = dstArray->GetClass()->GetComponentType(); // Bounds checking. if (UNLIKELY(srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length)) { ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayIndexOutOfBoundsException;", "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d", srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length); return; } // Handle primitive arrays. if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) { // If one of the arrays holds a primitive type the other array must hold the exact same type. if (UNLIKELY(srcComponentType != dstComponentType)) { std::string srcType(PrettyTypeOf(srcArray)); std::string dstType(PrettyTypeOf(dstArray)); ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", "Incompatible types: src=%s, dst=%s", srcType.c_str(), dstType.c_str()); return; } size_t width = srcArray->GetClass()->GetComponentSize(); uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width)); const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width)); switch (width) { case 1: memmove(dstBytes + dstPos, srcBytes + srcPos, length); break; case 2: move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2); break; case 4: move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4); break; case 8: // We don't need to guarantee atomicity of the entire 64-bit word. move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8); break; default: LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray); } return; } // Neither class is primitive. Are the types trivially compatible? const size_t width = sizeof(mirror::Object*); uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width)); const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width)); if (dstArray == srcArray || dstComponentType->IsAssignableFrom(srcComponentType)) { // Yes. Bulk copy. COMPILE_ASSERT(sizeof(width) == sizeof(uint32_t), move32_assumes_Object_references_are_32_bit); move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width); Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length); return; } // The arrays are not trivially compatible. However, we may still be able to copy some or all of // the elements if the source objects are compatible (for example, copying an Object[] to // String[], the Objects being copied might actually be Strings). // We can't do a bulk move because that would introduce a check-use race condition, so we copy // elements one by one. // We already dealt with overlapping copies, so we don't need to cope with that case below. CHECK_NE(dstArray, srcArray); mirror::Object* const * srcObjects = reinterpret_cast<mirror::Object* const *>(srcBytes + srcPos * width); mirror::Object** dstObjects = reinterpret_cast<mirror::Object**>(dstBytes + dstPos * width); mirror::Class* dstClass = dstArray->GetClass()->GetComponentType(); // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that // we know is assignable to the destination array's component type. mirror::Class* lastAssignableElementClass = dstClass; mirror::Object* o = NULL; int i = 0; for (; i < length; ++i) { o = srcObjects[i]; if (o != NULL) { mirror::Class* oClass = o->GetClass(); if (lastAssignableElementClass == oClass) { dstObjects[i] = o; } else if (dstClass->IsAssignableFrom(oClass)) { lastAssignableElementClass = oClass; dstObjects[i] = o; } else { // Can't put this element into the array. break; } } else { dstObjects[i] = NULL; } } Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length); if (UNLIKELY(i != length)) { std::string actualSrcType(PrettyTypeOf(o)); std::string dstType(PrettyTypeOf(dstArray)); ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow(); soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;", "source[%d] of type %s cannot be stored in destination array of type %s", srcPos + i, actualSrcType.c_str(), dstType.c_str()); return; } } static jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) { ScopedObjectAccess soa(env); mirror::Object* o = soa.Decode<mirror::Object*>(javaObject); return static_cast<jint>(o->IdentityHashCode()); } static JNINativeMethod gMethods[] = { NATIVE_METHOD(System, arraycopy, "(Ljava/lang/Object;ILjava/lang/Object;II)V"), NATIVE_METHOD(System, identityHashCode, "(Ljava/lang/Object;)I"), }; void register_java_lang_System(JNIEnv* env) { REGISTER_NATIVE_METHODS("java/lang/System"); } } // namespace art