//Has to be first for StackAllocator swap overload to be taken
//into account (at least using GCC 4.0.1)
#include "stack_allocator.h"
#include <map>
#include <algorithm>
#include "cppunit/cppunit_proxy.h"
#if !defined (STLPORT) || defined(_STLP_USE_NAMESPACES)
using namespace std;
#endif
//
// TestCase class
//
class MapTest : public CPPUNIT_NS::TestCase
{
CPPUNIT_TEST_SUITE(MapTest);
CPPUNIT_TEST(map1);
CPPUNIT_TEST(mmap1);
CPPUNIT_TEST(mmap2);
CPPUNIT_TEST(iterators);
CPPUNIT_TEST(equal_range);
CPPUNIT_TEST(allocator_with_state);
#if !defined (STLPORT) || !defined (_STLP_USE_CONTAINERS_EXTENSION)
CPPUNIT_IGNORE;
#endif
CPPUNIT_TEST(template_methods);
CPPUNIT_TEST_SUITE_END();
protected:
void map1();
void mmap1();
void mmap2();
void iterators();
void equal_range();
void allocator_with_state();
void template_methods();
};
CPPUNIT_TEST_SUITE_REGISTRATION(MapTest);
//
// tests implementation
//
void MapTest::map1()
{
typedef map<char, int, less<char> > maptype;
maptype m;
// Store mappings between roman numerals and decimals.
m['l'] = 50;
m['x'] = 20; // Deliberate mistake.
m['v'] = 5;
m['i'] = 1;
// cout << "m['x'] = " << m['x'] << endl;
CPPUNIT_ASSERT( m['x']== 20 );
m['x'] = 10; // Correct mistake.
CPPUNIT_ASSERT( m['x']== 10 );
CPPUNIT_ASSERT( m['z']== 0 );
//cout << "m['z'] = " << m['z'] << endl; // Note default value is added.
CPPUNIT_ASSERT( m.count('z') == 1 );
//cout << "m.count('z') = " << m.count('z') << endl;
pair<maptype::iterator, bool> p = m.insert(pair<const char, int>('c', 100));
CPPUNIT_ASSERT( p.second );
CPPUNIT_ASSERT( p.first != m.end() );
CPPUNIT_ASSERT( (*p.first).first == 'c' );
CPPUNIT_ASSERT( (*p.first).second == 100 );
p = m.insert(pair<const char, int>('c', 100));
CPPUNIT_ASSERT( !p.second ); // already existing pair
CPPUNIT_ASSERT( p.first != m.end() );
CPPUNIT_ASSERT( (*p.first).first == 'c' );
CPPUNIT_ASSERT( (*p.first).second == 100 );
}
void MapTest::mmap1()
{
typedef multimap<char, int, less<char> > mmap;
mmap m;
CPPUNIT_ASSERT(m.count('X')==0);
m.insert(pair<const char, int>('X', 10)); // Standard way.
CPPUNIT_ASSERT(m.count('X')==1);
m.insert(pair<const char, int>('X', 20)); // jbuck: standard way
CPPUNIT_ASSERT(m.count('X')==2);
m.insert(pair<const char, int>('Y', 32)); // jbuck: standard way
mmap::iterator i = m.find('X'); // Find first match.
