/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syswrap-arm-linux.c -----*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2012 Nicholas Nethercote
njn@valgrind.org
Copyright (C) 2008-2012 Evan Geller
gaze@bea.ms
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGP_arm_linux)
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_debuglog.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_options.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h" // For VG_(sigframe_destroy)()
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "pub_core_stacks.h" // VG_(register_stack)
#include "pub_core_transtab.h" // VG_(discard_translations)
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */
#include "priv_syswrap-main.h"
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
/* Call f(arg1), but first switch stacks, using 'stack' as the new
stack, and use 'retaddr' as f's return-to address. Also, clear all
the integer registers before entering f.*/
__attribute__((noreturn))
void ML_(call_on_new_stack_0_1) ( Addr stack,
Addr retaddr,
void (*f)(Word),
Word arg1 );
// r0 = stack
// r1 = retaddr
// r2 = f
// r3 = arg1
asm(
".text\n"
".globl vgModuleLocal_call_on_new_stack_0_1\n"
"vgModuleLocal_call_on_new_stack_0_1:\n"
" mov sp,r0\n\t" /* Stack pointer */
" mov lr,r1\n\t" /* Return address */
" mov r0,r3\n\t" /* First argument */
" push {r2}\n\t" /* So we can ret to the new dest */
" mov r1, #0\n\t" /* Clear our GPRs */
" mov r2, #0\n\t"
" mov r3, #0\n\t"
" mov r4, #0\n\t"
" mov r5, #0\n\t"
" mov r6, #0\n\t"
" mov r7, #0\n\t"
" mov r8, #0\n\t"
" mov r9, #0\n\t"
" mov r10, #0\n\t"
" mov r11, #0\n\t"
" mov r12, #0\n\t"
" pop {pc}\n\t" /* Herrre we go! */
".previous\n"
);
#define __NR_CLONE VG_STRINGIFY(__NR_clone)
#define __NR_EXIT VG_STRINGIFY(__NR_exit)
extern
ULong do_syscall_clone_arm_linux ( Word (*fn)(void *),
void* stack,
Int flags,
void* arg,
Int* child_tid,
Int* parent_tid,
void* tls );
asm(
".text\n"
".globl do_syscall_clone_arm_linux\n"
"do_syscall_clone_arm_linux:\n"
/*Setup child stack */
" str r0, [r1, #-4]!\n"
" str r3, [r1, #-4]!\n"
" push {r4,r7}\n"
" mov r0, r2\n" /* arg1: flags */
/* r1 (arg2) is already our child's stack */
" ldr r2, [sp, #12]\n" // parent tid
" ldr r3, [sp, #16]\n" // tls
" ldr r4, [sp, #8]\n" // Child tid
" mov r7, #"__NR_CLONE"\n"
" svc 0x00000000\n"
" cmp r0, #0\n"
" beq 1f\n"
/* Parent */
" pop {r4,r7}\n"
" bx lr\n"
"1:\n" /*child*/
" mov lr, pc\n"
" pop {r0,pc}\n"
/* Retval from child is already in r0 */
" mov r7, #"__NR_EXIT"\n"
" svc 0x00000000\n"
/* Urh.. why did exit return? */
" .long 0\n"
" .previous\n"
);
#undef __NR_CLONE
#undef __NR_EXIT
// forward declarations
static void setup_child ( ThreadArchState*, ThreadArchState* );
static void assign_guest_tls(ThreadId ctid, Addr tlsptr);
static SysRes sys_set_tls ( ThreadId tid, Addr tlsptr );
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for IP, and a separate stack
for SP.
*/
static SysRes do_clone ( ThreadId ptid,
UInt flags, Addr sp,
Int *parent_tidptr,
Int *child_tidptr,
Addr child_tls)
{
const Bool debug = False;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState* ptst = VG_(get_ThreadState)(ptid);
ThreadState* ctst = VG_(get_ThreadState)(ctid);
UInt r0;
UWord *stack;
NSegment const* seg;
SysRes res;
vki_sigset_t blockall, savedmask;
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(ptid));
vg_assert(VG_(is_valid_tid)(ctid));
stack = (UWord*)ML_(allocstack)(ctid);
if(stack == NULL) {
res = VG_(mk_SysRes_Error)( VKI_ENOMEM );
goto out;
}
setup_child( &ctst->arch, &ptst->arch );
ctst->arch.vex.guest_R0 = 0;
if(sp != 0)
ctst->arch.vex.guest_R13 = sp;
ctst->os_state.parent = ptid;
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* Start the child with its threadgroup being the same as the
parent's. This is so that any exit_group calls that happen
after the child is created but before it sets its
os_state.threadgroup field for real (in thread_wrapper in
syswrap-linux.c), really kill the new thread. a.k.a this avoids
a race condition in which the thread is unkillable (via
exit_group) because its threadgroup is not set. The race window
is probably only a few hundred or a few thousand cycles long.
See #226116. */
ctst->os_state.threadgroup = ptst->os_state.threadgroup;
seg = VG_(am_find_nsegment)((Addr)sp);
if (seg && seg->kind != SkResvn) {
ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(sp);
ctst->client_stack_szB = ctst->client_stack_highest_word - seg->start;
VG_(register_stack)(seg->start, ctst->client_stack_highest_word);
if (debug)
VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n",
ctid, seg->start, VG_PGROUNDUP(sp));
} else {
VG_(message)(Vg_UserMsg, "!? New thread %d starts with sp+%#lx) unmapped\n", ctid, sp);
ctst->client_stack_szB = 0;
}
vg_assert(VG_(owns_BigLock_LL)(ptid));
VG_TRACK ( pre_thread_ll_create, ptid, ctid );
if (flags & VKI_CLONE_SETTLS) {
/* Just assign the tls pointer in the guest TPIDRURO. */
assign_guest_tls(ctid, child_tls);
}
flags &= ~VKI_CLONE_SETTLS;
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
r0 = do_syscall_clone_arm_linux(
ML_(start_thread_NORETURN), stack, flags, &VG_(threads)[ctid],
child_tidptr, parent_tidptr, NULL
);
//VG_(printf)("AFTER SYSCALL, %x and %x CHILD: %d PARENT: %d\n",child_tidptr, parent_tidptr,*child_tidptr,*parent_tidptr);
res = VG_(mk_SysRes_arm_linux)( r0 );
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
out:
if (sr_isError(res)) {
VG_(cleanup_thread)(&ctst->arch);
ctst->status = VgTs_Empty;
VG_TRACK( pre_thread_ll_exit, ctid );
}
return res;
}
/* ---------------------------------------------------------------------
More thread stuff
------------------------------------------------------------------ */
// ARM doesn't have any architecture specific thread stuff that
// needs to be cleaned up
void VG_(cleanup_thread) ( ThreadArchState* arch )
{
}
void setup_child ( /*OUT*/ ThreadArchState *child,
/*IN*/ ThreadArchState *parent )
{
child->vex = parent->vex;
child->vex_shadow1 = parent->vex_shadow1;
child->vex_shadow2 = parent->vex_shadow2;
}
static void assign_guest_tls(ThreadId tid, Addr tlsptr)
{
VG_(threads)[tid].arch.vex.guest_TPIDRURO = tlsptr;
}
/* Assigns tlsptr to the guest TPIDRURO.
If needed for the specific hardware, really executes
the set_tls syscall.
*/
static SysRes sys_set_tls ( ThreadId tid, Addr tlsptr )
{
assign_guest_tls(tid, tlsptr);
#if defined(ANDROID_HARDWARE_emulator)
/* Android emulator does not provide an hw tls register.
So, the tls register is emulated by the kernel.
This emulated value is set by the __NR_ARM_set_tls syscall.
The emulated value must be read by the kernel helper function
located at 0xffff0fe0.
The emulated tlsptr is located at 0xffff0ff0
(so slightly after the kernel helper function).
Note that applications are not supposed to read this directly.
For compatibility : if there is a hw tls register, the kernel
will put at 0xffff0fe0 the instructions to read it, so
as to have old applications calling the kernel helper
working properly.
For having emulated guest TLS working correctly with
Valgrind, it is needed to execute the syscall to set
the emulated TLS value in addition to the assignment
of TPIDRURO.
