/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OpenGLRenderer"
#include <stdlib.h>
#include <stdint.h>
#include <sys/types.h>
#include <SkCanvas.h>
#include <SkTypeface.h>
#include <utils/Log.h>
#include <utils/StopWatch.h>
#include <private/hwui/DrawGlInfo.h>
#include <ui/Rect.h>
#include "OpenGLRenderer.h"
#include "DeferredDisplayList.h"
#include "DisplayListRenderer.h"
#include "Fence.h"
#include "PathTessellator.h"
#include "Properties.h"
#include "Vector.h"
namespace android {
namespace uirenderer {
///////////////////////////////////////////////////////////////////////////////
// Defines
///////////////////////////////////////////////////////////////////////////////
#define RAD_TO_DEG (180.0f / 3.14159265f)
#define MIN_ANGLE 0.001f
#define ALPHA_THRESHOLD 0
#define FILTER(paint) (!paint || paint->isFilterBitmap() ? GL_LINEAR : GL_NEAREST)
///////////////////////////////////////////////////////////////////////////////
// Globals
///////////////////////////////////////////////////////////////////////////////
/**
* Structure mapping Skia xfermodes to OpenGL blending factors.
*/
struct Blender {
SkXfermode::Mode mode;
GLenum src;
GLenum dst;
}; // struct Blender
// In this array, the index of each Blender equals the value of the first
// entry. For instance, gBlends[1] == gBlends[SkXfermode::kSrc_Mode]
static const Blender gBlends[] = {
{ SkXfermode::kClear_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrc_Mode, GL_ONE, GL_ZERO },
{ SkXfermode::kDst_Mode, GL_ZERO, GL_ONE },
{ SkXfermode::kSrcOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE },
{ SkXfermode::kSrcIn_Mode, GL_DST_ALPHA, GL_ZERO },
{ SkXfermode::kDstIn_Mode, GL_ZERO, GL_SRC_ALPHA },
{ SkXfermode::kSrcOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kDstOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrcATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA },
{ SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kPlus_Mode, GL_ONE, GL_ONE },
{ SkXfermode::kModulate_Mode, GL_ZERO, GL_SRC_COLOR },
{ SkXfermode::kScreen_Mode, GL_ONE, GL_ONE_MINUS_SRC_COLOR }
};
// This array contains the swapped version of each SkXfermode. For instance
// this array's SrcOver blending mode is actually DstOver. You can refer to
// createLayer() for more information on the purpose of this array.
static const Blender gBlendsSwap[] = {
{ SkXfermode::kClear_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrc_Mode, GL_ZERO, GL_ONE },
{ SkXfermode::kDst_Mode, GL_ONE, GL_ZERO },
{ SkXfermode::kSrcOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE },
{ SkXfermode::kDstOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kSrcIn_Mode, GL_ZERO, GL_SRC_ALPHA },
{ SkXfermode::kDstIn_Mode, GL_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrcOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kDstOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO },
{ SkXfermode::kSrcATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA },
{ SkXfermode::kDstATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA },
{ SkXfermode::kPlus_Mode, GL_ONE, GL_ONE },
{ SkXfermode::kModulate_Mode, GL_DST_COLOR, GL_ZERO },
{ SkXfermode::kScreen_Mode, GL_ONE_MINUS_DST_COLOR, GL_ONE }
};
///////////////////////////////////////////////////////////////////////////////
// Functions
///////////////////////////////////////////////////////////////////////////////
template<typename T>
static inline T min(T a, T b) {
return a < b ? a : b;
}
///////////////////////////////////////////////////////////////////////////////
// Constructors/destructor
///////////////////////////////////////////////////////////////////////////////
OpenGLRenderer::OpenGLRenderer():
mCaches(Caches::getInstance()), mExtensions(Extensions::getInstance()) {
// *set* draw modifiers to be 0
memset(&mDrawModifiers, 0, sizeof(mDrawModifiers));
mDrawModifiers.mOverrideLayerAlpha = 1.0f;
memcpy(mMeshVertices, gMeshVertices, sizeof(gMeshVertices));
mFirstSnapshot = new Snapshot;
mFrameStarted = false;
mCountOverdraw = false;
mScissorOptimizationDisabled = false;
}
OpenGLRenderer::~OpenGLRenderer() {
// The context has already been destroyed at this point, do not call
// GL APIs. All GL state should be kept in Caches.h
}
void OpenGLRenderer::initProperties() {
char property[PROPERTY_VALUE_MAX];
if (property_get(PROPERTY_DISABLE_SCISSOR_OPTIMIZATION, property, "false")) {
mScissorOptimizationDisabled = !strcasecmp(property, "true");
INIT_LOGD(" Scissor optimization %s",
mScissorOptimizationDisabled ? "disabled" : "enabled");
} else {
INIT_LOGD(" Scissor optimization enabled");
}
}
///////////////////////////////////////////////////////////////////////////////
// Setup
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setName(const char* name) {
if (name) {
mName.setTo(name);
} else {
mName.clear();
}
}
const char* OpenGLRenderer::getName() const {
return mName.string();
}
bool OpenGLRenderer::isDeferred() {
return false;
}
void OpenGLRenderer::setViewport(int width, int height) {
initViewport(width, height);
glDisable(GL_DITHER);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glEnableVertexAttribArray(Program::kBindingPosition);
}
void OpenGLRenderer::initViewport(int width, int height) {
mOrthoMatrix.loadOrtho(0, width, height, 0, -1, 1);
mWidth = width;
mHeight = height;
mFirstSnapshot->height = height;
mFirstSnapshot->viewport.set(0, 0, width, height);
}
void OpenGLRenderer::setupFrameState(float left, float top,
float right, float bottom, bool opaque) {
mCaches.clearGarbage();
mOpaque = opaque;
mSnapshot = new Snapshot(mFirstSnapshot,
SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag);
mSnapshot->fbo = getTargetFbo();
mSaveCount = 1;
mSnapshot->setClip(left, top, right, bottom);
mTilingClip.set(left, top, right, bottom);
}
status_t OpenGLRenderer::startFrame() {
if (mFrameStarted) return DrawGlInfo::kStatusDone;
mFrameStarted = true;
mDirtyClip = true;
discardFramebuffer(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom);
glViewport(0, 0, mWidth, mHeight);
// Functors break the tiling extension in pretty spectacular ways
// This ensures we don't use tiling when a functor is going to be
// invoked during the frame
mSuppressTiling = mCaches.hasRegisteredFunctors();
startTiling(mSnapshot, true);
debugOverdraw(true, true);
return clear(mTilingClip.left, mTilingClip.top,
mTilingClip.right, mTilingClip.bottom, mOpaque);
}
status_t OpenGLRenderer::prepare(bool opaque) {
return prepareDirty(0.0f, 0.0f, mWidth, mHeight, opaque);
}
status_t OpenGLRenderer::prepareDirty(float left, float top,
float right, float bottom, bool opaque) {
setupFrameState(left, top, right, bottom, opaque);
// Layer renderers will start the frame immediately
// The framebuffer renderer will first defer the display list
// for each layer and wait until the first drawing command
// to start the frame
if (mSnapshot->fbo == 0) {
syncState();
updateLayers();
} else {
return startFrame();
}
return DrawGlInfo::kStatusDone;
}
void OpenGLRenderer::discardFramebuffer(float left, float top, float right, float bottom) {
// If we know that we are going to redraw the entire framebuffer,
// perform a discard to let the driver know we don't need to preserve
// the back buffer for this frame.
if (mExtensions.hasDiscardFramebuffer() &&
left <= 0.0f && top <= 0.0f && right >= mWidth && bottom >= mHeight) {
const bool isFbo = getTargetFbo() == 0;
const GLenum attachments[] = {
isFbo ? (const GLenum) GL_COLOR_EXT : (const GLenum) GL_COLOR_ATTACHMENT0,
isFbo ? (const GLenum) GL_STENCIL_EXT : (const GLenum) GL_STENCIL_ATTACHMENT };
glDiscardFramebufferEXT(GL_FRAMEBUFFER, 1, attachments);
}
}
status_t OpenGLRenderer::clear(float left, float top, float right, float bottom, bool opaque) {
if (!opaque || mCountOverdraw) {
mCaches.enableScissor();
mCaches.setScissor(left, mSnapshot->height - bottom, right - left, bottom - top);
glClear(GL_COLOR_BUFFER_BIT);
return DrawGlInfo::kStatusDrew;
}
mCaches.resetScissor();
return DrawGlInfo::kStatusDone;
}
void OpenGLRenderer::syncState() {
if (mCaches.blend) {
glEnable(GL_BLEND);
} else {
glDisable(GL_BLEND);
}
}
void OpenGLRenderer::startTiling(const sp<Snapshot>& s, bool opaque) {
if (!mSuppressTiling) {
Rect* clip = &mTilingClip;
if (s->flags & Snapshot::kFlagFboTarget) {
clip = &(s->layer->clipRect);
}
startTiling(*clip, s->height, opaque);
}
}
void OpenGLRenderer::startTiling(const Rect& clip, int windowHeight, bool opaque) {
if (!mSuppressTiling) {
mCaches.startTiling(clip.left, windowHeight - clip.bottom,
clip.right - clip.left, clip.bottom - clip.top, opaque);
}
}
void OpenGLRenderer::endTiling() {
if (!mSuppressTiling) mCaches.endTiling();
}
void OpenGLRenderer::finish() {
renderOverdraw();
endTiling();
// When finish() is invoked on FBO 0 we've reached the end
// of the current frame
if (getTargetFbo() == 0) {
mCaches.pathCache.trim();
}
if (!suppressErrorChecks()) {
#if DEBUG_OPENGL
GLenum status = GL_NO_ERROR;
while ((status = glGetError()) != GL_NO_ERROR) {
ALOGD("GL error from OpenGLRenderer: 0x%x", status);
switch (status) {
case GL_INVALID_ENUM:
ALOGE(" GL_INVALID_ENUM");
break;
case GL_INVALID_VALUE:
ALOGE(" GL_INVALID_VALUE");
break;
case GL_INVALID_OPERATION:
ALOGE(" GL_INVALID_OPERATION");
break;
case GL_OUT_OF_MEMORY:
ALOGE(" Out of memory!");
break;
}
}
#endif
#if DEBUG_MEMORY_USAGE
mCaches.dumpMemoryUsage();
#else
if (mCaches.getDebugLevel() & kDebugMemory) {
mCaches.dumpMemoryUsage();
}
#endif
}
if (mCountOverdraw) {
countOverdraw();
}
mFrameStarted = false;
}
void OpenGLRenderer::interrupt() {
if (mCaches.currentProgram) {
if (mCaches.currentProgram->isInUse()) {
mCaches.currentProgram->remove();
mCaches.currentProgram = NULL;
}
}
mCaches.resetActiveTexture();
mCaches.unbindMeshBuffer();
mCaches.unbindIndicesBuffer();
mCaches.resetVertexPointers();
mCaches.disableTexCoordsVertexArray();
debugOverdraw(false, false);
}
void OpenGLRenderer::resume() {
sp<Snapshot> snapshot = (mSnapshot != NULL) ? mSnapshot : mFirstSnapshot;
glViewport(0, 0, snapshot->viewport.getWidth(), snapshot->viewport.getHeight());
glBindFramebuffer(GL_FRAMEBUFFER, snapshot->fbo);
debugOverdraw(true, false);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
mCaches.scissorEnabled = glIsEnabled(GL_SCISSOR_TEST);
mCaches.enableScissor();
mCaches.resetScissor();
dirtyClip();
mCaches.activeTexture(0);
mCaches.resetBoundTextures();
mCaches.blend = true;
glEnable(GL_BLEND);
glBlendFunc(mCaches.lastSrcMode, mCaches.lastDstMode);
glBlendEquation(GL_FUNC_ADD);
}
void OpenGLRenderer::resumeAfterLayer() {
sp<Snapshot> snapshot = (mSnapshot != NULL) ? mSnapshot : mFirstSnapshot;
glViewport(0, 0, snapshot->viewport.getWidth(), snapshot->viewport.getHeight());
glBindFramebuffer(GL_FRAMEBUFFER, snapshot->fbo);
debugOverdraw(true, false);
mCaches.resetScissor();
dirtyClip();
}
void OpenGLRenderer::detachFunctor(Functor* functor) {
mFunctors.remove(functor);
}
void OpenGLRenderer::attachFunctor(Functor* functor) {
mFunctors.add(functor);
}
status_t OpenGLRenderer::invokeFunctors(Rect& dirty) {
status_t result = DrawGlInfo::kStatusDone;
size_t count = mFunctors.size();
if (count > 0) {
interrupt();
SortedVector<Functor*> functors(mFunctors);
mFunctors.clear();
DrawGlInfo info;
info.clipLeft = 0;
info.clipTop = 0;
info.clipRight = 0;
info.clipBottom = 0;
info.isLayer = false;
info.width = 0;
info.height = 0;
memset(info.transform, 0, sizeof(float) * 16);
for (size_t i = 0; i < count; i++) {
Functor* f = functors.itemAt(i);
result |= (*f)(DrawGlInfo::kModeProcess, &info);
if (result & DrawGlInfo::kStatusDraw) {
Rect localDirty(info.dirtyLeft, info.dirtyTop, info.dirtyRight, info.dirtyBottom);
dirty.unionWith(localDirty);
}
if (result & DrawGlInfo::kStatusInvoke) {
mFunctors.add(f);
}
}
resume();
}
return result;
}
status_t OpenGLRenderer::callDrawGLFunction(Functor* functor, Rect& dirty) {
if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone;
detachFunctor(functor);
Rect clip(*mSnapshot->clipRect);
clip.snapToPixelBoundaries();
// Since we don't know what the functor will draw, let's dirty
// tne entire clip region
if (hasLayer()) {
dirtyLayerUnchecked(clip, getRegion());
}
DrawGlInfo info;
info.clipLeft = clip.left;
info.clipTop = clip.top;
info.clipRight = clip.right;
info.clipBottom = clip.bottom;
info.isLayer = hasLayer();
info.width = getSnapshot()->viewport.getWidth();
info.height = getSnapshot()->height;
getSnapshot()->transform->copyTo(&info.transform[0]);
bool dirtyClip = mDirtyClip;
// setup GL state for functor
if (mDirtyClip) {
setStencilFromClip(); // can issue draws, so must precede enableScissor()/interrupt()
}
if (mCaches.enableScissor() || dirtyClip) {
setScissorFromClip();
}
interrupt();
// call functor immediately after GL state setup
status_t result = (*functor)(DrawGlInfo::kModeDraw, &info);
if (result != DrawGlInfo::kStatusDone) {
Rect localDirty(info.dirtyLeft, info.dirtyTop, info.dirtyRight, info.dirtyBottom);
dirty.unionWith(localDirty);
if (result & DrawGlInfo::kStatusInvoke) {
mFunctors.add(functor);
}
}
resume();
return result | DrawGlInfo::kStatusDrew;
}
///////////////////////////////////////////////////////////////////////////////
// Debug
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::eventMark(const char* name) const {
mCaches.eventMark(0, name);
}
void OpenGLRenderer::startMark(const char* name) const {
mCaches.startMark(0, name);
}
void OpenGLRenderer::endMark() const {
mCaches.endMark();
}
void OpenGLRenderer::debugOverdraw(bool enable, bool clear) {
if (mCaches.debugOverdraw && getTargetFbo() == 0) {
if (clear) {
mCaches.disableScissor();
mCaches.stencil.clear();
}
if (enable) {
mCaches.stencil.enableDebugWrite();
} else {
mCaches.stencil.disable();
}
}
}
void OpenGLRenderer::renderOverdraw() {
if (mCaches.debugOverdraw && getTargetFbo() == 0) {
const Rect* clip = &mTilingClip;
mCaches.enableScissor();
mCaches.setScissor(clip->left, mFirstSnapshot->height - clip->bottom,
clip->right - clip->left, clip->bottom - clip->top);
// 1x overdraw
mCaches.stencil.enableDebugTest(2);
drawColor(mCaches.getOverdrawColor(1), SkXfermode::kSrcOver_Mode);
// 2x overdraw
mCaches.stencil.enableDebugTest(3);
drawColor(mCaches.getOverdrawColor(2), SkXfermode::kSrcOver_Mode);
// 3x overdraw
mCaches.stencil.enableDebugTest(4);
drawColor(mCaches.getOverdrawColor(3), SkXfermode::kSrcOver_Mode);
// 4x overdraw and higher
mCaches.stencil.enableDebugTest(4, true);
drawColor(mCaches.getOverdrawColor(4), SkXfermode::kSrcOver_Mode);
mCaches.stencil.disable();
}
}
void OpenGLRenderer::countOverdraw() {
size_t count = mWidth * mHeight;
uint32_t* buffer = new uint32_t[count];
glReadPixels(0, 0, mWidth, mHeight, GL_RGBA, GL_UNSIGNED_BYTE, &buffer[0]);
size_t total = 0;
for (size_t i = 0; i < count; i++) {
total += buffer[i] & 0xff;
}
mOverdraw = total / float(count);
delete[] buffer;
}
///////////////////////////////////////////////////////////////////////////////
// Layers
///////////////////////////////////////////////////////////////////////////////
bool OpenGLRenderer::updateLayer(Layer* layer, bool inFrame) {
if (layer->deferredUpdateScheduled && layer->renderer &&
layer->displayList && layer->displayList->isRenderable()) {
ATRACE_CALL();
Rect& dirty = layer->dirtyRect;
if (inFrame) {
endTiling();
debugOverdraw(false, false);
}
if (CC_UNLIKELY(inFrame || mCaches.drawDeferDisabled)) {
layer->render();
} else {
layer->defer();
}
if (inFrame) {
resumeAfterLayer();
startTiling(mSnapshot);
}
layer->debugDrawUpdate = mCaches.debugLayersUpdates;
layer->hasDrawnSinceUpdate = false;
return true;
}
return false;
}
void OpenGLRenderer::updateLayers() {
// If draw deferring is enabled this method will simply defer
// the display list of each individual layer. The layers remain
// in the layer updates list which will be cleared by flushLayers().