#ifndef _STLP_CONST
# define _STLP_CONST const
#endif
pair<_STLP_CONST char, int> p('X', 10);
CPPUNIT_ASSERT(*i == p);
CPPUNIT_ASSERT((*i).first == 'X');
CPPUNIT_ASSERT((*i).second == 10);
i++;
CPPUNIT_ASSERT((*i).first == 'X');
CPPUNIT_ASSERT((*i).second == 20);
i++;
CPPUNIT_ASSERT((*i).first == 'Y');
CPPUNIT_ASSERT((*i).second == 32);
i++;
CPPUNIT_ASSERT(i == m.end());
size_t count = m.erase('X');
CPPUNIT_ASSERT(count==2);
}
void MapTest::mmap2()
{
typedef pair<const int, char> pair_type;
pair_type p1(3, 'c');
pair_type p2(6, 'f');
pair_type p3(1, 'a');
pair_type p4(2, 'b');
pair_type p5(3, 'x');
pair_type p6(6, 'f');
typedef multimap<int, char, less<int> > mmap;
pair_type array [] = {
p1,
p2,
p3,
p4,
p5,
p6
};
mmap m(array + 0, array + 6);
mmap::iterator i;
i = m.lower_bound(3);
CPPUNIT_ASSERT((*i).first==3);
CPPUNIT_ASSERT((*i).second=='c');
i = m.upper_bound(3);
CPPUNIT_ASSERT((*i).first==6);
CPPUNIT_ASSERT((*i).second=='f');
}
void MapTest::iterators()
{
typedef map<int, char, less<int> > int_map;
int_map imap;
{
int_map::iterator ite(imap.begin());
int_map::const_iterator cite(imap.begin());
CPPUNIT_ASSERT( ite == cite );
CPPUNIT_ASSERT( !(ite != cite) );
CPPUNIT_ASSERT( cite == ite );
CPPUNIT_ASSERT( !(cite != ite) );
}
typedef multimap<int, char, less<int> > mmap;
typedef mmap::value_type pair_type;
pair_type p1(3, 'c');
pair_type p2(6, 'f');
pair_type p3(1, 'a');
pair_type p4(2, 'b');
pair_type p5(3, 'x');
pair_type p6(6, 'f');
pair_type array [] = {
p1,
p2,
p3,
p4,
p5,
p6
};
mmap m(array+0, array + 6);
{
mmap::iterator ite(m.begin());
mmap::const_iterator cite(m.begin());
//test compare between const_iterator and iterator
CPPUNIT_ASSERT( ite == cite );
CPPUNIT_ASSERT( !(ite != cite) );
CPPUNIT_ASSERT( cite == ite );
CPPUNIT_ASSERT( !(cite != ite) );
}
#if 0
/*
* A check that map and multimap iterators are NOT comparable
* the following code should generate a compile time error
*/
{
int_map::iterator mite(imap.begin());
int_map::const_iterator mcite(imap.begin());
mmap::iterator mmite(m.begin());
mmap::const_iterator mmcite(m.begin());
CPPUNIT_ASSERT( !(mite == mmite) );
CPPUNIT_ASSERT( !(mcite == mmcite) );
CPPUNIT_ASSERT( mite != mmite );
CPPUNIT_ASSERT( mcite != mmcite );
CPPUNIT_ASSERT( !(mite == mmcite) );
CPPUNIT_ASSERT( !(mite == mmcite) );
CPPUNIT_ASSERT( mite != mmcite );
CPPUNIT_ASSERT( mite != mmcite );
}
#endif
mmap::reverse_iterator ri = m.rbegin();
CPPUNIT_ASSERT( ri != m.rend() );
CPPUNIT_ASSERT( ri == m.rbegin() );
CPPUNIT_ASSERT( (*ri).first == 6 );
CPPUNIT_ASSERT( (*ri++).second == 'f' );
CPPUNIT_ASSERT( (*ri).first == 6 );
CPPUNIT_ASSERT( (*ri).second == 'f' );
mmap const& cm = m;
mmap::const_reverse_iterator rci = cm.rbegin();
CPPUNIT_ASSERT( rci != cm.rend() );
CPPUNIT_ASSERT( (*rci).first == 6 );
CPPUNIT_ASSERT( (*rci++).second == 'f' );
CPPUNIT_ASSERT( (*rci).first == 6 );
CPPUNIT_ASSERT( (*rci).second == 'f' );
}
void MapTest::equal_range()
{
typedef map<char, int, less<char> > maptype;
{
maptype m;
m['x'] = 10;
pair<maptype::iterator, maptype::iterator> ret;
ret = m.equal_range('x');
CPPUNIT_ASSERT( ret.first != ret.second );
CPPUNIT_ASSERT( (*(ret.first)).first == 'x' );
