//Has to be first for StackAllocator swap overload to be taken
//into account (at least using GCC 4.0.1)
#include "stack_allocator.h"
#include <vector>
#include <algorithm>
#if !defined (STLPORT) || defined (_STLP_USE_EXCEPTIONS)
# include <stdexcept>
#endif
#include "cppunit/cppunit_proxy.h"
#if !defined (STLPORT) || defined(_STLP_USE_NAMESPACES)
using namespace std;
#endif
//
// TestCase class
//
class VectorTest : public CPPUNIT_NS::TestCase
{
CPPUNIT_TEST_SUITE(VectorTest);
CPPUNIT_TEST(vec_test_1);
CPPUNIT_TEST(vec_test_2);
CPPUNIT_TEST(vec_test_3);
CPPUNIT_TEST(vec_test_4);
CPPUNIT_TEST(vec_test_5);
CPPUNIT_TEST(vec_test_6);
CPPUNIT_TEST(vec_test_7);
CPPUNIT_TEST(capacity);
CPPUNIT_TEST(at);
CPPUNIT_TEST(pointer);
CPPUNIT_TEST(auto_ref);
CPPUNIT_TEST(allocator_with_state);
CPPUNIT_TEST(iterators);
#if defined (STLPORT) && defined (_STLP_NO_MEMBER_TEMPLATES)
CPPUNIT_IGNORE;
#endif
CPPUNIT_TEST(optimizations_check);
CPPUNIT_TEST(assign_check);
CPPUNIT_STOP_IGNORE;
CPPUNIT_TEST(ebo);
CPPUNIT_TEST_SUITE_END();
protected:
void vec_test_1();
void vec_test_2();
void vec_test_3();
void vec_test_4();
void vec_test_5();
void vec_test_6();
void vec_test_7();
void capacity();
void at();
void pointer();
void auto_ref();
void allocator_with_state();
void iterators();
void optimizations_check();
void assign_check();
void ebo();
};
CPPUNIT_TEST_SUITE_REGISTRATION(VectorTest);
//
// tests implementation
//
void VectorTest::vec_test_1()
{
vector<int> v1; // Empty vector of integers.
CPPUNIT_ASSERT( v1.empty() == true );
CPPUNIT_ASSERT( v1.size() == 0 );
// CPPUNIT_ASSERT( v1.max_size() == INT_MAX / sizeof(int) );
// cout << "max_size = " << v1.max_size() << endl;
v1.push_back(42); // Add an integer to the vector.
CPPUNIT_ASSERT( v1.size() == 1 );
CPPUNIT_ASSERT( v1[0] == 42 );
{
vector<vector<int> > vect(10);
vector<vector<int> >::iterator it(vect.begin()), end(vect.end());
for (; it != end; ++it) {
CPPUNIT_ASSERT( (*it).empty() );
CPPUNIT_ASSERT( (*it).size() == 0 );
CPPUNIT_ASSERT( (*it).capacity() == 0 );
CPPUNIT_ASSERT( (*it).begin() == (*it).end() );
}
}
}
void VectorTest::vec_test_2()
{
vector<double> v1; // Empty vector of doubles.
v1.push_back(32.1);
v1.push_back(40.5);
vector<double> v2; // Another empty vector of doubles.
v2.push_back(3.56);
CPPUNIT_ASSERT( v1.size() == 2 );
CPPUNIT_ASSERT( v1[0] == 32.1 );
CPPUNIT_ASSERT( v1[1] == 40.5 );
CPPUNIT_ASSERT( v2.size() == 1 );
CPPUNIT_ASSERT( v2[0] == 3.56 );
size_t v1Cap = v1.capacity();
size_t v2Cap = v2.capacity();
v1.swap(v2); // Swap the vector's contents.
CPPUNIT_ASSERT( v1.size() == 1 );
CPPUNIT_ASSERT( v1.capacity() == v2Cap );
CPPUNIT_ASSERT( v1[0] == 3.56 );
CPPUNIT_ASSERT( v2.size() == 2 );
CPPUNIT_ASSERT( v2.capacity() == v1Cap );
CPPUNIT_ASSERT( v2[0] == 32.1 );
CPPUNIT_ASSERT( v2[1] == 40.5 );
v2 = v1; // Assign one vector to another.
CPPUNIT_ASSERT( v2.size() == 1 );
CPPUNIT_ASSERT( v2[0] == 3.56 );
}
void VectorTest::vec_test_3()
{
typedef vector<char> vec_type;
vec_type v1; // Empty vector of characters.
v1.push_back('h');
v1.push_back('i');
CPPUNIT_ASSERT( v1.size() == 2 );
CPPUNIT_ASSERT( v1[0] == 'h' );
CPPUNIT_ASSERT( v1[1] == 'i' );
vec_type v2(v1.begin(), v1.end());
v2[1] = 'o'; // Replace second character.