int count = mLayerUpdates.size();
if (count > 0) {
if (CC_UNLIKELY(mCaches.drawDeferDisabled)) {
startMark("Layer Updates");
} else {
startMark("Defer Layer Updates");
}
// Note: it is very important to update the layers in order
for (int i = 0; i < count; i++) {
Layer* layer = mLayerUpdates.itemAt(i);
updateLayer(layer, false);
if (CC_UNLIKELY(mCaches.drawDeferDisabled)) {
mCaches.resourceCache.decrementRefcount(layer);
}
}
if (CC_UNLIKELY(mCaches.drawDeferDisabled)) {
mLayerUpdates.clear();
glBindFramebuffer(GL_FRAMEBUFFER, getTargetFbo());
}
endMark();
}
}
void OpenGLRenderer::flushLayers() {
int count = mLayerUpdates.size();
if (count > 0) {
startMark("Apply Layer Updates");
char layerName[12];
// Note: it is very important to update the layers in order
for (int i = 0; i < count; i++) {
sprintf(layerName, "Layer #%d", i);
startMark(layerName);
ATRACE_BEGIN("flushLayer");
Layer* layer = mLayerUpdates.itemAt(i);
layer->flush();
ATRACE_END();
mCaches.resourceCache.decrementRefcount(layer);
endMark();
}
mLayerUpdates.clear();
glBindFramebuffer(GL_FRAMEBUFFER, getTargetFbo());
endMark();
}
}
void OpenGLRenderer::pushLayerUpdate(Layer* layer) {
if (layer) {
// Make sure we don't introduce duplicates.
// SortedVector would do this automatically but we need to respect
// the insertion order. The linear search is not an issue since
// this list is usually very short (typically one item, at most a few)
for (int i = mLayerUpdates.size() - 1; i >= 0; i--) {
if (mLayerUpdates.itemAt(i) == layer) {
return;
}
}
mLayerUpdates.push_back(layer);
mCaches.resourceCache.incrementRefcount(layer);
}
}
void OpenGLRenderer::cancelLayerUpdate(Layer* layer) {
if (layer) {
for (int i = mLayerUpdates.size() - 1; i >= 0; i--) {
if (mLayerUpdates.itemAt(i) == layer) {
mLayerUpdates.removeAt(i);
mCaches.resourceCache.decrementRefcount(layer);
break;
}
}
}
}
void OpenGLRenderer::clearLayerUpdates() {
size_t count = mLayerUpdates.size();
if (count > 0) {
mCaches.resourceCache.lock();
for (size_t i = 0; i < count; i++) {
mCaches.resourceCache.decrementRefcountLocked(mLayerUpdates.itemAt(i));
}
mCaches.resourceCache.unlock();
mLayerUpdates.clear();
}
}
void OpenGLRenderer::flushLayerUpdates() {
syncState();
updateLayers();
flushLayers();
// Wait for all the layer updates to be executed
AutoFence fence;
}
///////////////////////////////////////////////////////////////////////////////
// State management
///////////////////////////////////////////////////////////////////////////////
int OpenGLRenderer::getSaveCount() const {
return mSaveCount;
}
int OpenGLRenderer::save(int flags) {
return saveSnapshot(flags);
}
void OpenGLRenderer::restore() {
if (mSaveCount > 1) {
restoreSnapshot();
}
}
void OpenGLRenderer::restoreToCount(int saveCount) {
if (saveCount < 1) saveCount = 1;
while (mSaveCount > saveCount) {
restoreSnapshot();
}
}
int OpenGLRenderer::saveSnapshot(int flags) {
mSnapshot = new Snapshot(mSnapshot, flags);
return mSaveCount++;
}
bool OpenGLRenderer::restoreSnapshot() {
bool restoreClip = mSnapshot->flags & Snapshot::kFlagClipSet;
bool restoreLayer = mSnapshot->flags & Snapshot::kFlagIsLayer;
bool restoreOrtho = mSnapshot->flags & Snapshot::kFlagDirtyOrtho;
sp<Snapshot> current = mSnapshot;
sp<Snapshot> previous = mSnapshot->previous;
if (restoreOrtho) {
Rect& r = previous->viewport;
glViewport(r.left, r.top, r.right, r.bottom);
mOrthoMatrix.load(current->orthoMatrix);
}
mSaveCount--;
mSnapshot = previous;
if (restoreClip) {
dirtyClip();
}
if (restoreLayer) {
endMark(); // Savelayer
startMark("ComposeLayer");
composeLayer(current, previous);
endMark();
}
return restoreClip;
}
///////////////////////////////////////////////////////////////////////////////
// Layers
///////////////////////////////////////////////////////////////////////////////
int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom,
int alpha, SkXfermode::Mode mode, int flags) {
const GLuint previousFbo = mSnapshot->fbo;
const int count = saveSnapshot(flags);
if (!mSnapshot->isIgnored()) {
createLayer(left, top, right, bottom, alpha, mode, flags, previousFbo);
}
return count;
}
void OpenGLRenderer::calculateLayerBoundsAndClip(Rect& bounds, Rect& clip, bool fboLayer) {
const Rect untransformedBounds(bounds);
currentTransform().mapRect(bounds);
// Layers only make sense if they are in the framebuffer's bounds
if (bounds.intersect(*mSnapshot->clipRect)) {
// We cannot work with sub-pixels in this case
bounds.snapToPixelBoundaries();
// When the layer is not an FBO, we may use glCopyTexImage so we
// need to make sure the layer does not extend outside the bounds
// of the framebuffer
if (!bounds.intersect(mSnapshot->previous->viewport)) {
bounds.setEmpty();
} else if (fboLayer) {
clip.set(bounds);
mat4 inverse;
inverse.loadInverse(currentTransform());
inverse.mapRect(clip);
clip.snapToPixelBoundaries();
if (clip.intersect(untransformedBounds)) {
clip.translate(-untransformedBounds.left, -untransformedBounds.top);
bounds.set(untransformedBounds);
} else {
clip.setEmpty();
}
}
} else {
bounds.setEmpty();
}
}
void OpenGLRenderer::updateSnapshotIgnoreForLayer(const Rect& bounds, const Rect& clip,
bool fboLayer, int alpha) {
if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize ||
bounds.getHeight() > mCaches.maxTextureSize ||
(fboLayer && clip.isEmpty())) {
mSnapshot->empty = fboLayer;
} else {
mSnapshot->invisible = mSnapshot->invisible || (alpha <= ALPHA_THRESHOLD && fboLayer);
}
}
int OpenGLRenderer::saveLayerDeferred(float left, float top, float right, float bottom,
int alpha, SkXfermode::Mode mode, int flags) {
const GLuint previousFbo = mSnapshot->fbo;
const int count = saveSnapshot(flags);
if (!mSnapshot->isIgnored() && (flags & SkCanvas::kClipToLayer_SaveFlag)) {
// initialize the snapshot as though it almost represents an FBO layer so deferred draw
// operations will be able to store and restore the current clip and transform info, and
// quick rejection will be correct (for display lists)
Rect bounds(left, top, right, bottom);
Rect clip;
calculateLayerBoundsAndClip(bounds, clip, true);
updateSnapshotIgnoreForLayer(bounds, clip, true, alpha);
if (!mSnapshot->isIgnored()) {
mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f);
mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom);
mSnapshot->viewport.set(0.0f, 0.0f, bounds.getWidth(), bounds.getHeight());
}
}
return count;
}
/**
* Layers are viewed by Skia are slightly different than layers in image editing
* programs (for instance.) When a layer is created, previously created layers
* and the frame buffer still receive every drawing command. For instance, if a
* layer is created and a shape intersecting the bounds of the layers and the
* framebuffer is draw, the shape will be drawn on both (unless the layer was
* created with the SkCanvas::kClipToLayer_SaveFlag flag.)
*
* A way to implement layers is to create an FBO for each layer, backed by an RGBA
* texture. Unfortunately, this is inefficient as it requires every primitive to
* be drawn n + 1 times, where n is the number of active layers. In practice this
* means, for every primitive:
* - Switch active frame buffer
* - Change viewport, clip and projection matrix
* - Issue the drawing
*
* Switching rendering target n + 1 times per drawn primitive is extremely costly.
* To avoid this, layers are implemented in a different way here, at least in the
* general case. FBOs are used, as an optimization, when the "clip to layer" flag
* is set. When this flag is set we can redirect all drawing operations into a
* single FBO.
*
* This implementation relies on the frame buffer being at least RGBA 8888. When
* a layer is created, only a texture is created, not an FBO. The content of the
* frame buffer contained within the layer's bounds is copied into this texture
* using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame
* buffer and drawing continues as normal. This technique therefore treats the
* frame buffer as a scratch buffer for the layers.
*
* To compose the layers back onto the frame buffer, each layer texture
* (containing the original frame buffer data) is drawn as a simple quad over
* the frame buffer. The trick is that the quad is set as the composition
* destination in the blending equation, and the frame buffer becomes the source
* of the composition.
*
* Drawing layers with an alpha value requires an extra step before composition.
* An empty quad is drawn over the layer's region in the frame buffer. This quad
* is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the
* quad is used to multiply the colors in the frame buffer. This is achieved by
* changing the GL blend functions for the GL_FUNC_ADD blend equation to
* GL_ZERO, GL_SRC_ALPHA.
*
* Because glCopyTexImage2D() can be slow, an alternative implementation might
* be use to draw a single clipped layer. The implementation described above
* is correct in every case.
*
* (1) The frame buffer is actually not cleared right away. To allow the GPU
* to potentially optimize series of calls to glCopyTexImage2D, the frame
* buffer is left untouched until the first drawing operation. Only when
* something actually gets drawn are the layers regions cleared.
