/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_ #define ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_ #include "base/logging.h" #include "card_table.h" #include "cutils/atomic-inline.h" #include "space_bitmap.h" #include "utils.h" namespace art { namespace gc { namespace accounting { static inline bool byte_cas(byte old_value, byte new_value, byte* address) { // Little endian means most significant byte is on the left. const size_t shift = reinterpret_cast<uintptr_t>(address) % sizeof(uintptr_t); // Align the address down. address -= shift; int32_t* word_address = reinterpret_cast<int32_t*>(address); // Word with the byte we are trying to cas cleared. const int32_t cur_word = *word_address & ~(0xFF << shift); const int32_t old_word = cur_word | (static_cast<int32_t>(old_value) << shift); const int32_t new_word = cur_word | (static_cast<int32_t>(new_value) << shift); bool success = android_atomic_cas(old_word, new_word, word_address) == 0; return success; } template <typename Visitor> inline size_t CardTable::Scan(SpaceBitmap* bitmap, byte* scan_begin, byte* scan_end, const Visitor& visitor, const byte minimum_age) const { DCHECK(bitmap->HasAddress(scan_begin)); DCHECK(bitmap->HasAddress(scan_end - 1)); // scan_end is the byte after the last byte we scan. byte* card_cur = CardFromAddr(scan_begin); byte* card_end = CardFromAddr(scan_end); CheckCardValid(card_cur); CheckCardValid(card_end); size_t cards_scanned = 0; // Handle any unaligned cards at the start. while (!IsAligned<sizeof(word)>(card_cur) && card_cur < card_end) { if (*card_cur >= minimum_age) { uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur)); bitmap->VisitMarkedRange(start, start + kCardSize, visitor); ++cards_scanned; } ++card_cur; } byte* aligned_end = card_end - (reinterpret_cast<uintptr_t>(card_end) & (sizeof(uintptr_t) - 1)); uintptr_t* word_end = reinterpret_cast<uintptr_t*>(aligned_end); for (uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); word_cur < word_end; ++word_cur) { while (LIKELY(*word_cur == 0)) { ++word_cur; if (UNLIKELY(word_cur >= word_end)) { goto exit_for; } } // Find the first dirty card. uintptr_t start_word = *word_cur; uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(reinterpret_cast<byte*>(word_cur))); // TODO: Investigate if processing continuous runs of dirty cards with a single bitmap visit is // more efficient. for (size_t i = 0; i < sizeof(uintptr_t); ++i) { if (static_cast<byte>(start_word) >= minimum_age) { auto* card = reinterpret_cast<byte*>(word_cur) + i; DCHECK(*card == static_cast<byte>(start_word) || *card == kCardDirty) << "card " << static_cast<size_t>(*card) << " word " << (start_word & 0xFF); bitmap->VisitMarkedRange(start, start + kCardSize, visitor); ++cards_scanned; } start_word >>= 8; start += kCardSize; } } exit_for: // Handle any unaligned cards at the end. card_cur = reinterpret_cast<byte*>(word_end); while (card_cur < card_end) { if (*card_cur >= minimum_age) { uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur)); bitmap->VisitMarkedRange(start, start + kCardSize, visitor); ++cards_scanned; } ++card_cur; } return cards_scanned; } /* * Visitor is expected to take in a card and return the new value. When a value is modified, the * modify visitor is called. * visitor: The visitor which modifies the cards. Returns the new value for a card given an old * value. * modified: Whenever the visitor modifies a card, this visitor is called on the card. Enables * us to know which cards got cleared. */ template <typename Visitor, typename ModifiedVisitor> inline void CardTable::ModifyCardsAtomic(byte* scan_begin, byte* scan_end, const Visitor& visitor, const ModifiedVisitor& modified) { byte* card_cur = CardFromAddr(scan_begin); byte* card_end = CardFromAddr(scan_end); CheckCardValid(card_cur); CheckCardValid(card_end); // Handle any unaligned cards at the start. while (!IsAligned<sizeof(word)>(card_cur) && card_cur < card_end) { byte expected, new_value; do { expected = *card_cur; new_value = visitor(expected); } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur))); if (expected != new_value) { modified(card_cur, expected, new_value); } ++card_cur; } // Handle unaligned cards at the end. while (!IsAligned<sizeof(word)>(card_end) && card_end > card_cur) { --card_end; byte expected, new_value; do { expected = *card_end; new_value = visitor(expected); } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end))); if (expected != new_value) { modified(card_cur, expected, new_value); } } // Now we have the words, we can process words in parallel. uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); uintptr_t* word_end = reinterpret_cast<uintptr_t*>(card_end); uintptr_t expected_word; uintptr_t new_word; // TODO: Parallelize. while (word_cur < word_end) { while ((expected_word = *word_cur) != 0) { new_word = (visitor((expected_word >> 0) & 0xFF) << 0) | (visitor((expected_word >> 8) & 0xFF) << 8) | (visitor((expected_word >> 16) & 0xFF) << 16) | (visitor((expected_word >> 24) & 0xFF) << 24); if (new_word == expected_word) { // No need to do a cas. break; } if (LIKELY(android_atomic_cas(expected_word, new_word, reinterpret_cast<int32_t*>(word_cur)) == 0)) { for (size_t i = 0; i < sizeof(uintptr_t); ++i) { const byte expected_byte = (expected_word >> (8 * i)) & 0xFF; const byte new_byte = (new_word >> (8 * i)) & 0xFF; if (expected_byte != new_byte) { modified(reinterpret_cast<byte*>(word_cur) + i, expected_byte, new_byte); } } break; } } ++word_cur; } } inline void* CardTable::AddrFromCard(const byte *card_addr) const { DCHECK(IsValidCard(card_addr)) << " card_addr: " << reinterpret_cast<const void*>(card_addr) << " begin: " << reinterpret_cast<void*>(mem_map_->Begin() + offset_) << " end: " << reinterpret_cast<void*>(mem_map_->End()); uintptr_t offset = card_addr - biased_begin_; return reinterpret_cast<void*>(offset << kCardShift); } inline byte* CardTable::CardFromAddr(const void *addr) const { byte *card_addr = biased_begin_ + (reinterpret_cast<uintptr_t>(addr) >> kCardShift); // Sanity check the caller was asking for address covered by the card table DCHECK(IsValidCard(card_addr)) << "addr: " << addr << " card_addr: " << reinterpret_cast<void*>(card_addr); return card_addr; } inline void CardTable::CheckCardValid(byte* card) const { DCHECK(IsValidCard(card)) << " card_addr: " << reinterpret_cast<const void*>(card) << " begin: " << reinterpret_cast<void*>(mem_map_->Begin() + offset_) << " end: " << reinterpret_cast<void*>(mem_map_->End()); } } // namespace accounting } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_