Note: the below means that if we need thread local storage
for Valgrind host, then there will be a conflict between
the need of the guest tls and of the host tls.
If all the guest code would cleanly call 0xffff0fe0,
then we might maybe intercept this. However, at least
__libc_preinit reads directly 0xffff0ff0.
*/
/* ??? might call the below if auxv->u.a_val & VKI_HWCAP_TLS ???
Unclear if real hardware having tls hw register sets
VKI_HWCAP_TLS. */
return VG_(do_syscall1) (__NR_ARM_set_tls, tlsptr);
#else
return VG_(mk_SysRes_Success)( 0 );
#endif
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for arm/Linux-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(arm_linux, name)
#define POST(name) DEFN_POST_TEMPLATE(arm_linux, name)
/* Add prototypes for the wrappers declared here, so that gcc doesn't
harass us for not having prototypes. Really this is a kludge --
the right thing to do is to make these wrappers 'static' since they
aren't visible outside this file, but that requires even more macro
magic. */
DECL_TEMPLATE(arm_linux, sys_socketcall);
DECL_TEMPLATE(arm_linux, sys_socket);
DECL_TEMPLATE(arm_linux, sys_setsockopt);
DECL_TEMPLATE(arm_linux, sys_getsockopt);
DECL_TEMPLATE(arm_linux, sys_connect);
DECL_TEMPLATE(arm_linux, sys_accept);
DECL_TEMPLATE(arm_linux, sys_accept4);
DECL_TEMPLATE(arm_linux, sys_sendto);
DECL_TEMPLATE(arm_linux, sys_recvfrom);
//XXX: Semaphore code ripped from AMD64.
DECL_TEMPLATE(arm_linux, sys_semget);
DECL_TEMPLATE(arm_linux, sys_semop);
DECL_TEMPLATE(arm_linux, sys_semctl);
DECL_TEMPLATE(arm_linux, sys_semtimedop);
//XXX: Shared memory code ripped from AMD64
//
DECL_TEMPLATE(arm_linux, wrap_sys_shmat);
DECL_TEMPLATE(arm_linux, sys_shmget);
DECL_TEMPLATE(arm_linux, sys_shmdt);
DECL_TEMPLATE(arm_linux, sys_shmctl);
DECL_TEMPLATE(arm_linux, sys_sendmsg);
DECL_TEMPLATE(arm_linux, sys_recvmsg);
//msg* code from AMD64
DECL_TEMPLATE(arm_linux, sys_msgget);
DECL_TEMPLATE(arm_linux, sys_msgrcv);
DECL_TEMPLATE(arm_linux, sys_msgsnd);
DECL_TEMPLATE(arm_linux, sys_msgctl);
DECL_TEMPLATE(arm_linux, sys_shutdown);
DECL_TEMPLATE(arm_linux, sys_bind);
DECL_TEMPLATE(arm_linux, sys_listen);
DECL_TEMPLATE(arm_linux, sys_getsockname);
DECL_TEMPLATE(arm_linux, sys_getpeername);
DECL_TEMPLATE(arm_linux, sys_socketpair);
DECL_TEMPLATE(arm_linux, sys_send);
DECL_TEMPLATE(arm_linux, sys_recv);
DECL_TEMPLATE(arm_linux, sys_mmap2);
DECL_TEMPLATE(arm_linux, sys_stat64);
DECL_TEMPLATE(arm_linux, sys_lstat64);
DECL_TEMPLATE(arm_linux, sys_fstatat64);
DECL_TEMPLATE(arm_linux, sys_fstat64);
DECL_TEMPLATE(arm_linux, sys_clone);
DECL_TEMPLATE(arm_linux, sys_sigreturn);
DECL_TEMPLATE(arm_linux, sys_rt_sigreturn);
DECL_TEMPLATE(arm_linux, sys_sigsuspend);
DECL_TEMPLATE(arm_linux, sys_set_tls);
DECL_TEMPLATE(arm_linux, sys_cacheflush);
DECL_TEMPLATE(arm_linux, sys_ptrace);
PRE(sys_socketcall)
{
# define ARG2_0 (((UWord*)ARG2)[0])
# define ARG2_1 (((UWord*)ARG2)[1])
# define ARG2_2 (((UWord*)ARG2)[2])
# define ARG2_3 (((UWord*)ARG2)[3])
# define ARG2_4 (((UWord*)ARG2)[4])
# define ARG2_5 (((UWord*)ARG2)[5])
*flags |= SfMayBlock;
PRINT("sys_socketcall ( %ld, %#lx )",ARG1,ARG2);
PRE_REG_READ2(long, "socketcall", int, call, unsigned long *, args);
switch (ARG1 /* request */) {
case VKI_SYS_SOCKETPAIR:
/* int socketpair(int d, int type, int protocol, int sv[2]); */
PRE_MEM_READ( "socketcall.socketpair(args)", ARG2, 4*sizeof(Addr) );
ML_(generic_PRE_sys_socketpair)( tid, ARG2_0, ARG2_1, ARG2_2, ARG2_3 );
break;
case VKI_SYS_SOCKET:
/* int socket(int domain, int type, int protocol); */
PRE_MEM_READ( "socketcall.socket(args)", ARG2, 3*sizeof(Addr) );
break;
case VKI_SYS_BIND:
/* int bind(int sockfd, struct sockaddr *my_addr,
int addrlen); */
PRE_MEM_READ( "socketcall.bind(args)", ARG2, 3*sizeof(Addr) );
ML_(generic_PRE_sys_bind)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_LISTEN:
/* int listen(int s, int backlog); */
PRE_MEM_READ( "socketcall.listen(args)", ARG2, 2*sizeof(Addr) );
break;
case VKI_SYS_ACCEPT: {
/* int accept(int s, struct sockaddr *addr, int *addrlen); */
PRE_MEM_READ( "socketcall.accept(args)", ARG2, 3*sizeof(Addr) );
ML_(generic_PRE_sys_accept)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
}
case VKI_SYS_ACCEPT4: {
/*int accept(int s, struct sockaddr *add, int *addrlen, int flags)*/
PRE_MEM_READ( "socketcall.accept4(args)", ARG2, 4*sizeof(Addr) );
ML_(generic_PRE_sys_accept)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
}
case VKI_SYS_SENDTO:
/* int sendto(int s, const void *msg, int len,
unsigned int flags,
const struct sockaddr *to, int tolen); */
PRE_MEM_READ( "socketcall.sendto(args)", ARG2, 6*sizeof(Addr) );
ML_(generic_PRE_sys_sendto)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4, ARG2_5 );
break;
case VKI_SYS_SEND:
/* int send(int s, const void *msg, size_t len, int flags); */
PRE_MEM_READ( "socketcall.send(args)", ARG2, 4*sizeof(Addr) );
ML_(generic_PRE_sys_send)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_RECVFROM:
/* int recvfrom(int s, void *buf, int len, unsigned int flags,
struct sockaddr *from, int *fromlen); */
PRE_MEM_READ( "socketcall.recvfrom(args)", ARG2, 6*sizeof(Addr) );
ML_(generic_PRE_sys_recvfrom)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4, ARG2_5 );
break;
case VKI_SYS_RECV:
/* int recv(int s, void *buf, int len, unsigned int flags); */
/* man 2 recv says:
The recv call is normally used only on a connected socket
(see connect(2)) and is identical to recvfrom with a NULL
from parameter.