*/
bool OpenGLRenderer::createLayer(float left, float top, float right, float bottom,
int alpha, SkXfermode::Mode mode, int flags, GLuint previousFbo) {
LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top);
LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize());
const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag;
// Window coordinates of the layer
Rect clip;
Rect bounds(left, top, right, bottom);
calculateLayerBoundsAndClip(bounds, clip, fboLayer);
updateSnapshotIgnoreForLayer(bounds, clip, fboLayer, alpha);
// Bail out if we won't draw in this snapshot
if (mSnapshot->isIgnored()) {
return false;
}
mCaches.activeTexture(0);
Layer* layer = mCaches.layerCache.get(bounds.getWidth(), bounds.getHeight());
if (!layer) {
return false;
}
layer->setAlpha(alpha, mode);
layer->layer.set(bounds);
layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()),
bounds.getWidth() / float(layer->getWidth()), 0.0f);
layer->setColorFilter(mDrawModifiers.mColorFilter);
layer->setBlend(true);
layer->setDirty(false);
// Save the layer in the snapshot
mSnapshot->flags |= Snapshot::kFlagIsLayer;
mSnapshot->layer = layer;
startMark("SaveLayer");
if (fboLayer) {
return createFboLayer(layer, bounds, clip, previousFbo);
} else {
// Copy the framebuffer into the layer
layer->bindTexture();
if (!bounds.isEmpty()) {
if (layer->isEmpty()) {
// Workaround for some GL drivers. When reading pixels lying outside
// of the window we should get undefined values for those pixels.
// Unfortunately some drivers will turn the entire target texture black
// when reading outside of the window.
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, layer->getWidth(), layer->getHeight(),
0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
layer->setEmpty(false);
}
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bounds.left,
mSnapshot->height - bounds.bottom, bounds.getWidth(), bounds.getHeight());
// Enqueue the buffer coordinates to clear the corresponding region later
mLayers.push(new Rect(bounds));
}
}
return true;
}
bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, Rect& clip, GLuint previousFbo) {
layer->clipRect.set(clip);
layer->setFbo(mCaches.fboCache.get());
mSnapshot->region = &mSnapshot->layer->region;
mSnapshot->flags |= Snapshot::kFlagFboTarget | Snapshot::kFlagIsFboLayer |
Snapshot::kFlagDirtyOrtho;
mSnapshot->fbo = layer->getFbo();
mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f);
mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom);
mSnapshot->viewport.set(0.0f, 0.0f, bounds.getWidth(), bounds.getHeight());
mSnapshot->height = bounds.getHeight();
mSnapshot->orthoMatrix.load(mOrthoMatrix);
endTiling();
debugOverdraw(false, false);
// Bind texture to FBO
glBindFramebuffer(GL_FRAMEBUFFER, layer->getFbo());
layer->bindTexture();
// Initialize the texture if needed
if (layer->isEmpty()) {
layer->allocateTexture();
layer->setEmpty(false);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
layer->getTexture(), 0);
startTiling(mSnapshot, true);
// Clear the FBO, expand the clear region by 1 to get nice bilinear filtering
mCaches.enableScissor();
mCaches.setScissor(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f,
clip.getWidth() + 2.0f, clip.getHeight() + 2.0f);
glClear(GL_COLOR_BUFFER_BIT);
dirtyClip();
// Change the ortho projection
glViewport(0, 0, bounds.getWidth(), bounds.getHeight());
mOrthoMatrix.loadOrtho(0.0f, bounds.getWidth(), bounds.getHeight(), 0.0f, -1.0f, 1.0f);
return true;
}
/**
* Read the documentation of createLayer() before doing anything in this method.
*/
void OpenGLRenderer::composeLayer(sp<Snapshot> current, sp<Snapshot> previous) {
if (!current->layer) {
ALOGE("Attempting to compose a layer that does not exist");
return;
}
Layer* layer = current->layer;
const Rect& rect = layer->layer;
const bool fboLayer = current->flags & Snapshot::kFlagIsFboLayer;
bool clipRequired = false;
quickRejectNoScissor(rect, &clipRequired); // safely ignore return, should never be rejected
mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired);
if (fboLayer) {
endTiling();
// Detach the texture from the FBO
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0);
layer->removeFbo(false);
// Unbind current FBO and restore previous one
glBindFramebuffer(GL_FRAMEBUFFER, previous->fbo);
debugOverdraw(true, false);
startTiling(previous);
}
if (!fboLayer && layer->getAlpha() < 255) {
drawColorRect(rect.left, rect.top, rect.right, rect.bottom,
layer->getAlpha() << 24, SkXfermode::kDstIn_Mode, true);
// Required below, composeLayerRect() will divide by 255
layer->setAlpha(255);
}
mCaches.unbindMeshBuffer();
mCaches.activeTexture(0);
// When the layer is stored in an FBO, we can save a bit of fillrate by
// drawing only the dirty region
if (fboLayer) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *previous->transform);
if (layer->getColorFilter()) {
setupColorFilter(layer->getColorFilter());
}
composeLayerRegion(layer, rect);
if (layer->getColorFilter()) {
resetColorFilter();
}
} else if (!rect.isEmpty()) {
dirtyLayer(rect.left, rect.top, rect.right, rect.bottom);
composeLayerRect(layer, rect, true);
}
dirtyClip();
// Failing to add the layer to the cache should happen only if the layer is too large
if (!mCaches.layerCache.put(layer)) {
LAYER_LOGD("Deleting layer");
Caches::getInstance().resourceCache.decrementRefcount(layer);
}
}
void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) {
float alpha = getLayerAlpha(layer);
setupDraw();
if (layer->getRenderTarget() == GL_TEXTURE_2D) {
setupDrawWithTexture();
} else {
setupDrawWithExternalTexture();
}
setupDrawTextureTransform();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter();
setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode());
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
if (layer->getRenderTarget() == GL_TEXTURE_2D) {
setupDrawTexture(layer->getTexture());
} else {
setupDrawExternalTexture(layer->getTexture());
}
if (currentTransform().isPureTranslate() &&
layer->getWidth() == (uint32_t) rect.getWidth() &&
layer->getHeight() == (uint32_t) rect.getHeight()) {
const float x = (int) floorf(rect.left + currentTransform().getTranslateX() + 0.5f);
const float y = (int) floorf(rect.top + currentTransform().getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelView(x, y, x + rect.getWidth(), y + rect.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelView(rect.left, rect.top, rect.right, rect.bottom);
}
setupDrawTextureTransformUniforms(layer->getTexTransform());
setupDrawMesh(&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0]);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
}
void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect, bool swap) {
if (!layer->isTextureLayer()) {
const Rect& texCoords = layer->texCoords;
resetDrawTextureTexCoords(texCoords.left, texCoords.top,
texCoords.right, texCoords.bottom);
float x = rect.left;
float y = rect.top;
bool simpleTransform = currentTransform().isPureTranslate() &&
layer->getWidth() == (uint32_t) rect.getWidth() &&
layer->getHeight() == (uint32_t) rect.getHeight();
if (simpleTransform) {
// When we're swapping, the layer is already in screen coordinates
if (!swap) {
x = (int) floorf(rect.left + currentTransform().getTranslateX() + 0.5f);
y = (int) floorf(rect.top + currentTransform().getTranslateY() + 0.5f);
}
layer->setFilter(GL_NEAREST, true);
} else {
layer->setFilter(GL_LINEAR, true);
}
float alpha = getLayerAlpha(layer);
bool blend = layer->isBlend() || alpha < 1.0f;
drawTextureMesh(x, y, x + rect.getWidth(), y + rect.getHeight(),
layer->getTexture(), alpha, layer->getMode(), blend,
&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0],
GL_TRIANGLE_STRIP, gMeshCount, swap, swap || simpleTransform);
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
} else {
resetDrawTextureTexCoords(0.0f, 1.0f, 1.0f, 0.0f);
drawTextureLayer(layer, rect);
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
}
}
/**
* Issues the command X, and if we're composing a save layer to the fbo or drawing a newly updated
* hardware layer with overdraw debug on, draws again to the stencil only, so that these draw
* operations are correctly counted twice for overdraw. NOTE: assumes composeLayerRegion only used
* by saveLayer's restore
*/
#define DRAW_DOUBLE_STENCIL_IF(COND, DRAW_COMMAND) { \
DRAW_COMMAND; \
if (CC_UNLIKELY(mCaches.debugOverdraw && getTargetFbo() == 0 && COND)) { \
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); \
DRAW_COMMAND; \
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); \
} \
}
#define DRAW_DOUBLE_STENCIL(DRAW_COMMAND) DRAW_DOUBLE_STENCIL_IF(true, DRAW_COMMAND)
void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) {
if (layer->region.isRect()) {
layer->setRegionAsRect();
DRAW_DOUBLE_STENCIL(composeLayerRect(layer, layer->regionRect));
layer->region.clear();
return;
}
if (CC_LIKELY(!layer->region.isEmpty())) {
size_t count;
const android::Rect* rects;
Region safeRegion;
if (CC_LIKELY(hasRectToRectTransform())) {
rects = layer->region.getArray(&count);
} else {
safeRegion = Region::createTJunctionFreeRegion(layer->region);
rects = safeRegion.getArray(&count);
}
const float alpha = getLayerAlpha(layer);
const float texX = 1.0f / float(layer->getWidth());
const float texY = 1.0f / float(layer->getHeight());
const float height = rect.getHeight();
setupDraw();
// We must get (and therefore bind) the region mesh buffer
// after we setup drawing in case we need to mess with the
// stencil buffer in setupDraw()
TextureVertex* mesh = mCaches.getRegionMesh();
uint32_t numQuads = 0;
setupDrawWithTexture();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter();
setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode(), false);
setupDrawProgram();
setupDrawDirtyRegionsDisabled();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawTexture(layer->getTexture());
if (currentTransform().isPureTranslate()) {
const float x = (int) floorf(rect.left + currentTransform().getTranslateX() + 0.5f);
const float y = (int) floorf(rect.top + currentTransform().getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelViewTranslate(x, y, x + rect.getWidth(), y + rect.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelViewTranslate(rect.left, rect.top, rect.right, rect.bottom);
}
setupDrawMeshIndices(&mesh[0].position[0], &mesh[0].texture[0]);
for (size_t i = 0; i < count; i++) {
const android::Rect* r = &rects[i];
const float u1 = r->left * texX;
const float v1 = (height - r->top) * texY;
const float u2 = r->right * texX;
const float v2 = (height - r->bottom) * texY;
// TODO: Reject quads outside of the clip
TextureVertex::set(mesh++, r->left, r->top, u1, v1);
TextureVertex::set(mesh++, r->right, r->top, u2, v1);
TextureVertex::set(mesh++, r->left, r->bottom, u1, v2);
TextureVertex::set(mesh++, r->right, r->bottom, u2, v2);
numQuads++;
if (numQuads >= gMaxNumberOfQuads) {
DRAW_DOUBLE_STENCIL(glDrawElements(GL_TRIANGLES, numQuads * 6,
GL_UNSIGNED_SHORT, NULL));
numQuads = 0;
mesh = mCaches.getRegionMesh();
}
}
if (numQuads > 0) {
DRAW_DOUBLE_STENCIL(glDrawElements(GL_TRIANGLES, numQuads * 6,
GL_UNSIGNED_SHORT, NULL));
}
#if DEBUG_LAYERS_AS_REGIONS
drawRegionRects(layer->region);
#endif
layer->region.clear();
}
}
void OpenGLRenderer::drawRegionRects(const Region& region) {
#if DEBUG_LAYERS_AS_REGIONS
size_t count;
const android::Rect* rects = region.getArray(&count);
uint32_t colors[] = {
0x7fff0000, 0x7f00ff00,
0x7f0000ff, 0x7fff00ff,
};
int offset = 0;
int32_t top = rects[0].top;
for (size_t i = 0; i < count; i++) {
if (top != rects[i].top) {
offset ^= 0x2;
top = rects[i].top;
}
Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom);
drawColorRect(r.left, r.top, r.right, r.bottom, colors[offset + (i & 0x1)],
SkXfermode::kSrcOver_Mode);
}
#endif
}
void OpenGLRenderer::drawRegionRects(const SkRegion& region, int color,
SkXfermode::Mode mode, bool dirty) {
Vector<float> rects;
SkRegion::Iterator it(region);
while (!it.done()) {
const SkIRect& r = it.rect();
rects.push(r.fLeft);
rects.push(r.fTop);
rects.push(r.fRight);
rects.push(r.fBottom);
it.next();
}
drawColorRects(rects.array(), rects.size(), color, mode, true, dirty, false);
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom, const mat4 transform) {
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
transform.mapRect(bounds);
dirtyLayerUnchecked(bounds, getRegion());
}
}
void OpenGLRenderer::dirtyLayer(const float left, const float top,
const float right, const float bottom) {
if (hasLayer()) {
Rect bounds(left, top, right, bottom);