CPPUNIT_ASSERT( v2.size() == 2 );
CPPUNIT_ASSERT( v2[0] == 'h' );
CPPUNIT_ASSERT( v2[1] == 'o' );
CPPUNIT_ASSERT( (v1 == v2) == false );
CPPUNIT_ASSERT( (v1 < v2) == true );
}
void VectorTest::vec_test_4()
{
vector<int> v(4);
v[0] = 1;
v[1] = 4;
v[2] = 9;
v[3] = 16;
CPPUNIT_ASSERT( v.front() == 1 );
CPPUNIT_ASSERT( v.back() == 16 );
v.push_back(25);
CPPUNIT_ASSERT( v.back() == 25 );
CPPUNIT_ASSERT( v.size() == 5 );
v.pop_back();
CPPUNIT_ASSERT( v.back() == 16 );
CPPUNIT_ASSERT( v.size() == 4 );
}
void VectorTest::vec_test_5()
{
int array [] = { 1, 4, 9, 16 };
vector<int> v(array, array + 4);
CPPUNIT_ASSERT( v.size() == 4 );
CPPUNIT_ASSERT( v[0] == 1 );
CPPUNIT_ASSERT( v[1] == 4 );
CPPUNIT_ASSERT( v[2] == 9 );
CPPUNIT_ASSERT( v[3] == 16 );
}
void VectorTest::vec_test_6()
{
int array [] = { 1, 4, 9, 16, 25, 36 };
vector<int> v(array, array + 6);
vector<int>::iterator vit;
CPPUNIT_ASSERT( v.size() == 6 );
CPPUNIT_ASSERT( v[0] == 1 );
CPPUNIT_ASSERT( v[1] == 4 );
CPPUNIT_ASSERT( v[2] == 9 );
CPPUNIT_ASSERT( v[3] == 16 );
CPPUNIT_ASSERT( v[4] == 25 );
CPPUNIT_ASSERT( v[5] == 36 );
vit = v.erase( v.begin() ); // Erase first element.
CPPUNIT_ASSERT( *vit == 4 );
CPPUNIT_ASSERT( v.size() == 5 );
CPPUNIT_ASSERT( v[0] == 4 );
CPPUNIT_ASSERT( v[1] == 9 );
CPPUNIT_ASSERT( v[2] == 16 );
CPPUNIT_ASSERT( v[3] == 25 );
CPPUNIT_ASSERT( v[4] == 36 );
vit = v.erase(v.end() - 1); // Erase last element.
CPPUNIT_ASSERT( vit == v.end() );
CPPUNIT_ASSERT( v.size() == 4 );
CPPUNIT_ASSERT( v[0] == 4 );
CPPUNIT_ASSERT( v[1] == 9 );
CPPUNIT_ASSERT( v[2] == 16 );
CPPUNIT_ASSERT( v[3] == 25 );
v.erase(v.begin() + 1, v.end() - 1); // Erase all but first and last.
CPPUNIT_ASSERT( v.size() == 2 );
CPPUNIT_ASSERT( v[0] == 4 );
CPPUNIT_ASSERT( v[1] == 25 );
}
void VectorTest::vec_test_7()
{
int array1 [] = { 1, 4, 25 };
int array2 [] = { 9, 16 };
vector<int> v(array1, array1 + 3);
vector<int>::iterator vit;
vit = v.insert(v.begin(), 0); // Insert before first element.
CPPUNIT_ASSERT( *vit == 0 );
vit = v.insert(v.end(), 36); // Insert after last element.
CPPUNIT_ASSERT( *vit == 36 );
CPPUNIT_ASSERT( v.size() == 5 );
CPPUNIT_ASSERT( v[0] == 0 );
CPPUNIT_ASSERT( v[1] == 1 );
CPPUNIT_ASSERT( v[2] == 4 );
CPPUNIT_ASSERT( v[3] == 25 );
CPPUNIT_ASSERT( v[4] == 36 );
// Insert contents of array2 before fourth element.