*/
PRE_MEM_READ( "socketcall.recv(args)", ARG2, 4*sizeof(Addr) );
ML_(generic_PRE_sys_recv)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_CONNECT:
/* int connect(int sockfd,
struct sockaddr *serv_addr, int addrlen ); */
PRE_MEM_READ( "socketcall.connect(args)", ARG2, 3*sizeof(Addr) );
ML_(generic_PRE_sys_connect)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_SETSOCKOPT:
/* int setsockopt(int s, int level, int optname,
const void *optval, int optlen); */
PRE_MEM_READ( "socketcall.setsockopt(args)", ARG2, 5*sizeof(Addr) );
ML_(generic_PRE_sys_setsockopt)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4 );
break;
case VKI_SYS_GETSOCKOPT:
/* int getsockopt(int s, int level, int optname,
void *optval, socklen_t *optlen); */
PRE_MEM_READ( "socketcall.getsockopt(args)", ARG2, 5*sizeof(Addr) );
ML_(linux_PRE_sys_getsockopt)( tid, ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4 );
break;
case VKI_SYS_GETSOCKNAME:
/* int getsockname(int s, struct sockaddr* name, int* namelen) */
PRE_MEM_READ( "socketcall.getsockname(args)", ARG2, 3*sizeof(Addr) );
ML_(generic_PRE_sys_getsockname)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_GETPEERNAME:
/* int getpeername(int s, struct sockaddr* name, int* namelen) */
PRE_MEM_READ( "socketcall.getpeername(args)", ARG2, 3*sizeof(Addr) );
ML_(generic_PRE_sys_getpeername)( tid, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_SHUTDOWN:
/* int shutdown(int s, int how); */
PRE_MEM_READ( "socketcall.shutdown(args)", ARG2, 2*sizeof(Addr) );
break;
case VKI_SYS_SENDMSG: {
/* int sendmsg(int s, const struct msghdr *msg, int flags); */
/* this causes warnings, and I don't get why. glibc bug?
* (after all it's glibc providing the arguments array)
PRE_MEM_READ( "socketcall.sendmsg(args)", ARG2, 3*sizeof(Addr) );
*/
ML_(generic_PRE_sys_sendmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1 );
break;
}
case VKI_SYS_RECVMSG: {
/* int recvmsg(int s, struct msghdr *msg, int flags); */
/* this causes warnings, and I don't get why. glibc bug?
* (after all it's glibc providing the arguments array)
PRE_MEM_READ("socketcall.recvmsg(args)", ARG2, 3*sizeof(Addr) );
*/
ML_(generic_PRE_sys_recvmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1 );
break;
}
default:
VG_(message)(Vg_DebugMsg,"Warning: unhandled socketcall 0x%lx",ARG1);
SET_STATUS_Failure( VKI_EINVAL );
break;
}
# undef ARG2_0
# undef ARG2_1
# undef ARG2_2
# undef ARG2_3
# undef ARG2_4
# undef ARG2_5
}
POST(sys_socketcall)
{
# define ARG2_0 (((UWord*)ARG2)[0])
# define ARG2_1 (((UWord*)ARG2)[1])
# define ARG2_2 (((UWord*)ARG2)[2])
# define ARG2_3 (((UWord*)ARG2)[3])
# define ARG2_4 (((UWord*)ARG2)[4])
# define ARG2_5 (((UWord*)ARG2)[5])
SysRes r;
vg_assert(SUCCESS);
switch (ARG1 /* request */) {
case VKI_SYS_SOCKETPAIR:
r = ML_(generic_POST_sys_socketpair)(
tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2, ARG2_3
);
SET_STATUS_from_SysRes(r);
break;
case VKI_SYS_SOCKET:
r = ML_(generic_POST_sys_socket)( tid, VG_(mk_SysRes_Success)(RES) );
SET_STATUS_from_SysRes(r);
break;
case VKI_SYS_BIND:
/* int bind(int sockfd, struct sockaddr *my_addr,
int addrlen); */
break;
case VKI_SYS_LISTEN:
/* int listen(int s, int backlog); */
break;
case VKI_SYS_ACCEPT:
case VKI_SYS_ACCEPT4:
/* int accept(int s, struct sockaddr *addr, int *addrlen); */
/* int accept4(int s, struct sockaddr *addr, int *addrlen, int flags); */
r = ML_(generic_POST_sys_accept)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2 );
SET_STATUS_from_SysRes(r);
break;
case VKI_SYS_SENDTO:
break;
case VKI_SYS_SEND:
break;
case VKI_SYS_RECVFROM:
ML_(generic_POST_sys_recvfrom)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2,
ARG2_3, ARG2_4, ARG2_5 );
break;
case VKI_SYS_RECV:
ML_(generic_POST_sys_recv)( tid, RES, ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_CONNECT:
break;
case VKI_SYS_SETSOCKOPT:
break;
case VKI_SYS_GETSOCKOPT:
ML_(linux_POST_sys_getsockopt)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1,
ARG2_2, ARG2_3, ARG2_4 );
break;
case VKI_SYS_GETSOCKNAME:
ML_(generic_POST_sys_getsockname)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_GETPEERNAME:
ML_(generic_POST_sys_getpeername)( tid, VG_(mk_SysRes_Success)(RES),
ARG2_0, ARG2_1, ARG2_2 );
break;
case VKI_SYS_SHUTDOWN:
break;
case VKI_SYS_SENDMSG:
break;
case VKI_SYS_RECVMSG:
ML_(generic_POST_sys_recvmsg)( tid, "msg", (struct vki_msghdr *)ARG2_1, RES );
break;
default:
VG_(message)(Vg_DebugMsg,"FATAL: unhandled socketcall 0x%lx",ARG1);
VG_(core_panic)("... bye!\n");
break; /*NOTREACHED*/
}
# undef ARG2_0
# undef ARG2_1
# undef ARG2_2
# undef ARG2_3
# undef ARG2_4
# undef ARG2_5
}
PRE(sys_socket)
{
PRINT("sys_socket ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol);
}
POST(sys_socket)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES));
SET_STATUS_from_SysRes(r);
}
PRE(sys_setsockopt)
{
PRINT("sys_setsockopt ( %ld, %ld, %ld, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "setsockopt",
int, s, int, level, int, optname,
const void *, optval, int, optlen);
ML_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_getsockopt)
{
PRINT("sys_getsockopt ( %ld, %ld, %ld, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "getsockopt",
int, s, int, level, int, optname,
void *, optval, int, *optlen);
ML_(linux_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
POST(sys_getsockopt)
{
vg_assert(SUCCESS);
ML_(linux_POST_sys_getsockopt)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_connect)
{
*flags |= SfMayBlock;
PRINT("sys_connect ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "connect",
int, sockfd, struct sockaddr *, serv_addr, int, addrlen);
ML_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_accept)
{
*flags |= SfMayBlock;
PRINT("sys_accept ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "accept",
int, s, struct sockaddr *, addr, int, *addrlen);
ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sys_accept4)
{
*flags |= SfMayBlock;
PRINT("sys_accept4 ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "accept4",
int, s, struct sockaddr *, addr, int, *addrlen, int, flags);
ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept4)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sys_sendto)
{
*flags |= SfMayBlock;
PRINT("sys_sendto ( %ld, %#lx, %ld, %lu, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "sendto",
int, s, const void *, msg, int, len,
unsigned int, flags,
const struct sockaddr *, to, int, tolen);
ML_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_recvfrom)
{
*flags |= SfMayBlock;
PRINT("sys_recvfrom ( %ld, %#lx, %ld, %lu, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "recvfrom",
int, s, void *, buf, int, len, unsigned int, flags,
struct sockaddr *, from, int *, fromlen);
ML_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
POST(sys_recvfrom)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_sendmsg)
{
*flags |= SfMayBlock;
PRINT("sys_sendmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "sendmsg",
int, s, const struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_sendmsg)(tid, "msg", (struct vki_msghdr *)ARG2);
}
PRE(sys_recvmsg)
{
*flags |= SfMayBlock;
PRINT("sys_recvmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2);
}
POST(sys_recvmsg)
{
ML_(generic_POST_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2, RES);
}
//XXX: Semaphore code ripped from AMD64.