dirtyLayerUnchecked(bounds, getRegion());
}
}
void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) {
if (bounds.intersect(*mSnapshot->clipRect)) {
bounds.snapToPixelBoundaries();
android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom);
if (!dirty.isEmpty()) {
region->orSelf(dirty);
}
}
}
void OpenGLRenderer::drawIndexedQuads(Vertex* mesh, GLsizei quadsCount) {
GLsizei elementsCount = quadsCount * 6;
while (elementsCount > 0) {
GLsizei drawCount = min(elementsCount, (GLsizei) gMaxNumberOfQuads * 6);
setupDrawIndexedVertices(&mesh[0].position[0]);
glDrawElements(GL_TRIANGLES, drawCount, GL_UNSIGNED_SHORT, NULL);
elementsCount -= drawCount;
// Though there are 4 vertices in a quad, we use 6 indices per
// quad to draw with GL_TRIANGLES
mesh += (drawCount / 6) * 4;
}
}
void OpenGLRenderer::clearLayerRegions() {
const size_t count = mLayers.size();
if (count == 0) return;
if (!mSnapshot->isIgnored()) {
// Doing several glScissor/glClear here can negatively impact
// GPUs with a tiler architecture, instead we draw quads with
// the Clear blending mode
// The list contains bounds that have already been clipped
// against their initial clip rect, and the current clip
// is likely different so we need to disable clipping here
bool scissorChanged = mCaches.disableScissor();
Vertex mesh[count * 4];
Vertex* vertex = mesh;
for (uint32_t i = 0; i < count; i++) {
Rect* bounds = mLayers.itemAt(i);
Vertex::set(vertex++, bounds->left, bounds->top);
Vertex::set(vertex++, bounds->right, bounds->top);
Vertex::set(vertex++, bounds->left, bounds->bottom);
Vertex::set(vertex++, bounds->right, bounds->bottom);
delete bounds;
}
// We must clear the list of dirty rects before we
// call setupDraw() to prevent stencil setup to do
// the same thing again
mLayers.clear();
setupDraw(false);
setupDrawColor(0.0f, 0.0f, 0.0f, 1.0f);
setupDrawBlending(true, SkXfermode::kClear_Mode);
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawModelViewTranslate(0.0f, 0.0f, 0.0f, 0.0f, true);
drawIndexedQuads(&mesh[0], count);
if (scissorChanged) mCaches.enableScissor();
} else {
for (uint32_t i = 0; i < count; i++) {
delete mLayers.itemAt(i);
}
mLayers.clear();
}
}
///////////////////////////////////////////////////////////////////////////////
// State Deferral
///////////////////////////////////////////////////////////////////////////////
bool OpenGLRenderer::storeDisplayState(DeferredDisplayState& state, int stateDeferFlags) {
const Rect& currentClip = *(mSnapshot->clipRect);
const mat4& currentMatrix = *(mSnapshot->transform);
if (stateDeferFlags & kStateDeferFlag_Draw) {
// state has bounds initialized in local coordinates
if (!state.mBounds.isEmpty()) {
currentMatrix.mapRect(state.mBounds);
Rect clippedBounds(state.mBounds);
// NOTE: if we ever want to use this clipping info to drive whether the scissor
// is used, it should more closely duplicate the quickReject logic (in how it uses
// snapToPixelBoundaries)
if(!clippedBounds.intersect(currentClip)) {
// quick rejected
return true;
}
state.mClipSideFlags = kClipSide_None;
if (!currentClip.contains(state.mBounds)) {
int& flags = state.mClipSideFlags;
// op partially clipped, so record which sides are clipped for clip-aware merging
if (currentClip.left > state.mBounds.left) flags |= kClipSide_Left;
if (currentClip.top > state.mBounds.top) flags |= kClipSide_Top;
if (currentClip.right < state.mBounds.right) flags |= kClipSide_Right;
if (currentClip.bottom < state.mBounds.bottom) flags |= kClipSide_Bottom;
}
state.mBounds.set(clippedBounds);
} else {
// Empty bounds implies size unknown. Label op as conservatively clipped to disable
// overdraw avoidance (since we don't know what it overlaps)
state.mClipSideFlags = kClipSide_ConservativeFull;
state.mBounds.set(currentClip);
}
}
state.mClipValid = (stateDeferFlags & kStateDeferFlag_Clip);
if (state.mClipValid) {
state.mClip.set(currentClip);
}
// Transform, drawModifiers, and alpha always deferred, since they are used by state operations
// (Note: saveLayer/restore use colorFilter and alpha, so we just save restore everything)
state.mMatrix.load(currentMatrix);
state.mDrawModifiers = mDrawModifiers;
state.mAlpha = mSnapshot->alpha;
return false;
}
void OpenGLRenderer::restoreDisplayState(const DeferredDisplayState& state, bool skipClipRestore) {
currentTransform().load(state.mMatrix);
mDrawModifiers = state.mDrawModifiers;
mSnapshot->alpha = state.mAlpha;
if (state.mClipValid && !skipClipRestore) {
mSnapshot->setClip(state.mClip.left, state.mClip.top,
state.mClip.right, state.mClip.bottom);
dirtyClip();
}
}
/**
* Merged multidraw (such as in drawText and drawBitmaps rely on the fact that no clipping is done
* in the draw path. Instead, clipping is done ahead of time - either as a single clip rect (when at
* least one op is clipped), or disabled entirely (because no merged op is clipped)
*
* This method should be called when restoreDisplayState() won't be restoring the clip
*/
void OpenGLRenderer::setupMergedMultiDraw(const Rect* clipRect) {
if (clipRect != NULL) {
mSnapshot->setClip(clipRect->left, clipRect->top, clipRect->right, clipRect->bottom);
} else {
mSnapshot->setClip(0, 0, mWidth, mHeight);
}
dirtyClip();
mCaches.setScissorEnabled(clipRect != NULL || mScissorOptimizationDisabled);
}
///////////////////////////////////////////////////////////////////////////////
// Transforms
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::translate(float dx, float dy) {
currentTransform().translate(dx, dy);
}
void OpenGLRenderer::rotate(float degrees) {
currentTransform().rotate(degrees, 0.0f, 0.0f, 1.0f);
}
void OpenGLRenderer::scale(float sx, float sy) {
currentTransform().scale(sx, sy, 1.0f);
}
void OpenGLRenderer::skew(float sx, float sy) {
currentTransform().skew(sx, sy);
}
void OpenGLRenderer::setMatrix(SkMatrix* matrix) {
if (matrix) {
currentTransform().load(*matrix);
} else {
currentTransform().loadIdentity();
}
}
bool OpenGLRenderer::hasRectToRectTransform() {
return CC_LIKELY(currentTransform().rectToRect());
}
void OpenGLRenderer::getMatrix(SkMatrix* matrix) {
currentTransform().copyTo(*matrix);
}
void OpenGLRenderer::concatMatrix(SkMatrix* matrix) {
SkMatrix transform;
currentTransform().copyTo(transform);
transform.preConcat(*matrix);
currentTransform().load(transform);
}
///////////////////////////////////////////////////////////////////////////////
// Clipping
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setScissorFromClip() {
Rect clip(*mSnapshot->clipRect);
clip.snapToPixelBoundaries();
if (mCaches.setScissor(clip.left, mSnapshot->height - clip.bottom,
clip.getWidth(), clip.getHeight())) {
mDirtyClip = false;
}
}
void OpenGLRenderer::ensureStencilBuffer() {
// Thanks to the mismatch between EGL and OpenGL ES FBO we
// cannot attach a stencil buffer to fbo0 dynamically. Let's
// just hope we have one when hasLayer() returns false.
if (hasLayer()) {
attachStencilBufferToLayer(mSnapshot->layer);
}
}
void OpenGLRenderer::attachStencilBufferToLayer(Layer* layer) {
// The layer's FBO is already bound when we reach this stage
if (!layer->getStencilRenderBuffer()) {
// GL_QCOM_tiled_rendering doesn't like it if a renderbuffer
// is attached after we initiated tiling. We must turn it off,
// attach the new render buffer then turn tiling back on
endTiling();
RenderBuffer* buffer = mCaches.renderBufferCache.get(
Stencil::getSmallestStencilFormat(), layer->getWidth(), layer->getHeight());
layer->setStencilRenderBuffer(buffer);
startTiling(layer->clipRect, layer->layer.getHeight());
}
}
void OpenGLRenderer::setStencilFromClip() {
if (!mCaches.debugOverdraw) {
if (!mSnapshot->clipRegion->isEmpty()) {
// NOTE: The order here is important, we must set dirtyClip to false
// before any draw call to avoid calling back into this method
mDirtyClip = false;
ensureStencilBuffer();
mCaches.stencil.enableWrite();
// Clear the stencil but first make sure we restrict drawing
// to the region's bounds
bool resetScissor = mCaches.enableScissor();
if (resetScissor) {
// The scissor was not set so we now need to update it
setScissorFromClip();
}
mCaches.stencil.clear();
if (resetScissor) mCaches.disableScissor();
// NOTE: We could use the region contour path to generate a smaller mesh
// Since we are using the stencil we could use the red book path
// drawing technique. It might increase bandwidth usage though.
// The last parameter is important: we are not drawing in the color buffer
// so we don't want to dirty the current layer, if any
drawRegionRects(*mSnapshot->clipRegion, 0xff000000, SkXfermode::kSrc_Mode, false);
mCaches.stencil.enableTest();
// Draw the region used to generate the stencil if the appropriate debug
// mode is enabled
if (mCaches.debugStencilClip == Caches::kStencilShowRegion) {
drawRegionRects(*mSnapshot->clipRegion, 0x7f0000ff, SkXfermode::kSrcOver_Mode);
}
} else {
mCaches.stencil.disable();
}
}
}
const Rect& OpenGLRenderer::getClipBounds() {
return mSnapshot->getLocalClip();
}
bool OpenGLRenderer::quickRejectNoScissor(float left, float top, float right, float bottom,
bool snapOut, bool* clipRequired) {
if (mSnapshot->isIgnored() || bottom <= top || right <= left) {
return true;
}
Rect r(left, top, right, bottom);
currentTransform().mapRect(r);
r.snapGeometryToPixelBoundaries(snapOut);
Rect clipRect(*mSnapshot->clipRect);
clipRect.snapToPixelBoundaries();
if (!clipRect.intersects(r)) return true;
if (clipRequired) *clipRequired = !clipRect.contains(r);
return false;
}
bool OpenGLRenderer::quickRejectPreStroke(float left, float top, float right, float bottom,
SkPaint* paint) {
// AA geometry will likely have a ramp around it (not accounted for in local bounds). Snap out
// the final mapped rect to ensure correct clipping behavior for the ramp.
bool snapOut = paint->isAntiAlias();
if (paint->getStyle() != SkPaint::kFill_Style) {
float outset = paint->getStrokeWidth() * 0.5f;
return quickReject(left - outset, top - outset, right + outset, bottom + outset, snapOut);
} else {
return quickReject(left, top, right, bottom, snapOut);
}
}
bool OpenGLRenderer::quickReject(float left, float top, float right, float bottom, bool snapOut) {
bool clipRequired = false;
if (quickRejectNoScissor(left, top, right, bottom, snapOut, &clipRequired)) {
return true;
}
if (!isDeferred()) {
mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired);
}
return false;
}
void OpenGLRenderer::debugClip() {
#if DEBUG_CLIP_REGIONS
if (!isDeferred() && !mSnapshot->clipRegion->isEmpty()) {
drawRegionRects(*mSnapshot->clipRegion, 0x7f00ff00, SkXfermode::kSrcOver_Mode);
}
#endif
}
bool OpenGLRenderer::clipRect(float left, float top, float right, float bottom, SkRegion::Op op) {
if (CC_LIKELY(currentTransform().rectToRect())) {
bool clipped = mSnapshot->clip(left, top, right, bottom, op);
if (clipped) {
dirtyClip();
}
return !mSnapshot->clipRect->isEmpty();
}
SkPath path;
path.addRect(left, top, right, bottom);
return OpenGLRenderer::clipPath(&path, op);
}
bool OpenGLRenderer::clipPath(SkPath* path, SkRegion::Op op) {
SkMatrix transform;
currentTransform().copyTo(transform);
SkPath transformed;
path->transform(transform, &transformed);
SkRegion clip;
if (!mSnapshot->previous->clipRegion->isEmpty()) {
clip.setRegion(*mSnapshot->previous->clipRegion);
} else {
if (mSnapshot->previous == mFirstSnapshot) {
clip.setRect(0, 0, mWidth, mHeight);
} else {
Rect* bounds = mSnapshot->previous->clipRect;
clip.setRect(bounds->left, bounds->top, bounds->right, bounds->bottom);
}
}
SkRegion region;
region.setPath(transformed, clip);
bool clipped = mSnapshot->clipRegionTransformed(region, op);
if (clipped) {
dirtyClip();
}
return !mSnapshot->clipRect->isEmpty();
}
bool OpenGLRenderer::clipRegion(SkRegion* region, SkRegion::Op op) {
bool clipped = mSnapshot->clipRegionTransformed(*region, op);
if (clipped) {
dirtyClip();
}
return !mSnapshot->clipRect->isEmpty();
}
Rect* OpenGLRenderer::getClipRect() {
return mSnapshot->clipRect;
}
///////////////////////////////////////////////////////////////////////////////
// Drawing commands
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::setupDraw(bool clear) {
// TODO: It would be best if we could do this before quickReject()
// changes the scissor test state
if (clear) clearLayerRegions();
// Make sure setScissor & setStencil happen at the beginning of
// this method
if (mDirtyClip) {
if (mCaches.scissorEnabled) {
setScissorFromClip();
}
setStencilFromClip();
}
mDescription.reset();
mSetShaderColor = false;
mColorSet = false;
mColorA = mColorR = mColorG = mColorB = 0.0f;
mTextureUnit = 0;
mTrackDirtyRegions = true;