CPPUNIT_ASSERT( (*(ret.first)).second == 10 );
CPPUNIT_ASSERT( ++(ret.first) == ret.second );
}
{
{
maptype m;
maptype::iterator i = m.lower_bound( 'x' );
CPPUNIT_ASSERT( i == m.end() );
i = m.upper_bound( 'x' );
CPPUNIT_ASSERT( i == m.end() );
pair<maptype::iterator, maptype::iterator> ret;
ret = m.equal_range('x');
CPPUNIT_ASSERT( ret.first == ret.second );
CPPUNIT_ASSERT( ret.first == m.end() );
}
{
const maptype m;
pair<maptype::const_iterator, maptype::const_iterator> ret;
ret = m.equal_range('x');
CPPUNIT_ASSERT( ret.first == ret.second );
CPPUNIT_ASSERT( ret.first == m.end() );
}
}
}
void MapTest::allocator_with_state()
{
char buf1[1024];
StackAllocator<pair<const int, int> > stack1(buf1, buf1 + sizeof(buf1));
char buf2[1024];
StackAllocator<pair<const int, int> > stack2(buf2, buf2 + sizeof(buf2));
{
typedef map<int, int, less<int>, StackAllocator<pair<const int, int> > > MapInt;
less<int> intLess;
MapInt mint1(intLess, stack1);
int i;
for (i = 0; i < 5; ++i)
mint1.insert(MapInt::value_type(i, i));
MapInt mint1Cpy(mint1);
MapInt mint2(intLess, stack2);
for (; i < 10; ++i)
mint2.insert(MapInt::value_type(i, i));
MapInt mint2Cpy(mint2);
mint1.swap(mint2);
CPPUNIT_ASSERT( mint1.get_allocator().swaped() );
CPPUNIT_ASSERT( mint2.get_allocator().swaped() );
CPPUNIT_ASSERT( mint1 == mint2Cpy );
CPPUNIT_ASSERT( mint2 == mint1Cpy );
CPPUNIT_ASSERT( mint1.get_allocator() == stack2 );
CPPUNIT_ASSERT( mint2.get_allocator() == stack1 );
}
CPPUNIT_ASSERT( stack1.ok() );
CPPUNIT_ASSERT( stack2.ok() );
}
struct Key
{
Key() : m_data(0) {}
explicit Key(int data) : m_data(data) {}
int m_data;
};
struct KeyCmp
{
bool operator () (Key lhs, Key rhs) const
{ return lhs.m_data < rhs.m_data; }
bool operator () (Key lhs, int rhs) const
{ return lhs.m_data < rhs; }
bool operator () (int lhs, Key rhs) const
{ return lhs < rhs.m_data; }
};
struct KeyCmpPtr
{
bool operator () (Key const volatile *lhs, Key const volatile *rhs) const
{ return (*lhs).m_data < (*rhs).m_data; }
bool operator () (Key const volatile *lhs, int rhs) const
{ return (*lhs).m_data < rhs; }
bool operator () (int lhs, Key const volatile *rhs) const
{ return lhs < (*rhs).m_data; }
};
void MapTest::template_methods()
{
#if defined (STLPORT) && defined (_STLP_USE_CONTAINERS_EXTENSION)
{
typedef map<Key, int, KeyCmp> Container;
typedef Container::value_type value;
Container cont;
cont.insert(value(Key(1), 1));
cont.insert(value(Key(2), 2));
cont.insert(value(Key(3), 3));
cont.insert(value(Key(4), 4));
CPPUNIT_ASSERT( cont.count(Key(1)) == 1 );
CPPUNIT_ASSERT( cont.count(1) == 1 );
CPPUNIT_ASSERT( cont.count(5) == 0 );
CPPUNIT_ASSERT( cont.find(2) != cont.end() );
CPPUNIT_ASSERT( cont.lower_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.upper_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.equal_range(2) != make_pair(cont.begin(), cont.end()) );
Container const& ccont = cont;
CPPUNIT_ASSERT( ccont.find(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.lower_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.upper_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.equal_range(2) != make_pair(ccont.end(), ccont.end()) );
}
{
typedef map<Key*, int, KeyCmpPtr> Container;