PRE(sys_semget)
{
PRINT("sys_semget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semget", vki_key_t, key, int, nsems, int, semflg);
}
PRE(sys_semop)
{
*flags |= SfMayBlock;
PRINT("sys_semop ( %ld, %#lx, %lu )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semop",
int, semid, struct sembuf *, sops, unsigned, nsoops);
ML_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_semctl)
{
switch (ARG3 & ~VKI_IPC_64) {
case VKI_IPC_INFO:
case VKI_SEM_INFO:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct seminfo *, arg);
break;
case VKI_IPC_STAT:
case VKI_SEM_STAT:
case VKI_IPC_SET:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct semid_ds *, arg);
break;
case VKI_GETALL:
case VKI_SETALL:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, unsigned short *, arg);
break;
default:
PRINT("sys_semctl ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semctl",
int, semid, int, semnum, int, cmd);
break;
}
ML_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_semctl)
{
ML_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semtimedop)
{
*flags |= SfMayBlock;
PRINT("sys_semtimedop ( %ld, %#lx, %lu, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semtimedop",
int, semid, struct sembuf *, sops, unsigned, nsoops,
struct timespec *, timeout);
ML_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4);
}
//amd64
PRE(sys_msgget)
{
PRINT("sys_msgget ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(long, "msgget", vki_key_t, key, int, msgflg);
}
PRE(sys_msgsnd)
{
PRINT("sys_msgsnd ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "msgsnd",
int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, int, msgflg);
ML_(linux_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
PRE(sys_msgrcv)
{
PRINT("sys_msgrcv ( %ld, %#lx, %ld, %ld, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "msgrcv",
int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz,
long, msgytp, int, msgflg);
ML_(linux_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
POST(sys_msgrcv)
{
ML_(linux_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_msgctl)
{
PRINT("sys_msgctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "msgctl",
int, msqid, int, cmd, struct msqid_ds *, buf);
ML_(linux_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_msgctl)
{
ML_(linux_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3);
}
//shared memory code from AMD64
PRE(sys_shmget)
{
PRINT("sys_shmget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmget", vki_key_t, key, vki_size_t, size, int, shmflg);
}
PRE(wrap_sys_shmat)
{
UWord arg2tmp;
PRINT("wrap_sys_shmat ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmat",
int, shmid, const void *, shmaddr, int, shmflg);
/* Round the attach address down to an VKI_SHMLBA boundary if the
client requested rounding. See #222545. This is necessary only
on arm-linux because VKI_SHMLBA is 4 * VKI_PAGE size; on all
other linux targets it is the same as the page size. */
if (ARG3 & VKI_SHM_RND)
ARG2 = VG_ROUNDDN(ARG2, VKI_SHMLBA);
arg2tmp = ML_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3);
if (arg2tmp == 0)
SET_STATUS_Failure( VKI_EINVAL );
else
ARG2 = arg2tmp;
}
POST(wrap_sys_shmat)
{
ML_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmdt)
{
PRINT("sys_shmdt ( %#lx )",ARG1);
PRE_REG_READ1(long, "shmdt", const void *, shmaddr);
if (!ML_(generic_PRE_sys_shmdt)(tid, ARG1))
SET_STATUS_Failure( VKI_EINVAL );
}
POST(sys_shmdt)
{
ML_(generic_POST_sys_shmdt)(tid, RES,ARG1);
}
PRE(sys_shmctl)
{
PRINT("sys_shmctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmctl",
int, shmid, int, cmd, struct shmid_ds *, buf);
ML_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_shmctl)
{
ML_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shutdown)
{
*flags |= SfMayBlock;
PRINT("sys_shutdown ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(int, "shutdown", int, s, int, how);
}
PRE(sys_bind)
{
PRINT("sys_bind ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "bind",
int, sockfd, struct sockaddr *, my_addr, int, addrlen);
ML_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_listen)
{
PRINT("sys_listen ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(long, "listen", int, s, int, backlog);
}
PRE(sys_getsockname)
{
PRINT("sys_getsockname ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getsockname",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getsockname)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_getpeername)
{
PRINT("sys_getpeername ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getpeername",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getpeername)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_socketpair)
{
PRINT("sys_socketpair ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "socketpair",
int, d, int, type, int, protocol, int*, sv);
ML_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_socketpair)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_send)
{
*flags |= SfMayBlock;
PRINT("sys_send ( %ld, %#lx, %ld, %lu )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "send",
int, s, const void *, msg, int, len,
unsigned int, flags);
ML_(generic_PRE_sys_send)( tid, ARG1, ARG2, ARG3 );
}
PRE(sys_recv)
{
*flags |= SfMayBlock;
PRINT("sys_recv ( %ld, %#lx, %ld, %lu )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "recv",
int, s, void *, buf, int, len, unsigned int, flags);
ML_(generic_PRE_sys_recv)( tid, ARG1, ARG2, ARG3 );
}
POST(sys_recv)
{
ML_(generic_POST_sys_recv)( tid, RES, ARG1, ARG2, ARG3 );
}
PRE(sys_mmap2)
{
SysRes r;
// Exactly like old_mmap() except:
// - all 6 args are passed in regs, rather than in a memory-block.
// - the file offset is specified in pagesize units rather than bytes,
// so that it can be used for files bigger than 2^32 bytes.
// pagesize or 4K-size units in offset? For ppc32/64-linux, this is
// 4K-sized. Assert that the page size is 4K here for safety.
vg_assert(VKI_PAGE_SIZE == 4096);
PRINT("sys_mmap2 ( %#lx, %llu, %ld, %ld, %ld, %ld )",
ARG1, (ULong)ARG2, ARG3, ARG4, ARG5, ARG6 );
PRE_REG_READ6(long, "mmap2",
unsigned long, start, unsigned long, length,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, offset);
r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5,
4096 * (Off64T)ARG6 );
SET_STATUS_from_SysRes(r);
}
// XXX: lstat64/fstat64/stat64 are generic, but not necessarily
// applicable to every architecture -- I think only to 32-bit archs.
// We're going to need something like linux/core_os32.h for such
// things, eventually, I think. --njn
PRE(sys_lstat64)
{
PRINT("sys_lstat64 ( %#lx(%s), %#lx )",ARG1,(char*)ARG1,ARG2);
PRE_REG_READ2(long, "lstat64", char *, file_name, struct stat64 *, buf);
PRE_MEM_RASCIIZ( "lstat64(file_name)", ARG1 );
PRE_MEM_WRITE( "lstat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(sys_lstat64)
{
vg_assert(SUCCESS);
if (RES == 0) {
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
}
PRE(sys_stat64)
{
PRINT("sys_stat64 ( %#lx(%s), %#lx )",ARG1,(char*)ARG1,ARG2);
PRE_REG_READ2(long, "stat64", char *, file_name, struct stat64 *, buf);
PRE_MEM_RASCIIZ( "stat64(file_name)", ARG1 );
PRE_MEM_WRITE( "stat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(sys_stat64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
PRE(sys_fstatat64)
{
PRINT("sys_fstatat64 ( %ld, %#lx(%s), %#lx )",ARG1,ARG2,(char*)ARG2,ARG3);
PRE_REG_READ3(long, "fstatat64",
int, dfd, char *, file_name, struct stat64 *, buf);
PRE_MEM_RASCIIZ( "fstatat64(file_name)", ARG2 );
PRE_MEM_WRITE( "fstatat64(buf)", ARG3, sizeof(struct vki_stat64) );
}
POST(sys_fstatat64)
{
POST_MEM_WRITE( ARG3, sizeof(struct vki_stat64) );
}
PRE(sys_fstat64)
{
PRINT("sys_fstat64 ( %ld, %#lx )",ARG1,ARG2);
PRE_REG_READ2(long, "fstat64", unsigned long, fd, struct stat64 *, buf);
PRE_MEM_WRITE( "fstat64(buf)", ARG2, sizeof(struct vki_stat64) );
}
POST(sys_fstat64)
{
POST_MEM_WRITE( ARG2, sizeof(struct vki_stat64) );
}
PRE(sys_clone)
{
UInt cloneflags;
PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(int, "clone",
unsigned long, flags,
void *, child_stack,
int *, parent_tidptr,
void *, child_tls,
int *, child_tidptr);
if (ARG1 & VKI_CLONE_PARENT_SETTID) {
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int),
VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
PRE_MEM_WRITE("clone(child_tidptr)", ARG5, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG5, sizeof(Int),
VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
if (ARG1 & VKI_CLONE_SETTLS) {
PRE_MEM_READ("clone(tls_user_desc)", ARG4, sizeof(vki_modify_ldt_t));
if (!VG_(am_is_valid_for_client)(ARG4, sizeof(vki_modify_ldt_t),
VKI_PROT_READ)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
cloneflags = ARG1;
if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
SET_STATUS_Failure( VKI_EINVAL );
return;
}
/* Only look at the flags we really care about */
switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS
| VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
/* thread creation */
SET_STATUS_from_SysRes(
do_clone(tid,
ARG1, /* flags */
(Addr)ARG2, /* child ESP */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG5, /* child_tidptr */
(Addr)ARG4)); /* set_tls */
break;
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
/* FALLTHROUGH - assume vfork == fork */
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
case 0: /* plain fork */
SET_STATUS_from_SysRes(
ML_(do_fork_clone)(tid,
cloneflags, /* flags */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG5)); /* child_tidptr */
break;
default:
/* should we just ENOSYS? */
VG_(message)(Vg_UserMsg, "");
VG_(message)(Vg_UserMsg, "Unsupported clone() flags: 0x%lx", ARG1);
VG_(message)(Vg_UserMsg, "");
VG_(message)(Vg_UserMsg, "The only supported clone() uses are:");
VG_(message)(Vg_UserMsg, " - via a threads library (LinuxThreads or NPTL)");
VG_(message)(Vg_UserMsg, " - via the implementation of fork or vfork");
VG_(message)(Vg_UserMsg, " - for the Quadrics Elan3 user-space driver");
VG_(unimplemented)
("Valgrind does not support general clone().");
}
if (SUCCESS) {
if (ARG1 & VKI_CLONE_PARENT_SETTID)
POST_MEM_WRITE(ARG3, sizeof(Int));
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
POST_MEM_WRITE(ARG5, sizeof(Int));
/* Thread creation was successful; let the child have the chance
to run */
*flags |= SfYieldAfter;
}
}
PRE(sys_sigreturn)
{
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
an explanation of what follows. */
PRINT("sys_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Restore register state from frame and remove it */
VG_(sigframe_destroy)(tid, False);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sys_rt_sigreturn)
{
/* See comments on PRE(sys_rt_sigreturn) in syswrap-amd64-linux.c for
an explanation of what follows. */
PRINT("rt_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Restore register state from frame and remove it */
VG_(sigframe_destroy)(tid, True);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
/* NB: clone of x86-linux version, and ppc32-linux has an almost
identical one. */
PRE(sys_sigsuspend)
{
/* The C library interface to sigsuspend just takes a pointer to
a signal mask but this system call has three arguments - the first
two don't appear to be used by the kernel and are always passed as
zero by glibc and the third is the first word of the signal mask
so only 32 signals are supported.