v.insert(v.begin() + 3, array2, array2 + 2);
CPPUNIT_ASSERT( v.size() == 7 );
CPPUNIT_ASSERT( v[0] == 0 );
CPPUNIT_ASSERT( v[1] == 1 );
CPPUNIT_ASSERT( v[2] == 4 );
CPPUNIT_ASSERT( v[3] == 9 );
CPPUNIT_ASSERT( v[4] == 16 );
CPPUNIT_ASSERT( v[5] == 25 );
CPPUNIT_ASSERT( v[6] == 36 );
v.clear();
CPPUNIT_ASSERT( v.empty() );
v.insert(v.begin(), 5, 10);
CPPUNIT_ASSERT( v.size() == 5 );
CPPUNIT_ASSERT( v[0] == 10 );
CPPUNIT_ASSERT( v[1] == 10 );
CPPUNIT_ASSERT( v[2] == 10 );
CPPUNIT_ASSERT( v[3] == 10 );
CPPUNIT_ASSERT( v[4] == 10 );
/*
{
vector<float> vf(2.0f, 3.0f);
CPPUNIT_ASSERT( vf.size() == 2 );
CPPUNIT_ASSERT( vf.front() == 3.0f );
CPPUNIT_ASSERT( vf.back() == 3.0f );
}
*/
}
struct TestStruct
{
unsigned int a[3];
};
void VectorTest::capacity()
{
{
vector<int> v;
CPPUNIT_ASSERT( v.capacity() == 0 );
v.push_back(42);
CPPUNIT_ASSERT( v.capacity() >= 1 );
v.reserve(5000);
CPPUNIT_ASSERT( v.capacity() >= 5000 );
}
{
//Test that used to generate an assertion when using __debug_alloc.
vector<TestStruct> va;
va.reserve(1);
va.reserve(2);
}
}
void VectorTest::at() {
vector<int> v;
vector<int> const& cv = v;
v.push_back(10);
CPPUNIT_ASSERT( v.at(0) == 10 );
v.at(0) = 20;
CPPUNIT_ASSERT( cv.at(0) == 20 );
#if !defined (STLPORT) || defined (_STLP_USE_EXCEPTIONS)
try {
v.at(1) = 20;
CPPUNIT_FAIL;
}
catch (out_of_range const&) {
}
catch (...) {
CPPUNIT_FAIL;
}
#endif
}
void VectorTest::pointer()
{
vector<int *> v1;
vector<int *> v2 = v1;
vector<int *> v3;
v3.insert( v3.end(), v1.begin(), v1.end() );
}
void VectorTest::auto_ref()
{
vector<int> ref;
for (int i = 0; i < 5; ++i) {
ref.push_back(i);
}
vector<vector<int> > v_v_int(1, ref);
v_v_int.push_back(v_v_int[0]);
v_v_int.push_back(ref);
v_v_int.push_back(v_v_int[0]);
v_v_int.push_back(v_v_int[0]);
v_v_int.push_back(ref);
vector<vector<int> >::iterator vvit(v_v_int.begin()), vvitEnd(v_v_int.end());
for (; vvit != vvitEnd; ++vvit) {
CPPUNIT_ASSERT( *vvit == ref );
}
/*
* Forbidden by the Standard:
v_v_int.insert(v_v_int.end(), v_v_int.begin(), v_v_int.end());
for (vvit = v_v_int.begin(), vvitEnd = v_v_int.end();
vvit != vvitEnd; ++vvit) {
CPPUNIT_ASSERT( *vvit == ref );
}
*/
}
void VectorTest::allocator_with_state()
{
char buf1[1024];
StackAllocator<int> stack1(buf1, buf1 + sizeof(buf1));
char buf2[1024];
StackAllocator<int> stack2(buf2, buf2 + sizeof(buf2));
{
typedef vector<int, StackAllocator<int> > VectorInt;
VectorInt vint1(10, 0, stack1);
VectorInt vint1Cpy(vint1);
VectorInt vint2(10, 1, stack2);
VectorInt vint2Cpy(vint2);
vint1.swap(vint2);
CPPUNIT_ASSERT( vint1.get_allocator().swaped() );
CPPUNIT_ASSERT( vint2.get_allocator().swaped() );
CPPUNIT_ASSERT( vint1 == vint2Cpy );
CPPUNIT_ASSERT( vint2 == vint1Cpy );
CPPUNIT_ASSERT( vint1.get_allocator() == stack2 );
CPPUNIT_ASSERT( vint2.get_allocator() == stack1 );
}
CPPUNIT_ASSERT( stack1.ok() );
CPPUNIT_ASSERT( stack2.ok() );
}
struct Point {
int x, y;
};
struct PointEx : public Point {
PointEx() : builtFromBase(false) {}
PointEx(const Point&) : builtFromBase(true) {}
bool builtFromBase;
};
#if defined (STLPORT)
# if defined (_STLP_USE_NAMESPACES)
namespace std {
# endif
_STLP_TEMPLATE_NULL
struct __type_traits<PointEx> {
typedef __false_type has_trivial_default_constructor;
typedef __true_type has_trivial_copy_constructor;
typedef __true_type has_trivial_assignment_operator;
typedef __true_type has_trivial_destructor;
typedef __true_type is_POD_type;
};
# if defined (_STLP_USE_NAMESPACES)
}
# endif
#endif
//This test check that vector implementation do not over optimize
//operation as PointEx copy constructor is trivial