// Enable debug highlight when what we're about to draw is tested against
// the stencil buffer and if stencil highlight debugging is on
mDescription.hasDebugHighlight = !mCaches.debugOverdraw &&
mCaches.debugStencilClip == Caches::kStencilShowHighlight &&
mCaches.stencil.isTestEnabled();
mDescription.emulateStencil = mCountOverdraw;
}
void OpenGLRenderer::setupDrawWithTexture(bool isAlpha8) {
mDescription.hasTexture = true;
mDescription.hasAlpha8Texture = isAlpha8;
}
void OpenGLRenderer::setupDrawWithTextureAndColor(bool isAlpha8) {
mDescription.hasTexture = true;
mDescription.hasColors = true;
mDescription.hasAlpha8Texture = isAlpha8;
}
void OpenGLRenderer::setupDrawWithExternalTexture() {
mDescription.hasExternalTexture = true;
}
void OpenGLRenderer::setupDrawNoTexture() {
mCaches.disableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawAA() {
mDescription.isAA = true;
}
void OpenGLRenderer::setupDrawColor(int color, int alpha) {
mColorA = alpha / 255.0f;
mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f;
mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f;
mColorB = mColorA * ((color ) & 0xFF) / 255.0f;
mColorSet = true;
mSetShaderColor = mDescription.setColor(mColorR, mColorG, mColorB, mColorA);
}
void OpenGLRenderer::setupDrawAlpha8Color(int color, int alpha) {
mColorA = alpha / 255.0f;
mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f;
mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f;
mColorB = mColorA * ((color ) & 0xFF) / 255.0f;
mColorSet = true;
mSetShaderColor = mDescription.setAlpha8Color(mColorR, mColorG, mColorB, mColorA);
}
void OpenGLRenderer::setupDrawTextGamma(const SkPaint* paint) {
mCaches.fontRenderer->describe(mDescription, paint);
}
void OpenGLRenderer::setupDrawColor(float r, float g, float b, float a) {
mColorA = a;
mColorR = r;
mColorG = g;
mColorB = b;
mColorSet = true;
mSetShaderColor = mDescription.setColor(r, g, b, a);
}
void OpenGLRenderer::setupDrawShader() {
if (mDrawModifiers.mShader) {
mDrawModifiers.mShader->describe(mDescription, mExtensions);
}
}
void OpenGLRenderer::setupDrawColorFilter() {
if (mDrawModifiers.mColorFilter) {
mDrawModifiers.mColorFilter->describe(mDescription, mExtensions);
}
}
void OpenGLRenderer::accountForClear(SkXfermode::Mode mode) {
if (mColorSet && mode == SkXfermode::kClear_Mode) {
mColorA = 1.0f;
mColorR = mColorG = mColorB = 0.0f;
mSetShaderColor = mDescription.modulate = true;
}
}
void OpenGLRenderer::setupDrawBlending(SkXfermode::Mode mode, bool swapSrcDst) {
// When the blending mode is kClear_Mode, we need to use a modulate color
// argb=1,0,0,0
accountForClear(mode);
bool blend = (mColorSet && mColorA < 1.0f) ||
(mDrawModifiers.mShader && mDrawModifiers.mShader->blend());
chooseBlending(blend, mode, mDescription, swapSrcDst);
}
void OpenGLRenderer::setupDrawBlending(bool blend, SkXfermode::Mode mode, bool swapSrcDst) {
// When the blending mode is kClear_Mode, we need to use a modulate color
// argb=1,0,0,0
accountForClear(mode);
blend |= (mColorSet && mColorA < 1.0f) ||
(mDrawModifiers.mShader && mDrawModifiers.mShader->blend()) ||
(mDrawModifiers.mColorFilter && mDrawModifiers.mColorFilter->blend());
chooseBlending(blend, mode, mDescription, swapSrcDst);
}
void OpenGLRenderer::setupDrawProgram() {
useProgram(mCaches.programCache.get(mDescription));
}
void OpenGLRenderer::setupDrawDirtyRegionsDisabled() {
mTrackDirtyRegions = false;
}
void OpenGLRenderer::setupDrawModelViewTranslate(float left, float top, float right, float bottom,
bool ignoreTransform) {
mModelView.loadTranslate(left, top, 0.0f);
if (!ignoreTransform) {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, currentTransform());
if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom, currentTransform());
} else {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, mat4::identity());
if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom);
}
}
void OpenGLRenderer::setupDrawModelViewIdentity(bool offset) {
mCaches.currentProgram->set(mOrthoMatrix, mat4::identity(), currentTransform(), offset);
}
void OpenGLRenderer::setupDrawModelView(float left, float top, float right, float bottom,
bool ignoreTransform, bool ignoreModelView) {
if (!ignoreModelView) {
mModelView.loadTranslate(left, top, 0.0f);
mModelView.scale(right - left, bottom - top, 1.0f);
} else {
mModelView.loadIdentity();
}
bool dirty = right - left > 0.0f && bottom - top > 0.0f;
if (!ignoreTransform) {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, currentTransform());
if (mTrackDirtyRegions && dirty) {
dirtyLayer(left, top, right, bottom, currentTransform());
}
} else {
mCaches.currentProgram->set(mOrthoMatrix, mModelView, mat4::identity());
if (mTrackDirtyRegions && dirty) dirtyLayer(left, top, right, bottom);
}
}
void OpenGLRenderer::setupDrawColorUniforms() {
if ((mColorSet && !mDrawModifiers.mShader) || (mDrawModifiers.mShader && mSetShaderColor)) {
mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA);
}
}
void OpenGLRenderer::setupDrawPureColorUniforms() {
if (mSetShaderColor) {
mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA);
}
}
void OpenGLRenderer::setupDrawShaderUniforms(bool ignoreTransform) {
if (mDrawModifiers.mShader) {
if (ignoreTransform) {
mModelView.loadInverse(currentTransform());
}
mDrawModifiers.mShader->setupProgram(mCaches.currentProgram,
mModelView, *mSnapshot, &mTextureUnit);
}
}
void OpenGLRenderer::setupDrawShaderIdentityUniforms() {
if (mDrawModifiers.mShader) {
mDrawModifiers.mShader->setupProgram(mCaches.currentProgram,
mat4::identity(), *mSnapshot, &mTextureUnit);
}
}
void OpenGLRenderer::setupDrawColorFilterUniforms() {
if (mDrawModifiers.mColorFilter) {
mDrawModifiers.mColorFilter->setupProgram(mCaches.currentProgram);
}
}
void OpenGLRenderer::setupDrawTextGammaUniforms() {
mCaches.fontRenderer->setupProgram(mDescription, mCaches.currentProgram);
}
void OpenGLRenderer::setupDrawSimpleMesh() {
bool force = mCaches.bindMeshBuffer();
mCaches.bindPositionVertexPointer(force, 0);
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawTexture(GLuint texture) {
if (texture) bindTexture(texture);
mTextureUnit++;
mCaches.enableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawExternalTexture(GLuint texture) {
bindExternalTexture(texture);
mTextureUnit++;
mCaches.enableTexCoordsVertexArray();
}
void OpenGLRenderer::setupDrawTextureTransform() {
mDescription.hasTextureTransform = true;
}
void OpenGLRenderer::setupDrawTextureTransformUniforms(mat4& transform) {
glUniformMatrix4fv(mCaches.currentProgram->getUniform("mainTextureTransform"), 1,
GL_FALSE, &transform.data[0]);
}
void OpenGLRenderer::setupDrawMesh(GLvoid* vertices, GLvoid* texCoords, GLuint vbo) {
bool force = false;
if (!vertices || vbo) {
force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo);
} else {
force = mCaches.unbindMeshBuffer();
}
mCaches.bindPositionVertexPointer(force, vertices);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, texCoords);
}
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawMesh(GLvoid* vertices, GLvoid* texCoords, GLvoid* colors) {
bool force = mCaches.unbindMeshBuffer();
GLsizei stride = sizeof(ColorTextureVertex);
mCaches.bindPositionVertexPointer(force, vertices, stride);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, texCoords, stride);
}
int slot = mCaches.currentProgram->getAttrib("colors");
if (slot >= 0) {
glEnableVertexAttribArray(slot);
glVertexAttribPointer(slot, 4, GL_FLOAT, GL_FALSE, stride, colors);
}
mCaches.unbindIndicesBuffer();
}
void OpenGLRenderer::setupDrawMeshIndices(GLvoid* vertices, GLvoid* texCoords, GLuint vbo) {
bool force = false;
// If vbo is != 0 we want to treat the vertices parameter as an offset inside
// a VBO. However, if vertices is set to NULL and vbo == 0 then we want to
// use the default VBO found in Caches
if (!vertices || vbo) {
force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo);
} else {
force = mCaches.unbindMeshBuffer();
}
mCaches.bindIndicesBuffer();
mCaches.bindPositionVertexPointer(force, vertices);
if (mCaches.currentProgram->texCoords >= 0) {
mCaches.bindTexCoordsVertexPointer(force, texCoords);
}
}
void OpenGLRenderer::setupDrawIndexedVertices(GLvoid* vertices) {
bool force = mCaches.unbindMeshBuffer();
mCaches.bindIndicesBuffer();
mCaches.bindPositionVertexPointer(force, vertices, gVertexStride);
}
///////////////////////////////////////////////////////////////////////////////
// Drawing
///////////////////////////////////////////////////////////////////////////////
status_t OpenGLRenderer::drawDisplayList(DisplayList* displayList, Rect& dirty,
int32_t replayFlags) {
status_t status;
// All the usual checks and setup operations (quickReject, setupDraw, etc.)
// will be performed by the display list itself
if (displayList && displayList->isRenderable()) {
if (CC_UNLIKELY(mCaches.drawDeferDisabled)) {
status = startFrame();
ReplayStateStruct replayStruct(*this, dirty, replayFlags);
displayList->replay(replayStruct, 0);
return status | replayStruct.mDrawGlStatus;
}
bool avoidOverdraw = !mCaches.debugOverdraw && !mCountOverdraw; // shh, don't tell devs!
DeferredDisplayList deferredList(*(mSnapshot->clipRect), avoidOverdraw);
DeferStateStruct deferStruct(deferredList, *this, replayFlags);
displayList->defer(deferStruct, 0);
flushLayers();
status = startFrame();
return status | deferredList.flush(*this, dirty);
}
return DrawGlInfo::kStatusDone;
}
void OpenGLRenderer::outputDisplayList(DisplayList* displayList) {
if (displayList) {
displayList->output(1);
}
}
void OpenGLRenderer::drawAlphaBitmap(Texture* texture, float left, float top, SkPaint* paint) {
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
int color = paint != NULL ? paint->getColor() : 0;
float x = left;
float y = top;
texture->setWrap(GL_CLAMP_TO_EDGE, true);
bool ignoreTransform = false;
if (currentTransform().isPureTranslate()) {
x = (int) floorf(left + currentTransform().getTranslateX() + 0.5f);
y = (int) floorf(top + currentTransform().getTranslateY() + 0.5f);
ignoreTransform = true;
texture->setFilter(GL_NEAREST, true);
} else {
texture->setFilter(FILTER(paint), true);
}
// No need to check for a UV mapper on the texture object, only ARGB_8888
// bitmaps get packed in the atlas
drawAlpha8TextureMesh(x, y, x + texture->width, y + texture->height, texture->id,
paint != NULL, color, alpha, mode, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset,
GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform);
}
/**
* Important note: this method is intended to draw batches of bitmaps and
* will not set the scissor enable or dirty the current layer, if any.
* The caller is responsible for properly dirtying the current layer.
*/
status_t OpenGLRenderer::drawBitmaps(SkBitmap* bitmap, AssetAtlas::Entry* entry, int bitmapCount,
TextureVertex* vertices, bool pureTranslate, const Rect& bounds, SkPaint* paint) {
mCaches.activeTexture(0);
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(pureTranslate ? GL_NEAREST : FILTER(paint), true);
const float x = (int) floorf(bounds.left + 0.5f);
const float y = (int) floorf(bounds.top + 0.5f);
if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) {
int color = paint != NULL ? paint->getColor() : 0;
drawAlpha8TextureMesh(x, y, x + bounds.getWidth(), y + bounds.getHeight(),
texture->id, paint != NULL, color, alpha, mode,
&vertices[0].position[0], &vertices[0].texture[0],
GL_TRIANGLES, bitmapCount * 6, true, true, false);
} else {
drawTextureMesh(x, y, x + bounds.getWidth(), y + bounds.getHeight(),
texture->id, alpha / 255.0f, mode, texture->blend,
&vertices[0].position[0], &vertices[0].texture[0],
GL_TRIANGLES, bitmapCount * 6, false, true, 0, true, false);
}
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float left, float top, SkPaint* paint) {
const float right = left + bitmap->width();
const float bottom = top + bitmap->height();
if (quickReject(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = getTexture(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) {
drawAlphaBitmap(texture, left, top, paint);
} else {
drawTextureRect(left, top, right, bottom, texture, paint);
}
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint) {
Rect r(0.0f, 0.0f, bitmap->width(), bitmap->height());
const mat4 transform(*matrix);
transform.mapRect(r);
if (quickReject(r.left, r.top, r.right, r.bottom)) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = getTexture(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
// This could be done in a cheaper way, all we need is pass the matrix
// to the vertex shader. The save/restore is a bit overkill.