In fact glibc normally uses rt_sigsuspend if it is available as
that takes a pointer to the signal mask so supports more signals.
*/
*flags |= SfMayBlock;
PRINT("sys_sigsuspend ( %ld, %ld, %ld )", ARG1,ARG2,ARG3 );
PRE_REG_READ3(int, "sigsuspend",
int, history0, int, history1,
vki_old_sigset_t, mask);
}
/* Very much ARM specific */
PRE(sys_set_tls)
{
PRINT("set_tls (%lx)",ARG1);
PRE_REG_READ1(long, "set_tls", unsigned long, addr);
SET_STATUS_from_SysRes( sys_set_tls( tid, ARG1 ) );
}
PRE(sys_cacheflush)
{
PRINT("cacheflush (%lx, %#lx, %#lx)",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "cacheflush", void*, addrlow,void*, addrhigh,int, flags);
VG_(discard_translations)( (Addr64)ARG1,
((ULong)ARG2) - ((ULong)ARG1) + 1ULL/*paranoia*/,
"PRE(sys_cacheflush)" );
SET_STATUS_Success(0);
}
// ARG3 is only used for pointers into the traced process's address
// space and for offsets into the traced process's struct
// user_regs_struct. It is never a pointer into this process's memory
// space, and we should therefore not check anything it points to.
PRE(sys_ptrace)
{
PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(int, "ptrace",
long, request, long, pid, long, addr, long, data);
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
PRE_MEM_WRITE( "ptrace(peek)", ARG4,
sizeof (long));
break;
case VKI_PTRACE_GETREGS:
PRE_MEM_WRITE( "ptrace(getregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_GETFPREGS:
PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4,
sizeof (struct vki_user_fp));
break;
case VKI_PTRACE_GETWMMXREGS:
PRE_MEM_WRITE( "ptrace(getwmmxregs)", ARG4,
VKI_IWMMXT_SIZE);
break;
case VKI_PTRACE_GETCRUNCHREGS:
PRE_MEM_WRITE( "ptrace(getcrunchregs)", ARG4,
VKI_CRUNCH_SIZE);
break;
case VKI_PTRACE_GETVFPREGS:
PRE_MEM_WRITE( "ptrace(getvfpregs)", ARG4,
sizeof (struct vki_user_vfp) );
break;
case VKI_PTRACE_GETHBPREGS:
PRE_MEM_WRITE( "ptrace(gethbpregs)", ARG4,
sizeof (unsigned long) );
break;
case VKI_PTRACE_SETREGS:
PRE_MEM_READ( "ptrace(setregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_SETFPREGS:
PRE_MEM_READ( "ptrace(setfpregs)", ARG4,
sizeof (struct vki_user_fp));
break;
case VKI_PTRACE_SETWMMXREGS:
PRE_MEM_READ( "ptrace(setwmmxregs)", ARG4,
VKI_IWMMXT_SIZE);
break;
case VKI_PTRACE_SETCRUNCHREGS:
PRE_MEM_READ( "ptrace(setcrunchregs)", ARG4,
VKI_CRUNCH_SIZE);
break;
case VKI_PTRACE_SETVFPREGS:
PRE_MEM_READ( "ptrace(setvfpregs)", ARG4,
sizeof (struct vki_user_vfp));
break;
case VKI_PTRACE_SETHBPREGS:
PRE_MEM_READ( "ptrace(sethbpregs)", ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GET_THREAD_AREA:
PRE_MEM_WRITE( "ptrace(get_thread_area)", ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETEVENTMSG:
PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_SETSIGINFO:
PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
default:
break;
}
}
POST(sys_ptrace)
{
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
POST_MEM_WRITE( ARG4, sizeof (long));
break;
case VKI_PTRACE_GETREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_GETFPREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_fp));
break;
case VKI_PTRACE_GETWMMXREGS:
POST_MEM_WRITE( ARG4, VKI_IWMMXT_SIZE);
break;
case VKI_PTRACE_GETCRUNCHREGS:
POST_MEM_WRITE( ARG4, VKI_CRUNCH_SIZE);
break;
case VKI_PTRACE_GETVFPREGS:
POST_MEM_WRITE( ARG4, sizeof(struct vki_user_vfp));
break;
case VKI_PTRACE_GET_THREAD_AREA:
case VKI_PTRACE_GETHBPREGS:
case VKI_PTRACE_GETEVENTMSG:
POST_MEM_WRITE( ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
/* XXX: This is a simplification. Different parts of the
* siginfo_t are valid depending on the type of signal.
*/
POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t));
break;
default:
break;
}
}
#undef PRE
#undef POST
/* ---------------------------------------------------------------------
The arm/Linux syscall table
------------------------------------------------------------------ */
#if 0
#define __NR_OABI_SYSCALL_BASE 0x900000
#else
#define __NR_OABI_SYSCALL_BASE 0x0
#endif
#define PLAX_(sysno, name) WRAPPER_ENTRY_X_(arm_linux, sysno, name)
#define PLAXY(sysno, name) WRAPPER_ENTRY_XY(arm_linux, sysno, name)
// This table maps from __NR_xxx syscall numbers (from
// linux/include/asm-arm/unistd.h) to the appropriate PRE/POST sys_foo()
// wrappers on arm (as per sys_call_table in linux/arch/arm/kernel/entry.S).
//
// For those syscalls not handled by Valgrind, the annotation indicate its
// arch/OS combination, eg. */* (generic), */Linux (Linux only), ?/?