typedef Container::value_type value;
Container cont;
Key key1(1), key2(2), key3(3), key4(4);
cont.insert(value(&key1, 1));
cont.insert(value(&key2, 2));
cont.insert(value(&key3, 3));
cont.insert(value(&key4, 4));
CPPUNIT_ASSERT( cont.count(1) == 1 );
CPPUNIT_ASSERT( cont.count(5) == 0 );
CPPUNIT_ASSERT( cont.find(2) != cont.end() );
CPPUNIT_ASSERT( cont.lower_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.upper_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.equal_range(2) != make_pair(cont.begin(), cont.end()) );
Container const& ccont = cont;
CPPUNIT_ASSERT( ccont.find(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.lower_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.upper_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.equal_range(2) != make_pair(ccont.begin(), ccont.end()) );
}
{
typedef multimap<Key, int, KeyCmp> Container;
typedef Container::value_type value;
Container cont;
cont.insert(value(Key(1), 1));
cont.insert(value(Key(2), 2));
cont.insert(value(Key(3), 3));
cont.insert(value(Key(4), 4));
CPPUNIT_ASSERT( cont.count(Key(1)) == 1 );
CPPUNIT_ASSERT( cont.count(1) == 1 );
CPPUNIT_ASSERT( cont.count(5) == 0 );
CPPUNIT_ASSERT( cont.find(2) != cont.end() );
CPPUNIT_ASSERT( cont.lower_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.upper_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.equal_range(2) != make_pair(cont.begin(), cont.end()) );
Container const& ccont = cont;
CPPUNIT_ASSERT( ccont.find(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.lower_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.upper_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.equal_range(2) != make_pair(ccont.end(), ccont.end()) );
}
{
typedef multimap<Key const volatile*, int, KeyCmpPtr> Container;
typedef Container::value_type value;
Container cont;
Key key1(1), key2(2), key3(3), key4(4);
cont.insert(value(&key1, 1));
cont.insert(value(&key2, 2));
cont.insert(value(&key3, 3));
cont.insert(value(&key4, 4));
CPPUNIT_ASSERT( cont.count(1) == 1 );
CPPUNIT_ASSERT( cont.count(5) == 0 );
CPPUNIT_ASSERT( cont.find(2) != cont.end() );
CPPUNIT_ASSERT( cont.lower_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.upper_bound(2) != cont.end() );
CPPUNIT_ASSERT( cont.equal_range(2) != make_pair(cont.begin(), cont.end()) );
Container const& ccont = cont;
CPPUNIT_ASSERT( ccont.find(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.lower_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.upper_bound(2) != ccont.end() );
CPPUNIT_ASSERT( ccont.equal_range(2) != make_pair(ccont.begin(), ccont.end()) );
}
#endif
}
#if !defined (STLPORT) || \
!defined (_STLP_USE_PTR_SPECIALIZATIONS) || defined (_STLP_CLASS_PARTIAL_SPECIALIZATION)
# if !defined (__DMC__)
/* Simple compilation test: Check that nested types like iterator
* can be access even if type used to instanciate container is not
* yet completely defined.
*/
class IncompleteClass
{
map<IncompleteClass, IncompleteClass> instances;
typedef map<IncompleteClass, IncompleteClass>::iterator it;
multimap<IncompleteClass, IncompleteClass> minstances;
typedef multimap<IncompleteClass, IncompleteClass>::iterator mit;
};
# endif
#endif