save(SkCanvas::kMatrix_SaveFlag);
concatMatrix(matrix);
if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) {
drawAlphaBitmap(texture, 0.0f, 0.0f, paint);
} else {
drawTextureRect(0.0f, 0.0f, bitmap->width(), bitmap->height(), texture, paint);
}
restore();
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmapData(SkBitmap* bitmap, float left, float top, SkPaint* paint) {
const float right = left + bitmap->width();
const float bottom = top + bitmap->height();
if (quickReject(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.textureCache.getTransient(bitmap);
const AutoTexture autoCleanup(texture);
if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) {
drawAlphaBitmap(texture, left, top, paint);
} else {
drawTextureRect(left, top, right, bottom, texture, paint);
}
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmapMesh(SkBitmap* bitmap, int meshWidth, int meshHeight,
float* vertices, int* colors, SkPaint* paint) {
if (!vertices || mSnapshot->isIgnored()) {
return DrawGlInfo::kStatusDone;
}
// TODO: use quickReject on bounds from vertices
mCaches.enableScissor();
float left = FLT_MAX;
float top = FLT_MAX;
float right = FLT_MIN;
float bottom = FLT_MIN;
const uint32_t count = meshWidth * meshHeight * 6;
ColorTextureVertex mesh[count];
ColorTextureVertex* vertex = mesh;
bool cleanupColors = false;
if (!colors) {
uint32_t colorsCount = (meshWidth + 1) * (meshHeight + 1);
colors = new int[colorsCount];
memset(colors, 0xff, colorsCount * sizeof(int));
cleanupColors = true;
}
mCaches.activeTexture(0);
Texture* texture = mCaches.assetAtlas.getEntryTexture(bitmap);
const UvMapper& mapper(getMapper(texture));
for (int32_t y = 0; y < meshHeight; y++) {
for (int32_t x = 0; x < meshWidth; x++) {
uint32_t i = (y * (meshWidth + 1) + x) * 2;
float u1 = float(x) / meshWidth;
float u2 = float(x + 1) / meshWidth;
float v1 = float(y) / meshHeight;
float v2 = float(y + 1) / meshHeight;
mapper.map(u1, v1, u2, v2);
int ax = i + (meshWidth + 1) * 2;
int ay = ax + 1;
int bx = i;
int by = bx + 1;
int cx = i + 2;
int cy = cx + 1;
int dx = i + (meshWidth + 1) * 2 + 2;
int dy = dx + 1;
ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]);
ColorTextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2, colors[ax / 2]);
ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]);
ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]);
ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]);
ColorTextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1, colors[cx / 2]);
left = fminf(left, fminf(vertices[ax], fminf(vertices[bx], vertices[cx])));
top = fminf(top, fminf(vertices[ay], fminf(vertices[by], vertices[cy])));
right = fmaxf(right, fmaxf(vertices[ax], fmaxf(vertices[bx], vertices[cx])));
bottom = fmaxf(bottom, fmaxf(vertices[ay], fmaxf(vertices[by], vertices[cy])));
}
}
if (quickReject(left, top, right, bottom)) {
if (cleanupColors) delete[] colors;
return DrawGlInfo::kStatusDone;
}
if (!texture) {
texture = mCaches.textureCache.get(bitmap);
if (!texture) {
if (cleanupColors) delete[] colors;
return DrawGlInfo::kStatusDone;
}
}
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(FILTER(paint), true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
float a = alpha / 255.0f;
if (hasLayer()) {
dirtyLayer(left, top, right, bottom, currentTransform());
}
setupDraw();
setupDrawWithTextureAndColor();
setupDrawColor(a, a, a, a);
setupDrawColorFilter();
setupDrawBlending(true, mode, false);
setupDrawProgram();
setupDrawDirtyRegionsDisabled();
setupDrawModelView(0.0f, 0.0f, 1.0f, 1.0f, false);
setupDrawTexture(texture->id);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawMesh(&mesh[0].position[0], &mesh[0].texture[0], &mesh[0].color[0]);
glDrawArrays(GL_TRIANGLES, 0, count);
int slot = mCaches.currentProgram->getAttrib("colors");
if (slot >= 0) {
glDisableVertexAttribArray(slot);
}
if (cleanupColors) delete[] colors;
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap,
float srcLeft, float srcTop, float srcRight, float srcBottom,
float dstLeft, float dstTop, float dstRight, float dstBottom,
SkPaint* paint) {
if (quickReject(dstLeft, dstTop, dstRight, dstBottom)) {
return DrawGlInfo::kStatusDone;
}
mCaches.activeTexture(0);
Texture* texture = getTexture(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
const float width = texture->width;
const float height = texture->height;
float u1 = fmax(0.0f, srcLeft / width);
float v1 = fmax(0.0f, srcTop / height);
float u2 = fmin(1.0f, srcRight / width);
float v2 = fmin(1.0f, srcBottom / height);
getMapper(texture).map(u1, v1, u2, v2);
mCaches.unbindMeshBuffer();
resetDrawTextureTexCoords(u1, v1, u2, v2);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
float scaleX = (dstRight - dstLeft) / (srcRight - srcLeft);
float scaleY = (dstBottom - dstTop) / (srcBottom - srcTop);
bool scaled = scaleX != 1.0f || scaleY != 1.0f;
// Apply a scale transform on the canvas only when a shader is in use
// Skia handles the ratio between the dst and src rects as a scale factor
// when a shader is set
bool useScaleTransform = mDrawModifiers.mShader && scaled;
bool ignoreTransform = false;
if (CC_LIKELY(currentTransform().isPureTranslate() && !useScaleTransform)) {
float x = (int) floorf(dstLeft + currentTransform().getTranslateX() + 0.5f);
float y = (int) floorf(dstTop + currentTransform().getTranslateY() + 0.5f);
dstRight = x + (dstRight - dstLeft);
dstBottom = y + (dstBottom - dstTop);
dstLeft = x;
dstTop = y;
texture->setFilter(scaled ? FILTER(paint) : GL_NEAREST, true);
ignoreTransform = true;
} else {
texture->setFilter(FILTER(paint), true);
}
if (CC_UNLIKELY(useScaleTransform)) {
save(SkCanvas::kMatrix_SaveFlag);
translate(dstLeft, dstTop);
scale(scaleX, scaleY);
dstLeft = 0.0f;
dstTop = 0.0f;
dstRight = srcRight - srcLeft;
dstBottom = srcBottom - srcTop;
}
if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) {
int color = paint ? paint->getColor() : 0;
drawAlpha8TextureMesh(dstLeft, dstTop, dstRight, dstBottom,
texture->id, paint != NULL, color, alpha, mode,
&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0],
GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform);
} else {
drawTextureMesh(dstLeft, dstTop, dstRight, dstBottom,
texture->id, alpha / 255.0f, mode, texture->blend,
&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0],
GL_TRIANGLE_STRIP, gMeshCount, false, ignoreTransform);
}
if (CC_UNLIKELY(useScaleTransform)) {
restore();
}
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawPatch(SkBitmap* bitmap, Res_png_9patch* patch,
float left, float top, float right, float bottom, SkPaint* paint) {
if (quickReject(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
AssetAtlas::Entry* entry = mCaches.assetAtlas.getEntry(bitmap);
const Patch* mesh = mCaches.patchCache.get(entry, bitmap->width(), bitmap->height(),
right - left, bottom - top, patch);
return drawPatch(bitmap, mesh, entry, left, top, right, bottom, paint);
}
status_t OpenGLRenderer::drawPatch(SkBitmap* bitmap, const Patch* mesh, AssetAtlas::Entry* entry,
float left, float top, float right, float bottom, SkPaint* paint) {
if (quickReject(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
if (CC_LIKELY(mesh && mesh->verticesCount > 0)) {
mCaches.activeTexture(0);
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(GL_LINEAR, true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
const bool pureTranslate = currentTransform().isPureTranslate();
// Mark the current layer dirty where we are going to draw the patch
if (hasLayer() && mesh->hasEmptyQuads) {
const float offsetX = left + currentTransform().getTranslateX();
const float offsetY = top + currentTransform().getTranslateY();
const size_t count = mesh->quads.size();
for (size_t i = 0; i < count; i++) {
const Rect& bounds = mesh->quads.itemAt(i);
if (CC_LIKELY(pureTranslate)) {
const float x = (int) floorf(bounds.left + offsetX + 0.5f);
const float y = (int) floorf(bounds.top + offsetY + 0.5f);
dirtyLayer(x, y, x + bounds.getWidth(), y + bounds.getHeight());
} else {
dirtyLayer(left + bounds.left, top + bounds.top,
left + bounds.right, top + bounds.bottom, currentTransform());
}
}
}
if (CC_LIKELY(pureTranslate)) {
const float x = (int) floorf(left + currentTransform().getTranslateX() + 0.5f);
const float y = (int) floorf(top + currentTransform().getTranslateY() + 0.5f);
right = x + right - left;
bottom = y + bottom - top;
drawIndexedTextureMesh(x, y, right, bottom, texture->id, alpha / 255.0f,
mode, texture->blend, (GLvoid*) mesh->offset, (GLvoid*) mesh->textureOffset,
GL_TRIANGLES, mesh->indexCount, false, true,
mCaches.patchCache.getMeshBuffer(), true, !mesh->hasEmptyQuads);
} else {
drawIndexedTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f,
mode, texture->blend, (GLvoid*) mesh->offset, (GLvoid*) mesh->textureOffset,
GL_TRIANGLES, mesh->indexCount, false, false,
mCaches.patchCache.getMeshBuffer(), true, !mesh->hasEmptyQuads);
}
}
return DrawGlInfo::kStatusDrew;
}
/**
* Important note: this method is intended to draw batches of 9-patch objects and
* will not set the scissor enable or dirty the current layer, if any.
* The caller is responsible for properly dirtying the current layer.
*/
status_t OpenGLRenderer::drawPatches(SkBitmap* bitmap, AssetAtlas::Entry* entry,
TextureVertex* vertices, uint32_t indexCount, SkPaint* paint) {
mCaches.activeTexture(0);
Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
texture->setFilter(GL_LINEAR, true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
drawIndexedTextureMesh(0.0f, 0.0f, 1.0f, 1.0f, texture->id, alpha / 255.0f,
mode, texture->blend, &vertices[0].position[0], &vertices[0].texture[0],
GL_TRIANGLES, indexCount, false, true, 0, true, false);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawVertexBuffer(const VertexBuffer& vertexBuffer, SkPaint* paint,
bool useOffset) {
if (!vertexBuffer.getVertexCount()) {
// no vertices to draw
return DrawGlInfo::kStatusDone;
}
int color = paint->getColor();
SkXfermode::Mode mode = getXfermode(paint->getXfermode());
bool isAA = paint->isAntiAlias();
setupDraw();
setupDrawNoTexture();
if (isAA) setupDrawAA();
setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(isAA, mode);
setupDrawProgram();
setupDrawModelViewIdentity(useOffset);
setupDrawColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderIdentityUniforms();
void* vertices = vertexBuffer.getBuffer();
bool force = mCaches.unbindMeshBuffer();
mCaches.bindPositionVertexPointer(true, vertices, isAA ? gAlphaVertexStride : gVertexStride);
mCaches.resetTexCoordsVertexPointer();
mCaches.unbindIndicesBuffer();
int alphaSlot = -1;
if (isAA) {
void* alphaCoords = ((GLbyte*) vertices) + gVertexAlphaOffset;
alphaSlot = mCaches.currentProgram->getAttrib("vtxAlpha");
// TODO: avoid enable/disable in back to back uses of the alpha attribute
glEnableVertexAttribArray(alphaSlot);
glVertexAttribPointer(alphaSlot, 1, GL_FLOAT, GL_FALSE, gAlphaVertexStride, alphaCoords);
}
glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexBuffer.getVertexCount());
if (isAA) {
glDisableVertexAttribArray(alphaSlot);
}
return DrawGlInfo::kStatusDrew;
}
/**
* Renders a convex path via tessellation. For AA paths, this function uses a similar approach to
* that of AA lines in the drawLines() function. We expand the convex path by a half pixel in
* screen space in all directions. However, instead of using a fragment shader to compute the
* translucency of the color from its position, we simply use a varying parameter to define how far
* a given pixel is from the edge. For non-AA paths, the expansion and alpha varying are not used.
*
* Doesn't yet support joins, caps, or path effects.
*/
status_t OpenGLRenderer::drawConvexPath(const SkPath& path, SkPaint* paint) {
VertexBuffer vertexBuffer;
// TODO: try clipping large paths to viewport
PathTessellator::tessellatePath(path, paint, mSnapshot->transform, vertexBuffer);
if (hasLayer()) {
SkRect bounds = path.getBounds();
PathTessellator::expandBoundsForStroke(bounds, paint, false);
dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, currentTransform());
}
return drawVertexBuffer(vertexBuffer, paint);
}
/**
* We create tristrips for the lines much like shape stroke tessellation, using a per-vertex alpha
* and additional geometry for defining an alpha slope perimeter.
*
* Using GL_LINES can be difficult because the rasterization rules for those lines produces some
* unexpected results, and may vary between hardware devices. Previously we used a varying-base
* in-shader alpha region, but found it to be taxing on some GPUs.
*
* TODO: try using a fixed input buffer for non-capped lines as in text rendering. this may reduce
* memory transfer by removing need for degenerate vertices.
*/
status_t OpenGLRenderer::drawLines(float* points, int count, SkPaint* paint) {
if (mSnapshot->isIgnored() || count < 4) return DrawGlInfo::kStatusDone;
count &= ~0x3; // round down to nearest four
VertexBuffer buffer;
SkRect bounds;
PathTessellator::tessellateLines(points, count, paint, mSnapshot->transform, bounds, buffer);
if (quickReject(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom)) {
return DrawGlInfo::kStatusDone;
}
dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, currentTransform());
bool useOffset = !paint->isAntiAlias();
return drawVertexBuffer(buffer, paint, useOffset);
}
status_t OpenGLRenderer::drawPoints(float* points, int count, SkPaint* paint) {
if (mSnapshot->isIgnored() || count < 2) return DrawGlInfo::kStatusDone;
count &= ~0x1; // round down to nearest two
VertexBuffer buffer;
SkRect bounds;
PathTessellator::tessellatePoints(points, count, paint, mSnapshot->transform, bounds, buffer);
if (quickReject(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom)) {
return DrawGlInfo::kStatusDone;
}
dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, currentTransform());
bool useOffset = !paint->isAntiAlias();
return drawVertexBuffer(buffer, paint, useOffset);
}
status_t OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) {
// No need to check against the clip, we fill the clip region
if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone;
Rect& clip(*mSnapshot->clipRect);
clip.snapToPixelBoundaries();
drawColorRect(clip.left, clip.top, clip.right, clip.bottom, color, mode, true);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawShape(float left, float top, const PathTexture* texture,
SkPaint* paint) {
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
const float x = left + texture->left - texture->offset;
const float y = top + texture->top - texture->offset;