// (unknown).
static SyscallTableEntry syscall_main_table[] = {
//zz // (restart_syscall) // 0
GENX_(__NR_exit, sys_exit), // 1
GENX_(__NR_fork, sys_fork), // 2
GENXY(__NR_read, sys_read), // 3
GENX_(__NR_write, sys_write), // 4
GENXY(__NR_open, sys_open), // 5
GENXY(__NR_close, sys_close), // 6
// GENXY(__NR_waitpid, sys_waitpid), // 7
GENXY(__NR_creat, sys_creat), // 8
GENX_(__NR_link, sys_link), // 9
GENX_(__NR_unlink, sys_unlink), // 10
GENX_(__NR_execve, sys_execve), // 11
GENX_(__NR_chdir, sys_chdir), // 12
GENXY(__NR_time, sys_time), // 13
GENX_(__NR_mknod, sys_mknod), // 14
GENX_(__NR_chmod, sys_chmod), // 15
//zz LINX_(__NR_lchown, sys_lchown16), // 16
// GENX_(__NR_break, sys_ni_syscall), // 17
//zz // (__NR_oldstat, sys_stat), // 18 (obsolete)
LINX_(__NR_lseek, sys_lseek), // 19
GENX_(__NR_getpid, sys_getpid), // 20
LINX_(__NR_mount, sys_mount), // 21
LINX_(__NR_umount, sys_oldumount), // 22
LINX_(__NR_setuid, sys_setuid16), // 23 ## P
LINX_(__NR_getuid, sys_getuid16), // 24 ## P
//zz
//zz // (__NR_stime, sys_stime), // 25 * (SVr4,SVID,X/OPEN)
PLAXY(__NR_ptrace, sys_ptrace), // 26
GENX_(__NR_alarm, sys_alarm), // 27
//zz // (__NR_oldfstat, sys_fstat), // 28 * L -- obsolete
GENX_(__NR_pause, sys_pause), // 29
LINX_(__NR_utime, sys_utime), // 30
// GENX_(__NR_stty, sys_ni_syscall), // 31
// GENX_(__NR_gtty, sys_ni_syscall), // 32
GENX_(__NR_access, sys_access), // 33
GENX_(__NR_nice, sys_nice), // 34
// GENX_(__NR_ftime, sys_ni_syscall), // 35
GENX_(__NR_sync, sys_sync), // 36
GENX_(__NR_kill, sys_kill), // 37
GENX_(__NR_rename, sys_rename), // 38
GENX_(__NR_mkdir, sys_mkdir), // 39
GENX_(__NR_rmdir, sys_rmdir), // 40
GENXY(__NR_dup, sys_dup), // 41
LINXY(__NR_pipe, sys_pipe), // 42
GENXY(__NR_times, sys_times), // 43
// GENX_(__NR_prof, sys_ni_syscall), // 44
//zz
GENX_(__NR_brk, sys_brk), // 45
LINX_(__NR_setgid, sys_setgid16), // 46
LINX_(__NR_getgid, sys_getgid16), // 47
//zz // (__NR_signal, sys_signal), // 48 */* (ANSI C)
LINX_(__NR_geteuid, sys_geteuid16), // 49
LINX_(__NR_getegid, sys_getegid16), // 50
GENX_(__NR_acct, sys_acct), // 51
LINX_(__NR_umount2, sys_umount), // 52
// GENX_(__NR_lock, sys_ni_syscall), // 53
LINXY(__NR_ioctl, sys_ioctl), // 54
LINXY(__NR_fcntl, sys_fcntl), // 55
// GENX_(__NR_mpx, sys_ni_syscall), // 56
GENX_(__NR_setpgid, sys_setpgid), // 57
// GENX_(__NR_ulimit, sys_ni_syscall), // 58
//zz // (__NR_oldolduname, sys_olduname), // 59 Linux -- obsolete
//zz
GENX_(__NR_umask, sys_umask), // 60
GENX_(__NR_chroot, sys_chroot), // 61
//zz // (__NR_ustat, sys_ustat) // 62 SVr4 -- deprecated
GENXY(__NR_dup2, sys_dup2), // 63
GENX_(__NR_getppid, sys_getppid), // 64
GENX_(__NR_getpgrp, sys_getpgrp), // 65
GENX_(__NR_setsid, sys_setsid), // 66
LINXY(__NR_sigaction, sys_sigaction), // 67
//zz // (__NR_sgetmask, sys_sgetmask), // 68 */* (ANSI C)
//zz // (__NR_ssetmask, sys_ssetmask), // 69 */* (ANSI C)
//zz
LINX_(__NR_setreuid, sys_setreuid16), // 70
LINX_(__NR_setregid, sys_setregid16), // 71
PLAX_(__NR_sigsuspend, sys_sigsuspend), // 72
LINXY(__NR_sigpending, sys_sigpending), // 73
//zz // (__NR_sethostname, sys_sethostname), // 74 */*
//zz
GENX_(__NR_setrlimit, sys_setrlimit), // 75
GENXY(__NR_getrlimit, sys_old_getrlimit), // 76
GENXY(__NR_getrusage, sys_getrusage), // 77
GENXY(__NR_gettimeofday, sys_gettimeofday), // 78
GENX_(__NR_settimeofday, sys_settimeofday), // 79
LINXY(__NR_getgroups, sys_getgroups16), // 80
LINX_(__NR_setgroups, sys_setgroups16), // 81
// PLAX_(__NR_select, old_select), // 82
GENX_(__NR_symlink, sys_symlink), // 83
//zz // (__NR_oldlstat, sys_lstat), // 84 -- obsolete
//zz
GENX_(__NR_readlink, sys_readlink), // 85
//zz // (__NR_uselib, sys_uselib), // 86 */Linux
//zz // (__NR_swapon, sys_swapon), // 87 */Linux
//zz // (__NR_reboot, sys_reboot), // 88 */Linux
//zz // (__NR_readdir, old_readdir), // 89 -- superseded
//zz
// _____(__NR_mmap, old_mmap), // 90
GENXY(__NR_munmap, sys_munmap), // 91
GENX_(__NR_truncate, sys_truncate), // 92
GENX_(__NR_ftruncate, sys_ftruncate), // 93
GENX_(__NR_fchmod, sys_fchmod), // 94
LINX_(__NR_fchown, sys_fchown16), // 95
GENX_(__NR_getpriority, sys_getpriority), // 96
GENX_(__NR_setpriority, sys_setpriority), // 97
// GENX_(__NR_profil, sys_ni_syscall), // 98
GENXY(__NR_statfs, sys_statfs), // 99
GENXY(__NR_fstatfs, sys_fstatfs), // 100
// LINX_(__NR_ioperm, sys_ioperm), // 101
PLAXY(__NR_socketcall, sys_socketcall), // 102
LINXY(__NR_syslog, sys_syslog), // 103
GENXY(__NR_setitimer, sys_setitimer), // 104
GENXY(__NR_getitimer, sys_getitimer), // 105
GENXY(__NR_stat, sys_newstat), // 106
GENXY(__NR_lstat, sys_newlstat), // 107
GENXY(__NR_fstat, sys_newfstat), // 108
//zz // (__NR_olduname, sys_uname), // 109 -- obsolete
//zz
// GENX_(__NR_iopl, sys_iopl), // 110
LINX_(__NR_vhangup, sys_vhangup), // 111
// GENX_(__NR_idle, sys_ni_syscall), // 112
// PLAXY(__NR_vm86old, sys_vm86old), // 113 __NR_syscall... weird
GENXY(__NR_wait4, sys_wait4), // 114
//zz
//zz // (__NR_swapoff, sys_swapoff), // 115 */Linux
LINXY(__NR_sysinfo, sys_sysinfo), // 116
// _____(__NR_ipc, sys_ipc), // 117
GENX_(__NR_fsync, sys_fsync), // 118
PLAX_(__NR_sigreturn, sys_sigreturn), // 119 ?/Linux
PLAX_(__NR_clone, sys_clone), // 120
//zz // (__NR_setdomainname, sys_setdomainname), // 121 */*(?)