void VectorTest::optimizations_check()
{
#if !defined (STLPORT) || !defined (_STLP_NO_MEMBER_TEMPLATES)
vector<Point> v1(1);
CPPUNIT_ASSERT( v1.size() == 1 );
vector<PointEx> v2(v1.begin(), v1.end());
CPPUNIT_ASSERT( v2.size() == 1 );
CPPUNIT_ASSERT( v2[0].builtFromBase == true );
#endif
}
void VectorTest::assign_check()
{
#if !defined (STLPORT) || !defined (_STLP_NO_MEMBER_TEMPLATES)
vector<int> v(3,1);
int array[] = { 1, 2, 3, 4, 5 };
v.assign( array, array + 5 );
CPPUNIT_CHECK( v[4] == 5 );
CPPUNIT_CHECK( v[0] == 1 );
CPPUNIT_CHECK( v[1] == 2 );
#endif
}
void VectorTest::iterators()
{
vector<int> vint(10, 0);
vector<int> const& crvint = vint;
CPPUNIT_ASSERT( vint.begin() == vint.begin() );
CPPUNIT_ASSERT( crvint.begin() == vint.begin() );
CPPUNIT_ASSERT( vint.begin() == crvint.begin() );
CPPUNIT_ASSERT( crvint.begin() == crvint.begin() );
CPPUNIT_ASSERT( vint.begin() != vint.end() );
CPPUNIT_ASSERT( crvint.begin() != vint.end() );
CPPUNIT_ASSERT( vint.begin() != crvint.end() );
CPPUNIT_ASSERT( crvint.begin() != crvint.end() );
CPPUNIT_ASSERT( vint.rbegin() == vint.rbegin() );
// Not Standard:
//CPPUNIT_ASSERT( vint.rbegin() == crvint.rbegin() );
//CPPUNIT_ASSERT( crvint.rbegin() == vint.rbegin() );
CPPUNIT_ASSERT( crvint.rbegin() == crvint.rbegin() );
CPPUNIT_ASSERT( vint.rbegin() != vint.rend() );
// Not Standard:
//CPPUNIT_ASSERT( vint.rbegin() != crvint.rend() );
//CPPUNIT_ASSERT( crvint.rbegin() != vint.rend() );
CPPUNIT_ASSERT( crvint.rbegin() != crvint.rend() );
}
#if !defined (STLPORT) || \
!defined (_STLP_USE_PTR_SPECIALIZATIONS) || defined (_STLP_CLASS_PARTIAL_SPECIALIZATION)
/* Simple compilation test: Check that nested types like iterator
* can be access even if type used to instanciate container is not
* yet completely defined.
*/
class IncompleteClass
{
vector<IncompleteClass> instances;
typedef vector<IncompleteClass>::iterator it;
};
#endif
#if defined (STLPORT)
# define NOTHROW _STLP_NOTHROW
#else
# define NOTHROW throw()
#endif
/* This allocator implementation purpose is simply to break some
* internal STLport mecanism specific to the STLport own allocator
* implementation. */
template <class _Tp>
struct NotSTLportAllocator : public allocator<_Tp> {
#if !defined (STLPORT) || defined (_STLP_MEMBER_TEMPLATE_CLASSES)
template <class _Tp1> struct rebind {
typedef NotSTLportAllocator<_Tp1> other;
};
#endif
NotSTLportAllocator() NOTHROW {}
#if !defined (STLPORT) || defined (_STLP_MEMBER_TEMPLATES)
template <class _Tp1> NotSTLportAllocator(const NotSTLportAllocator<_Tp1>&) NOTHROW {}
#endif
NotSTLportAllocator(const NotSTLportAllocator<_Tp>&) NOTHROW {}
~NotSTLportAllocator() NOTHROW {}
};
/* This test check a potential issue with empty base class
* optimization. Some compilers (VC6) do not implement it
* correctly resulting ina wrong behavior. */
void VectorTest::ebo()
{
// We use heap memory as test failure can corrupt vector internal
// representation making executable crash on vector destructor invocation.
// We prefer a simple memory leak, internal corruption should be reveal
// by size or capacity checks.
typedef vector<int, NotSTLportAllocator<int> > V;
V *pv1 = new V(1, 1);
V *pv2 = new V(10, 2);
size_t v1Capacity = pv1->capacity();
size_t v2Capacity = pv2->capacity();
pv1->swap(*pv2);
CPPUNIT_ASSERT( pv1->size() == 10 );
CPPUNIT_ASSERT( pv1->capacity() == v2Capacity );
CPPUNIT_ASSERT( (*pv1)[5] == 2 );
CPPUNIT_ASSERT( pv2->size() == 1 );
CPPUNIT_ASSERT( pv2->capacity() == v1Capacity );
CPPUNIT_ASSERT( (*pv2)[0] == 1 );
delete pv2;
delete pv1;
}