drawPathTexture(texture, x, y, paint);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom,
float rx, float ry, SkPaint* p) {
if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) ||
(p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) {
return DrawGlInfo::kStatusDone;
}
if (p->getPathEffect() != 0) {
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.pathCache.getRoundRect(
right - left, bottom - top, rx, ry, p);
return drawShape(left, top, texture, p);
}
SkPath path;
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
float outset = p->getStrokeWidth() / 2;
rect.outset(outset, outset);
rx += outset;
ry += outset;
}
path.addRoundRect(rect, rx, ry);
return drawConvexPath(path, p);
}
status_t OpenGLRenderer::drawCircle(float x, float y, float radius, SkPaint* p) {
if (mSnapshot->isIgnored() || quickRejectPreStroke(x - radius, y - radius,
x + radius, y + radius, p) ||
(p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) {
return DrawGlInfo::kStatusDone;
}
if (p->getPathEffect() != 0) {
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.pathCache.getCircle(radius, p);
return drawShape(x - radius, y - radius, texture, p);
}
SkPath path;
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
path.addCircle(x, y, radius + p->getStrokeWidth() / 2);
} else {
path.addCircle(x, y, radius);
}
return drawConvexPath(path, p);
}
status_t OpenGLRenderer::drawOval(float left, float top, float right, float bottom,
SkPaint* p) {
if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) ||
(p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) {
return DrawGlInfo::kStatusDone;
}
if (p->getPathEffect() != 0) {
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.pathCache.getOval(right - left, bottom - top, p);
return drawShape(left, top, texture, p);
}
SkPath path;
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2);
}
path.addOval(rect);
return drawConvexPath(path, p);
}
status_t OpenGLRenderer::drawArc(float left, float top, float right, float bottom,
float startAngle, float sweepAngle, bool useCenter, SkPaint* p) {
if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) ||
(p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) {
return DrawGlInfo::kStatusDone;
}
if (fabs(sweepAngle) >= 360.0f) {
return drawOval(left, top, right, bottom, p);
}
// TODO: support fills (accounting for concavity if useCenter && sweepAngle > 180)
if (p->getStyle() != SkPaint::kStroke_Style || p->getPathEffect() != 0 || useCenter) {
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.pathCache.getArc(right - left, bottom - top,
startAngle, sweepAngle, useCenter, p);
return drawShape(left, top, texture, p);
}
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2);
}
SkPath path;
if (useCenter) {
path.moveTo(rect.centerX(), rect.centerY());
}
path.arcTo(rect, startAngle, sweepAngle, !useCenter);
if (useCenter) {
path.close();
}
return drawConvexPath(path, p);
}
// See SkPaintDefaults.h
#define SkPaintDefaults_MiterLimit SkIntToScalar(4)
status_t OpenGLRenderer::drawRect(float left, float top, float right, float bottom, SkPaint* p) {
if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) ||
(p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) {
return DrawGlInfo::kStatusDone;
}
if (p->getStyle() != SkPaint::kFill_Style) {
// only fill style is supported by drawConvexPath, since others have to handle joins
if (p->getPathEffect() != 0 || p->getStrokeJoin() != SkPaint::kMiter_Join ||
p->getStrokeMiter() != SkPaintDefaults_MiterLimit) {
mCaches.activeTexture(0);
const PathTexture* texture =
mCaches.pathCache.getRect(right - left, bottom - top, p);
return drawShape(left, top, texture, p);
}
SkPath path;
SkRect rect = SkRect::MakeLTRB(left, top, right, bottom);
if (p->getStyle() == SkPaint::kStrokeAndFill_Style) {
rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2);
}
path.addRect(rect);
return drawConvexPath(path, p);
}
if (p->isAntiAlias() && !currentTransform().isSimple()) {
SkPath path;
path.addRect(left, top, right, bottom);
return drawConvexPath(path, p);
} else {
drawColorRect(left, top, right, bottom, p->getColor(), getXfermode(p->getXfermode()));
return DrawGlInfo::kStatusDrew;
}
}
void OpenGLRenderer::drawTextShadow(SkPaint* paint, const char* text, int bytesCount, int count,
const float* positions, FontRenderer& fontRenderer, int alpha, SkXfermode::Mode mode,
float x, float y) {
mCaches.activeTexture(0);
// NOTE: The drop shadow will not perform gamma correction
// if shader-based correction is enabled
mCaches.dropShadowCache.setFontRenderer(fontRenderer);
const ShadowTexture* shadow = mCaches.dropShadowCache.get(
paint, text, bytesCount, count, mDrawModifiers.mShadowRadius, positions);
// If the drop shadow exceeds the max texture size or couldn't be
// allocated, skip drawing
if (!shadow) return;
const AutoTexture autoCleanup(shadow);
const float sx = x - shadow->left + mDrawModifiers.mShadowDx;
const float sy = y - shadow->top + mDrawModifiers.mShadowDy;
const int shadowAlpha = ((mDrawModifiers.mShadowColor >> 24) & 0xFF) * mSnapshot->alpha;
int shadowColor = mDrawModifiers.mShadowColor;
if (mDrawModifiers.mShader) {
shadowColor = 0xffffffff;
}
setupDraw();
setupDrawWithTexture(true);
setupDrawAlpha8Color(shadowColor, shadowAlpha < 255 ? shadowAlpha : alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(sx, sy, sx + shadow->width, sy + shadow->height);
setupDrawTexture(shadow->id);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms();
setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
}
bool OpenGLRenderer::canSkipText(const SkPaint* paint) const {
float alpha = (mDrawModifiers.mHasShadow ? 1.0f : paint->getAlpha()) * mSnapshot->alpha;
return alpha == 0.0f && getXfermode(paint->getXfermode()) == SkXfermode::kSrcOver_Mode;
}
status_t OpenGLRenderer::drawPosText(const char* text, int bytesCount, int count,
const float* positions, SkPaint* paint) {
if (text == NULL || count == 0 || mSnapshot->isIgnored() || canSkipText(paint)) {
return DrawGlInfo::kStatusDone;
}
// NOTE: Skia does not support perspective transform on drawPosText yet
if (!currentTransform().isSimple()) {
return DrawGlInfo::kStatusDone;
}
mCaches.enableScissor();
float x = 0.0f;
float y = 0.0f;
const bool pureTranslate = currentTransform().isPureTranslate();
if (pureTranslate) {
x = (int) floorf(x + currentTransform().getTranslateX() + 0.5f);
y = (int) floorf(y + currentTransform().getTranslateY() + 0.5f);
}
FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint);
fontRenderer.setFont(paint, mat4::identity());
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
if (CC_UNLIKELY(mDrawModifiers.mHasShadow)) {
drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer,
alpha, mode, 0.0f, 0.0f);
}
// Pick the appropriate texture filtering
bool linearFilter = currentTransform().changesBounds();
if (pureTranslate && !linearFilter) {
linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f;
}
fontRenderer.setTextureFiltering(linearFilter);
const Rect* clip = pureTranslate ? mSnapshot->clipRect : &mSnapshot->getLocalClip();
Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
const bool hasActiveLayer = hasLayer();
TextSetupFunctor functor(this, x, y, pureTranslate, alpha, mode, paint);
if (fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y,
positions, hasActiveLayer ? &bounds : NULL, &functor)) {
if (hasActiveLayer) {
if (!pureTranslate) {
currentTransform().mapRect(bounds);
}
dirtyLayerUnchecked(bounds, getRegion());
}
}
return DrawGlInfo::kStatusDrew;
}
mat4 OpenGLRenderer::findBestFontTransform(const mat4& transform) const {
mat4 fontTransform;
if (CC_LIKELY(transform.isPureTranslate())) {
fontTransform = mat4::identity();
} else {
if (CC_UNLIKELY(transform.isPerspective())) {
fontTransform = mat4::identity();
} else {
float sx, sy;
currentTransform().decomposeScale(sx, sy);
fontTransform.loadScale(sx, sy, 1.0f);
}
}
return fontTransform;
}
status_t OpenGLRenderer::drawText(const char* text, int bytesCount, int count, float x, float y,
const float* positions, SkPaint* paint, float totalAdvance, const Rect& bounds,
DrawOpMode drawOpMode) {
if (drawOpMode == kDrawOpMode_Immediate) {
// The checks for corner-case ignorable text and quick rejection is only done for immediate
// drawing as ops from DeferredDisplayList are already filtered for these
if (text == NULL || count == 0 || mSnapshot->isIgnored() || canSkipText(paint) ||
quickReject(bounds)) {
return DrawGlInfo::kStatusDone;
}
}
const float oldX = x;
const float oldY = y;
const mat4& transform = currentTransform();
const bool pureTranslate = transform.isPureTranslate();
if (CC_LIKELY(pureTranslate)) {
x = (int) floorf(x + transform.getTranslateX() + 0.5f);
y = (int) floorf(y + transform.getTranslateY() + 0.5f);
}
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint);
if (CC_UNLIKELY(mDrawModifiers.mHasShadow)) {
fontRenderer.setFont(paint, mat4::identity());
drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer,
alpha, mode, oldX, oldY);
}
const bool hasActiveLayer = hasLayer();
// We only pass a partial transform to the font renderer. That partial
// matrix defines how glyphs are rasterized. Typically we want glyphs
// to be rasterized at their final size on screen, which means the partial
// matrix needs to take the scale factor into account.
// When a partial matrix is used to transform glyphs during rasterization,
// the mesh is generated with the inverse transform (in the case of scale,
// the mesh is generated at 1.0 / scale for instance.) This allows us to
// apply the full transform matrix at draw time in the vertex shader.
// Applying the full matrix in the shader is the easiest way to handle
// rotation and perspective and allows us to always generated quads in the
// font renderer which greatly simplifies the code, clipping in particular.
mat4 fontTransform = findBestFontTransform(transform);
fontRenderer.setFont(paint, fontTransform);
// Pick the appropriate texture filtering
bool linearFilter = !pureTranslate || fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f;
fontRenderer.setTextureFiltering(linearFilter);
// TODO: Implement better clipping for scaled/rotated text
const Rect* clip = !pureTranslate ? NULL : mSnapshot->clipRect;
Rect layerBounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
bool status;
TextSetupFunctor functor(this, x, y, pureTranslate, alpha, mode, paint);
// don't call issuedrawcommand, do it at end of batch
bool forceFinish = (drawOpMode != kDrawOpMode_Defer);
if (CC_UNLIKELY(paint->getTextAlign() != SkPaint::kLeft_Align)) {
SkPaint paintCopy(*paint);
paintCopy.setTextAlign(SkPaint::kLeft_Align);
status = fontRenderer.renderPosText(&paintCopy, clip, text, 0, bytesCount, count, x, y,
positions, hasActiveLayer ? &layerBounds : NULL, &functor, forceFinish);
} else {
status = fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y,
positions, hasActiveLayer ? &layerBounds : NULL, &functor, forceFinish);
}
if ((status || drawOpMode != kDrawOpMode_Immediate) && hasActiveLayer) {
if (!pureTranslate) {
transform.mapRect(layerBounds);
}
dirtyLayerUnchecked(layerBounds, getRegion());
}
drawTextDecorations(text, bytesCount, totalAdvance, oldX, oldY, paint);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawTextOnPath(const char* text, int bytesCount, int count, SkPath* path,
float hOffset, float vOffset, SkPaint* paint) {
if (text == NULL || count == 0 || mSnapshot->isIgnored() || canSkipText(paint)) {
return DrawGlInfo::kStatusDone;
}
// TODO: avoid scissor by calculating maximum bounds using path bounds + font metrics
mCaches.enableScissor();
FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint);
fontRenderer.setFont(paint, mat4::identity());
fontRenderer.setTextureFiltering(true);
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
TextSetupFunctor functor(this, 0.0f, 0.0f, false, alpha, mode, paint);
const Rect* clip = &mSnapshot->getLocalClip();
Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f);
const bool hasActiveLayer = hasLayer();
if (fontRenderer.renderTextOnPath(paint, clip, text, 0, bytesCount, count, path,
hOffset, vOffset, hasActiveLayer ? &bounds : NULL, &functor)) {
if (hasActiveLayer) {
currentTransform().mapRect(bounds);
dirtyLayerUnchecked(bounds, getRegion());
}
}
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawPath(SkPath* path, SkPaint* paint) {
if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone;
mCaches.activeTexture(0);
const PathTexture* texture = mCaches.pathCache.get(path, paint);
if (!texture) return DrawGlInfo::kStatusDone;
const AutoTexture autoCleanup(texture);
const float x = texture->left - texture->offset;
const float y = texture->top - texture->offset;
drawPathTexture(texture, x, y, paint);
return DrawGlInfo::kStatusDrew;
}
status_t OpenGLRenderer::drawLayer(Layer* layer, float x, float y) {
if (!layer) {
return DrawGlInfo::kStatusDone;
}
mat4* transform = NULL;
if (layer->isTextureLayer()) {
transform = &layer->getTransform();
if (!transform->isIdentity()) {
save(0);
currentTransform().multiply(*transform);
}
}
bool clipRequired = false;
const bool rejected = quickRejectNoScissor(x, y,
x + layer->layer.getWidth(), y + layer->layer.getHeight(), false, &clipRequired);
if (rejected) {
if (transform && !transform->isIdentity()) {
restore();
}
return DrawGlInfo::kStatusDone;
}
updateLayer(layer, true);
mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired);
mCaches.activeTexture(0);
if (CC_LIKELY(!layer->region.isEmpty())) {
SkiaColorFilter* oldFilter = mDrawModifiers.mColorFilter;
mDrawModifiers.mColorFilter = layer->getColorFilter();
if (layer->region.isRect()) {
DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate,
composeLayerRect(layer, layer->regionRect));
} else if (layer->mesh) {
const float a = getLayerAlpha(layer);
setupDraw();
setupDrawWithTexture();
setupDrawColor(a, a, a, a);
setupDrawColorFilter();
setupDrawBlending(layer->isBlend() || a < 1.0f, layer->getMode(), false);
setupDrawProgram();
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawTexture(layer->getTexture());
if (CC_LIKELY(currentTransform().isPureTranslate())) {
int tx = (int) floorf(x + currentTransform().getTranslateX() + 0.5f);
int ty = (int) floorf(y + currentTransform().getTranslateY() + 0.5f);
layer->setFilter(GL_NEAREST);
setupDrawModelViewTranslate(tx, ty,
tx + layer->layer.getWidth(), ty + layer->layer.getHeight(), true);
} else {
layer->setFilter(GL_LINEAR);
setupDrawModelViewTranslate(x, y,
x + layer->layer.getWidth(), y + layer->layer.getHeight());
}
TextureVertex* mesh = &layer->mesh[0];
GLsizei elementsCount = layer->meshElementCount;