GENXY(__NR_uname, sys_newuname), // 122
// PLAX_(__NR_modify_ldt, sys_modify_ldt), // 123
//zz LINXY(__NR_adjtimex, sys_adjtimex), // 124
//zz
GENXY(__NR_mprotect, sys_mprotect), // 125
LINXY(__NR_sigprocmask, sys_sigprocmask), // 126
//zz // Nb: create_module() was removed 2.4-->2.6
// GENX_(__NR_create_module, sys_ni_syscall), // 127
LINX_(__NR_init_module, sys_init_module), // 128
LINX_(__NR_delete_module, sys_delete_module), // 129
//zz
//zz // Nb: get_kernel_syms() was removed 2.4-->2.6
// GENX_(__NR_get_kernel_syms, sys_ni_syscall), // 130
LINX_(__NR_quotactl, sys_quotactl), // 131
GENX_(__NR_getpgid, sys_getpgid), // 132
GENX_(__NR_fchdir, sys_fchdir), // 133
//zz // (__NR_bdflush, sys_bdflush), // 134 */Linux
//zz
//zz // (__NR_sysfs, sys_sysfs), // 135 SVr4
LINX_(__NR_personality, sys_personality), // 136
// GENX_(__NR_afs_syscall, sys_ni_syscall), // 137
LINX_(__NR_setfsuid, sys_setfsuid16), // 138
LINX_(__NR_setfsgid, sys_setfsgid16), // 139
LINXY(__NR__llseek, sys_llseek), // 140
GENXY(__NR_getdents, sys_getdents), // 141
GENX_(__NR__newselect, sys_select), // 142
GENX_(__NR_flock, sys_flock), // 143
GENX_(__NR_msync, sys_msync), // 144
GENXY(__NR_readv, sys_readv), // 145
GENX_(__NR_writev, sys_writev), // 146
GENX_(__NR_getsid, sys_getsid), // 147
GENX_(__NR_fdatasync, sys_fdatasync), // 148
LINXY(__NR__sysctl, sys_sysctl), // 149
GENX_(__NR_mlock, sys_mlock), // 150
GENX_(__NR_munlock, sys_munlock), // 151
GENX_(__NR_mlockall, sys_mlockall), // 152
LINX_(__NR_munlockall, sys_munlockall), // 153
LINXY(__NR_sched_setparam, sys_sched_setparam), // 154
LINXY(__NR_sched_getparam, sys_sched_getparam), // 155
LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 156
LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 157
LINX_(__NR_sched_yield, sys_sched_yield), // 158
LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max),// 159
LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min),// 160
//zz //LINX?(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 161 */*
GENXY(__NR_nanosleep, sys_nanosleep), // 162
GENX_(__NR_mremap, sys_mremap), // 163
LINX_(__NR_setresuid, sys_setresuid16), // 164
LINXY(__NR_getresuid, sys_getresuid16), // 165
// PLAXY(__NR_vm86, sys_vm86), // 166 x86/Linux-only
// GENX_(__NR_query_module, sys_ni_syscall), // 167
GENXY(__NR_poll, sys_poll), // 168
//zz // (__NR_nfsservctl, sys_nfsservctl), // 169 */Linux
//zz
LINX_(__NR_setresgid, sys_setresgid16), // 170
LINXY(__NR_getresgid, sys_getresgid16), // 171
LINXY(__NR_prctl, sys_prctl), // 172
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 173
LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 174
LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 175
LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 176
LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 177
LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 178
LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 179
GENXY(__NR_pread64, sys_pread64), // 180
GENX_(__NR_pwrite64, sys_pwrite64), // 181
LINX_(__NR_chown, sys_chown16), // 182
GENXY(__NR_getcwd, sys_getcwd), // 183
LINXY(__NR_capget, sys_capget), // 184
LINX_(__NR_capset, sys_capset), // 185
GENXY(__NR_sigaltstack, sys_sigaltstack), // 186
LINXY(__NR_sendfile, sys_sendfile), // 187
// GENXY(__NR_getpmsg, sys_getpmsg), // 188
// GENX_(__NR_putpmsg, sys_putpmsg), // 189
// Nb: we treat vfork as fork
GENX_(__NR_vfork, sys_fork), // 190
GENXY(__NR_ugetrlimit, sys_getrlimit), // 191
PLAX_(__NR_mmap2, sys_mmap2), // 192
GENX_(__NR_truncate64, sys_truncate64), // 193
GENX_(__NR_ftruncate64, sys_ftruncate64), // 194
PLAXY(__NR_stat64, sys_stat64), // 195
PLAXY(__NR_lstat64, sys_lstat64), // 196
PLAXY(__NR_fstat64, sys_fstat64), // 197
GENX_(__NR_lchown32, sys_lchown), // 198
GENX_(__NR_getuid32, sys_getuid), // 199
GENX_(__NR_getgid32, sys_getgid), // 200
GENX_(__NR_geteuid32, sys_geteuid), // 201
GENX_(__NR_getegid32, sys_getegid), // 202
GENX_(__NR_setreuid32, sys_setreuid), // 203
GENX_(__NR_setregid32, sys_setregid), // 204
GENXY(__NR_getgroups32, sys_getgroups), // 205
GENX_(__NR_setgroups32, sys_setgroups), // 206
GENX_(__NR_fchown32, sys_fchown), // 207
LINX_(__NR_setresuid32, sys_setresuid), // 208
LINXY(__NR_getresuid32, sys_getresuid), // 209
LINX_(__NR_setresgid32, sys_setresgid), // 210
LINXY(__NR_getresgid32, sys_getresgid), // 211
GENX_(__NR_chown32, sys_chown), // 212
GENX_(__NR_setuid32, sys_setuid), // 213
GENX_(__NR_setgid32, sys_setgid), // 214
LINX_(__NR_setfsuid32, sys_setfsuid), // 215
LINX_(__NR_setfsgid32, sys_setfsgid), // 216
//zz // (__NR_pivot_root, sys_pivot_root), // 217 */Linux
GENXY(__NR_mincore, sys_mincore), // 218
GENX_(__NR_madvise, sys_madvise), // 219
GENXY(__NR_getdents64, sys_getdents64), // 220
LINXY(__NR_fcntl64, sys_fcntl64), // 221
// GENX_(222, sys_ni_syscall), // 222
// PLAXY(223, sys_syscall223), // 223 // sys_bproc?
LINX_(__NR_gettid, sys_gettid), // 224
LINX_(__NR_readahead, sys_readahead), // 225 */Linux
LINX_(__NR_setxattr, sys_setxattr), // 226
LINX_(__NR_lsetxattr, sys_lsetxattr), // 227
LINX_(__NR_fsetxattr, sys_fsetxattr), // 228
LINXY(__NR_getxattr, sys_getxattr), // 229
LINXY(__NR_lgetxattr, sys_lgetxattr), // 230
LINXY(__NR_fgetxattr, sys_fgetxattr), // 231
LINXY(__NR_listxattr, sys_listxattr), // 232
LINXY(__NR_llistxattr, sys_llistxattr), // 233
LINXY(__NR_flistxattr, sys_flistxattr), // 234
LINX_(__NR_removexattr, sys_removexattr), // 235
LINX_(__NR_lremovexattr, sys_lremovexattr), // 236
LINX_(__NR_fremovexattr, sys_fremovexattr), // 237
LINXY(__NR_tkill, sys_tkill), // 238 */Linux
LINXY(__NR_sendfile64, sys_sendfile64), // 239
LINXY(__NR_futex, sys_futex), // 240
LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 241
LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 242
// PLAX_(__NR_set_thread_area, sys_set_thread_area), // 243
// PLAX_(__NR_get_thread_area, sys_get_thread_area), // 244
LINXY(__NR_io_setup, sys_io_setup), // 245
LINX_(__NR_io_destroy, sys_io_destroy), // 246
LINXY(__NR_io_getevents, sys_io_getevents), // 247
LINX_(__NR_io_submit, sys_io_submit), // 248
LINXY(__NR_io_cancel, sys_io_cancel), // 249
// LINX_(__NR_fadvise64, sys_fadvise64), // 250 */(Linux?)
GENX_(251, sys_ni_syscall), // 251
LINX_(__NR_exit_group, sys_exit_group), // 252
// GENXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 253
LINXY(__NR_epoll_create, sys_epoll_create), // 254
LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 255
LINXY(__NR_epoll_wait, sys_epoll_wait), // 256
//zz // (__NR_remap_file_pages, sys_remap_file_pages), // 257 */Linux
LINX_(__NR_set_tid_address, sys_set_tid_address), // 258
LINXY(__NR_timer_create, sys_timer_create), // 259
LINXY(__NR_timer_settime, sys_timer_settime), // (timer_create+1)
LINXY(__NR_timer_gettime, sys_timer_gettime), // (timer_create+2)
LINX_(__NR_timer_getoverrun, sys_timer_getoverrun),//(timer_create+3)
LINX_(__NR_timer_delete, sys_timer_delete), // (timer_create+4)
LINX_(__NR_clock_settime, sys_clock_settime), // (timer_create+5)
LINXY(__NR_clock_gettime, sys_clock_gettime), // (timer_create+6)
LINXY(__NR_clock_getres, sys_clock_getres), // (timer_create+7)
LINXY(__NR_clock_nanosleep, sys_clock_nanosleep),// (timer_create+8) */*
GENXY(__NR_statfs64, sys_statfs64), // 268
GENXY(__NR_fstatfs64, sys_fstatfs64), // 269
LINX_(__NR_tgkill, sys_tgkill), // 270 */Linux
GENX_(__NR_utimes, sys_utimes), // 271
// LINX_(__NR_fadvise64_64, sys_fadvise64_64), // 272 */(Linux?)