while (elementsCount > 0) {
GLsizei drawCount = min(elementsCount, (GLsizei) gMaxNumberOfQuads * 6);
setupDrawMeshIndices(&mesh[0].position[0], &mesh[0].texture[0]);
DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate,
glDrawElements(GL_TRIANGLES, drawCount, GL_UNSIGNED_SHORT, NULL));
elementsCount -= drawCount;
// Though there are 4 vertices in a quad, we use 6 indices per
// quad to draw with GL_TRIANGLES
mesh += (drawCount / 6) * 4;
}
#if DEBUG_LAYERS_AS_REGIONS
drawRegionRects(layer->region);
#endif
}
mDrawModifiers.mColorFilter = oldFilter;
if (layer->debugDrawUpdate) {
layer->debugDrawUpdate = false;
drawColorRect(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(),
0x7f00ff00, SkXfermode::kSrcOver_Mode);
}
}
layer->hasDrawnSinceUpdate = true;
if (transform && !transform->isIdentity()) {
restore();
}
return DrawGlInfo::kStatusDrew;
}
///////////////////////////////////////////////////////////////////////////////
// Shaders
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetShader() {
mDrawModifiers.mShader = NULL;
}
void OpenGLRenderer::setupShader(SkiaShader* shader) {
mDrawModifiers.mShader = shader;
if (mDrawModifiers.mShader) {
mDrawModifiers.mShader->setCaches(mCaches);
}
}
///////////////////////////////////////////////////////////////////////////////
// Color filters
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetColorFilter() {
mDrawModifiers.mColorFilter = NULL;
}
void OpenGLRenderer::setupColorFilter(SkiaColorFilter* filter) {
mDrawModifiers.mColorFilter = filter;
}
///////////////////////////////////////////////////////////////////////////////
// Drop shadow
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetShadow() {
mDrawModifiers.mHasShadow = false;
}
void OpenGLRenderer::setupShadow(float radius, float dx, float dy, int color) {
mDrawModifiers.mHasShadow = true;
mDrawModifiers.mShadowRadius = radius;
mDrawModifiers.mShadowDx = dx;
mDrawModifiers.mShadowDy = dy;
mDrawModifiers.mShadowColor = color;
}
///////////////////////////////////////////////////////////////////////////////
// Draw filters
///////////////////////////////////////////////////////////////////////////////
void OpenGLRenderer::resetPaintFilter() {
// when clearing the PaintFilter, the masks should also be cleared for simple DrawModifier
// comparison, see MergingDrawBatch::canMergeWith
mDrawModifiers.mHasDrawFilter = false;
mDrawModifiers.mPaintFilterClearBits = 0;
mDrawModifiers.mPaintFilterSetBits = 0;
}
void OpenGLRenderer::setupPaintFilter(int clearBits, int setBits) {
mDrawModifiers.mHasDrawFilter = true;
mDrawModifiers.mPaintFilterClearBits = clearBits & SkPaint::kAllFlags;
mDrawModifiers.mPaintFilterSetBits = setBits & SkPaint::kAllFlags;
}
SkPaint* OpenGLRenderer::filterPaint(SkPaint* paint) {
if (CC_LIKELY(!mDrawModifiers.mHasDrawFilter || !paint)) {
return paint;
}
uint32_t flags = paint->getFlags();
mFilteredPaint = *paint;
mFilteredPaint.setFlags((flags & ~mDrawModifiers.mPaintFilterClearBits) |
mDrawModifiers.mPaintFilterSetBits);
return &mFilteredPaint;
}
///////////////////////////////////////////////////////////////////////////////
// Drawing implementation
///////////////////////////////////////////////////////////////////////////////
Texture* OpenGLRenderer::getTexture(SkBitmap* bitmap) {
Texture* texture = mCaches.assetAtlas.getEntryTexture(bitmap);
if (!texture) {
return mCaches.textureCache.get(bitmap);
}
return texture;
}
void OpenGLRenderer::drawPathTexture(const PathTexture* texture,
float x, float y, SkPaint* paint) {
if (quickReject(x, y, x + texture->width, y + texture->height)) {
return;
}
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
setupDraw();
setupDrawWithTexture(true);
setupDrawAlpha8Color(paint->getColor(), alpha);
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
setupDrawModelView(x, y, x + texture->width, y + texture->height);
setupDrawTexture(texture->id);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms();
setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset);
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
}
// Same values used by Skia
#define kStdStrikeThru_Offset (-6.0f / 21.0f)
#define kStdUnderline_Offset (1.0f / 9.0f)
#define kStdUnderline_Thickness (1.0f / 18.0f)
void OpenGLRenderer::drawTextDecorations(const char* text, int bytesCount, float underlineWidth,
float x, float y, SkPaint* paint) {
// Handle underline and strike-through
uint32_t flags = paint->getFlags();
if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) {
SkPaint paintCopy(*paint);
if (CC_LIKELY(underlineWidth > 0.0f)) {
const float textSize = paintCopy.getTextSize();
const float strokeWidth = fmax(textSize * kStdUnderline_Thickness, 1.0f);
const float left = x;
float top = 0.0f;
int linesCount = 0;
if (flags & SkPaint::kUnderlineText_Flag) linesCount++;
if (flags & SkPaint::kStrikeThruText_Flag) linesCount++;
const int pointsCount = 4 * linesCount;
float points[pointsCount];
int currentPoint = 0;
if (flags & SkPaint::kUnderlineText_Flag) {
top = y + textSize * kStdUnderline_Offset;
points[currentPoint++] = left;
points[currentPoint++] = top;
points[currentPoint++] = left + underlineWidth;
points[currentPoint++] = top;
}
if (flags & SkPaint::kStrikeThruText_Flag) {
top = y + textSize * kStdStrikeThru_Offset;
points[currentPoint++] = left;
points[currentPoint++] = top;
points[currentPoint++] = left + underlineWidth;
points[currentPoint++] = top;
}
paintCopy.setStrokeWidth(strokeWidth);
drawLines(&points[0], pointsCount, &paintCopy);
}
}
}
status_t OpenGLRenderer::drawRects(const float* rects, int count, SkPaint* paint) {
if (mSnapshot->isIgnored()) {
return DrawGlInfo::kStatusDone;
}
int color = paint->getColor();
// If a shader is set, preserve only the alpha
if (mDrawModifiers.mShader) {
color |= 0x00ffffff;
}
SkXfermode::Mode mode = getXfermode(paint->getXfermode());
return drawColorRects(rects, count, color, mode);
}
status_t OpenGLRenderer::drawColorRects(const float* rects, int count, int color,
SkXfermode::Mode mode, bool ignoreTransform, bool dirty, bool clip) {
if (count == 0) {
return DrawGlInfo::kStatusDone;
}
float left = FLT_MAX;
float top = FLT_MAX;
float right = FLT_MIN;
float bottom = FLT_MIN;
Vertex mesh[count];
Vertex* vertex = mesh;
for (int index = 0; index < count; index += 4) {
float l = rects[index + 0];
float t = rects[index + 1];
float r = rects[index + 2];
float b = rects[index + 3];
Vertex::set(vertex++, l, t);
Vertex::set(vertex++, r, t);
Vertex::set(vertex++, l, b);
Vertex::set(vertex++, r, b);
left = fminf(left, l);
top = fminf(top, t);
right = fmaxf(right, r);
bottom = fmaxf(bottom, b);
}
if (clip && quickReject(left, top, right, bottom)) {
return DrawGlInfo::kStatusDone;
}
setupDraw();
setupDrawNoTexture();
setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha);
setupDrawShader();
setupDrawColorFilter();
setupDrawBlending(mode);
setupDrawProgram();
setupDrawDirtyRegionsDisabled();
setupDrawModelView(0.0f, 0.0f, 1.0f, 1.0f, ignoreTransform, true);
setupDrawColorUniforms();
setupDrawShaderUniforms();
setupDrawColorFilterUniforms();
if (dirty && hasLayer()) {
dirtyLayer(left, top, right, bottom, currentTransform());
}
drawIndexedQuads(&mesh[0], count / 4);
return DrawGlInfo::kStatusDrew;
}
void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom,
int color, SkXfermode::Mode mode, bool ignoreTransform) {
// If a shader is set, preserve only the alpha
if (mDrawModifiers.mShader) {
color |= 0x00ffffff;
}
setupDraw();
setupDrawNoTexture();
setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha);
setupDrawShader();
setupDrawColorFilter();
setupDrawBlending(mode);
setupDrawProgram();
setupDrawModelView(left, top, right, bottom, ignoreTransform);
setupDrawColorUniforms();
setupDrawShaderUniforms(ignoreTransform);
setupDrawColorFilterUniforms();
setupDrawSimpleMesh();
glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount);
}
void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom,
Texture* texture, SkPaint* paint) {
int alpha;
SkXfermode::Mode mode;
getAlphaAndMode(paint, &alpha, &mode);
texture->setWrap(GL_CLAMP_TO_EDGE, true);
GLvoid* vertices = (GLvoid*) NULL;
GLvoid* texCoords = (GLvoid*) gMeshTextureOffset;
if (texture->uvMapper) {
vertices = &mMeshVertices[0].position[0];
texCoords = &mMeshVertices[0].texture[0];
Rect uvs(0.0f, 0.0f, 1.0f, 1.0f);
texture->uvMapper->map(uvs);
resetDrawTextureTexCoords(uvs.left, uvs.top, uvs.right, uvs.bottom);
}
if (CC_LIKELY(currentTransform().isPureTranslate())) {
const float x = (int) floorf(left + currentTransform().getTranslateX() + 0.5f);
const float y = (int) floorf(top + currentTransform().getTranslateY() + 0.5f);
texture->setFilter(GL_NEAREST, true);
drawTextureMesh(x, y, x + texture->width, y + texture->height, texture->id,
alpha / 255.0f, mode, texture->blend, vertices, texCoords,
GL_TRIANGLE_STRIP, gMeshCount, false, true);
} else {
texture->setFilter(FILTER(paint), true);
drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f, mode,
texture->blend, vertices, texCoords, GL_TRIANGLE_STRIP, gMeshCount);
}
if (texture->uvMapper) {
resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f);
}
}
void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom,
GLuint texture, float alpha, SkXfermode::Mode mode, bool blend) {
drawTextureMesh(left, top, right, bottom, texture, alpha, mode, blend,
(GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount);
}
void OpenGLRenderer::drawTextureMesh(float left, float top, float right, float bottom,
GLuint texture, float alpha, SkXfermode::Mode mode, bool blend,
GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount,
bool swapSrcDst, bool ignoreTransform, GLuint vbo, bool ignoreScale, bool dirty) {
setupDraw();
setupDrawWithTexture();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter();
setupDrawBlending(blend, mode, swapSrcDst);
setupDrawProgram();
if (!dirty) setupDrawDirtyRegionsDisabled();
if (!ignoreScale) {
setupDrawModelView(left, top, right, bottom, ignoreTransform);
} else {
setupDrawModelViewTranslate(left, top, right, bottom, ignoreTransform);
}
setupDrawTexture(texture);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawMesh(vertices, texCoords, vbo);
glDrawArrays(drawMode, 0, elementsCount);
}
void OpenGLRenderer::drawIndexedTextureMesh(float left, float top, float right, float bottom,
GLuint texture, float alpha, SkXfermode::Mode mode, bool blend,
GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount,
bool swapSrcDst, bool ignoreTransform, GLuint vbo, bool ignoreScale, bool dirty) {
setupDraw();
setupDrawWithTexture();
setupDrawColor(alpha, alpha, alpha, alpha);
setupDrawColorFilter();
setupDrawBlending(blend, mode, swapSrcDst);
setupDrawProgram();
if (!dirty) setupDrawDirtyRegionsDisabled();
if (!ignoreScale) {
setupDrawModelView(left, top, right, bottom, ignoreTransform);
} else {
setupDrawModelViewTranslate(left, top, right, bottom, ignoreTransform);
}
setupDrawTexture(texture);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawMeshIndices(vertices, texCoords, vbo);
glDrawElements(drawMode, elementsCount, GL_UNSIGNED_SHORT, NULL);
}
void OpenGLRenderer::drawAlpha8TextureMesh(float left, float top, float right, float bottom,
GLuint texture, bool hasColor, int color, int alpha, SkXfermode::Mode mode,
GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount,
bool ignoreTransform, bool ignoreScale, bool dirty) {
setupDraw();
setupDrawWithTexture(true);
if (hasColor) {
setupDrawAlpha8Color(color, alpha);
}
setupDrawColorFilter();
setupDrawShader();
setupDrawBlending(true, mode);
setupDrawProgram();
if (!dirty) setupDrawDirtyRegionsDisabled();
if (!ignoreScale) {
setupDrawModelView(left, top, right, bottom, ignoreTransform);
} else {
setupDrawModelViewTranslate(left, top, right, bottom, ignoreTransform);
}
setupDrawTexture(texture);
setupDrawPureColorUniforms();
setupDrawColorFilterUniforms();
setupDrawShaderUniforms();
setupDrawMesh(vertices, texCoords);
glDrawArrays(drawMode, 0, elementsCount);
}
void OpenGLRenderer::chooseBlending(bool blend, SkXfermode::Mode mode,
ProgramDescription& description, bool swapSrcDst) {
if (mCountOverdraw) {
if (!mCaches.blend) glEnable(GL_BLEND);
if (mCaches.lastSrcMode != GL_ONE || mCaches.lastDstMode != GL_ONE) {
glBlendFunc(GL_ONE, GL_ONE);
}
mCaches.blend = true;
mCaches.lastSrcMode = GL_ONE;
mCaches.lastDstMode = GL_ONE;
return;
}
blend = blend || mode != SkXfermode::kSrcOver_Mode;
if (blend) {
// These blend modes are not supported by OpenGL directly and have
// to be implemented using shaders. Since the shader will perform
// the blending, turn blending off here
// If the blend mode cannot be implemented using shaders, fall
// back to the default SrcOver blend mode instead
if (CC_UNLIKELY(mode > SkXfermode::kScreen_Mode)) {
if (CC_UNLIKELY(mExtensions.hasFramebufferFetch())) {
description.framebufferMode = mode;
description.swapSrcDst = swapSrcDst;
if (mCaches.blend) {
glDisable(GL_BLEND);
mCaches.blend = false;
}
return;
} else {
mode = SkXfermode::kSrcOver_Mode;
}
}
if (!mCaches.blend) {
glEnable(GL_BLEND);
}
GLenum sourceMode = swapSrcDst ? gBlendsSwap[mode].src : gBlends[mode].src;
GLenum destMode = swapSrcDst ? gBlendsSwap[mode].dst : gBlends[mode].dst;
if (sourceMode != mCaches.lastSrcMode || destMode != mCaches.lastDstMode) {
glBlendFunc(sourceMode, destMode);
mCaches.lastSrcMode = sourceMode;
mCaches.lastDstMode = destMode;
}
} else if (mCaches.blend) {
glDisable(GL_BLEND);
}
mCaches.blend = blend;
}
bool OpenGLRenderer::useProgram(Program* program) {
if (!program->isInUse()) {
if (mCaches.currentProgram != NULL) mCaches.currentProgram->remove();
program->use();
mCaches.currentProgram = program;
return false;
}
return true;
}
void OpenGLRenderer::resetDrawTextureTexCoords(float u1, float v1, float u2, float v2) {
TextureVertex* v = &mMeshVertices[0];
TextureVertex::setUV(v++, u1, v1);
TextureVertex::setUV(v++, u2, v1);
TextureVertex::setUV(v++, u1, v2);
TextureVertex::setUV(v++, u2, v2);
}
void OpenGLRenderer::getAlphaAndMode(SkPaint* paint, int* alpha, SkXfermode::Mode* mode) const {
getAlphaAndModeDirect(paint, alpha, mode);
if (mDrawModifiers.mOverrideLayerAlpha < 1.0f) {
// if drawing a layer, ignore the paint's alpha
*alpha = mDrawModifiers.mOverrideLayerAlpha * 255;
}
*alpha *= mSnapshot->alpha;
}
float OpenGLRenderer::getLayerAlpha(Layer* layer) const {
float alpha;
if (mDrawModifiers.mOverrideLayerAlpha < 1.0f) {
alpha = mDrawModifiers.mOverrideLayerAlpha;
} else {
alpha = layer->getAlpha() / 255.0f;
}
return alpha * mSnapshot->alpha;
}
}; // namespace uirenderer
}; // namespace android