GENX_(__NR_vserver, sys_ni_syscall), // 273
LINX_(__NR_mbind, sys_mbind), // 274 ?/?
LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 275 ?/?
LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 276 ?/?
LINXY(__NR_mq_open, sys_mq_open), // 277
LINX_(__NR_mq_unlink, sys_mq_unlink), // (mq_open+1)
LINX_(__NR_mq_timedsend, sys_mq_timedsend), // (mq_open+2)
LINXY(__NR_mq_timedreceive, sys_mq_timedreceive),// (mq_open+3)
LINX_(__NR_mq_notify, sys_mq_notify), // (mq_open+4)
LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // (mq_open+5)
LINXY(__NR_waitid, sys_waitid), // 280
PLAXY(__NR_socket, sys_socket), // 281
PLAX_(__NR_bind, sys_bind), // 282
PLAX_(__NR_connect, sys_connect), // 283
PLAX_(__NR_listen, sys_listen), // 284
PLAXY(__NR_accept, sys_accept), // 285
PLAXY(__NR_getsockname, sys_getsockname), // 286
PLAXY(__NR_getpeername, sys_getpeername), // 287
PLAXY(__NR_socketpair, sys_socketpair), // 288
PLAX_(__NR_send, sys_send),
PLAX_(__NR_sendto, sys_sendto), // 290
PLAXY(__NR_recv, sys_recv),
PLAXY(__NR_recvfrom, sys_recvfrom), // 292
PLAX_(__NR_shutdown, sys_shutdown), // 293
PLAX_(__NR_setsockopt, sys_setsockopt), // 294
PLAXY(__NR_getsockopt, sys_getsockopt), // 295
PLAX_(__NR_sendmsg, sys_sendmsg), // 296
PLAXY(__NR_recvmsg, sys_recvmsg), // 297
PLAX_(__NR_semop, sys_semop), // 298
PLAX_(__NR_semget, sys_semget), // 299
PLAXY(__NR_semctl, sys_semctl), // 300
PLAX_(__NR_msgget, sys_msgget),
PLAX_(__NR_msgsnd, sys_msgsnd),
PLAXY(__NR_msgrcv, sys_msgrcv),
PLAXY(__NR_msgctl, sys_msgctl), // 304
PLAX_(__NR_semtimedop, sys_semtimedop), // 312
LINX_(__NR_add_key, sys_add_key), // 286
LINX_(__NR_request_key, sys_request_key), // 287
LINXY(__NR_keyctl, sys_keyctl), // not 288...
// LINX_(__NR_ioprio_set, sys_ioprio_set), // 289
// LINX_(__NR_ioprio_get, sys_ioprio_get), // 290
LINX_(__NR_inotify_init, sys_inotify_init), // 291
LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 292
LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 293
// LINX_(__NR_migrate_pages, sys_migrate_pages), // 294
LINXY(__NR_openat, sys_openat), // 295
LINX_(__NR_mkdirat, sys_mkdirat), // 296
LINX_(__NR_mknodat, sys_mknodat), // 297
LINX_(__NR_fchownat, sys_fchownat), // 298
LINX_(__NR_futimesat, sys_futimesat), // 326 on arm
PLAXY(__NR_fstatat64, sys_fstatat64), // 300
LINX_(__NR_unlinkat, sys_unlinkat), // 301
LINX_(__NR_renameat, sys_renameat), // 302
LINX_(__NR_linkat, sys_linkat), // 303
LINX_(__NR_symlinkat, sys_symlinkat), // 304
LINX_(__NR_readlinkat, sys_readlinkat), //
LINX_(__NR_fchmodat, sys_fchmodat), //
LINX_(__NR_faccessat, sys_faccessat), //
PLAXY(__NR_shmat, wrap_sys_shmat), //305
PLAXY(__NR_shmdt, sys_shmdt), //306
PLAX_(__NR_shmget, sys_shmget), //307
PLAXY(__NR_shmctl, sys_shmctl), // 308
// LINX_(__NR_pselect6, sys_pselect6), //
// LINX_(__NR_unshare, sys_unshare), // 310
LINX_(__NR_set_robust_list, sys_set_robust_list), // 311
LINXY(__NR_get_robust_list, sys_get_robust_list), // 312
// LINX_(__NR_splice, sys_ni_syscall), // 313
// LINX_(__NR_sync_file_range, sys_sync_file_range), // 314
// LINX_(__NR_tee, sys_ni_syscall), // 315
// LINX_(__NR_vmsplice, sys_ni_syscall), // 316
LINXY(__NR_move_pages, sys_move_pages), // 317
// LINX_(__NR_getcpu, sys_ni_syscall), // 318
LINX_(__NR_utimensat, sys_utimensat), // 320
LINXY(__NR_signalfd, sys_signalfd), // 321
LINXY(__NR_timerfd_create, sys_timerfd_create), // 322
LINX_(__NR_eventfd, sys_eventfd), // 323
LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 325
LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 326
///////////////
// JRS 2010-Jan-03: I believe that all the numbers listed
// in comments in the table prior to this point (eg "// 326",
// etc) are bogus since it looks to me like they are copied
// verbatim from syswrap-x86-linux.c and they certainly do not
// correspond to what's in include/vki/vki-scnums-arm-linux.h.
// From here onwards, please ensure the numbers are correct.
LINX_(__NR_pselect6, sys_pselect6), // 335
LINXY(__NR_ppoll, sys_ppoll), // 336
LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 346
LINX_(__NR_fallocate, sys_fallocate), // 352
LINXY(__NR_signalfd4, sys_signalfd4), // 355
LINX_(__NR_eventfd2, sys_eventfd2), // 356
LINXY(__NR_epoll_create1, sys_epoll_create1), // 357
LINXY(__NR_dup3, sys_dup3), // 358
LINXY(__NR_pipe2, sys_pipe2), // 359
LINXY(__NR_inotify_init1, sys_inotify_init1), // 360
LINXY(__NR_preadv, sys_preadv), // 361
LINX_(__NR_pwritev, sys_pwritev), // 362
LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo),// 363
LINXY(__NR_perf_event_open, sys_perf_event_open), // 364
PLAXY(__NR_accept4, sys_accept4) // 366
};
/* These are not in the main table because there indexes are not small
integers, but rather values close to one million. So their
inclusion would force the main table to be huge (about 8 MB). */
static SyscallTableEntry ste___ARM_set_tls
= { WRAPPER_PRE_NAME(arm_linux,sys_set_tls), NULL };
static SyscallTableEntry ste___ARM_cacheflush
= { WRAPPER_PRE_NAME(arm_linux,sys_cacheflush), NULL };
SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno )
{
const UInt syscall_main_table_size
= sizeof(syscall_main_table) / sizeof(syscall_main_table[0]);
/* Is it in the contiguous initial section of the table? */
if (sysno < syscall_main_table_size) {
SyscallTableEntry* sys = &syscall_main_table[sysno];
if (sys->before == NULL)
return NULL; /* no entry */
else
return sys;
}
/* Check if it's one of the out-of-line entries. */
switch (sysno) {
case __NR_ARM_set_tls: return &ste___ARM_set_tls;
case __NR_ARM_cacheflush: return &ste___ARM_cacheflush;
default: break;
}
/* Can't find a wrapper */
return NULL;
}
#endif // defined(VGP_arm_linux)
/*--------------------------------------------------------------------*/
/*--- end syswrap-arm-linux.c ---*/
/*--------------------------------------------------------------------*/