/*--------------------------------------------------------------------*/
/*--- Platform-specific syscalls stuff. syswrap-amd64-linux.c ---*/
/*--------------------------------------------------------------------*/
/*
This file is part of Valgrind, a dynamic binary instrumentation
framework.
Copyright (C) 2000-2012 Nicholas Nethercote
njn@valgrind.org
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA.
The GNU General Public License is contained in the file COPYING.
*/
#if defined(VGP_amd64_linux)
#include "pub_core_basics.h"
#include "pub_core_vki.h"
#include "pub_core_vkiscnums.h"
#include "pub_core_libcsetjmp.h" // to keep _threadstate.h happy
#include "pub_core_threadstate.h"
#include "pub_core_aspacemgr.h"
#include "pub_core_debuglog.h"
#include "pub_core_options.h"
#include "pub_core_libcbase.h"
#include "pub_core_libcassert.h"
#include "pub_core_libcprint.h"
#include "pub_core_libcproc.h"
#include "pub_core_libcsignal.h"
#include "pub_core_scheduler.h"
#include "pub_core_sigframe.h"
#include "pub_core_signals.h"
#include "pub_core_syscall.h"
#include "pub_core_syswrap.h"
#include "pub_core_tooliface.h"
#include "pub_core_stacks.h" // VG_(register_stack)
#include "priv_types_n_macros.h"
#include "priv_syswrap-generic.h" /* for decls of generic wrappers */
#include "priv_syswrap-linux.h" /* for decls of linux-ish wrappers */
#include "priv_syswrap-linux-variants.h" /* decls of linux variant wrappers */
#include "priv_syswrap-main.h"
/* ---------------------------------------------------------------------
clone() handling
------------------------------------------------------------------ */
/* Call f(arg1), but first switch stacks, using 'stack' as the new
stack, and use 'retaddr' as f's return-to address. Also, clear all
the integer registers before entering f. */
__attribute__((noreturn))
void ML_(call_on_new_stack_0_1) ( Addr stack,
Addr retaddr,
void (*f)(Word),
Word arg1 );
// %rdi == stack
// %rsi == retaddr
// %rdx == f
// %rcx == arg1
asm(
".text\n"
".globl vgModuleLocal_call_on_new_stack_0_1\n"
"vgModuleLocal_call_on_new_stack_0_1:\n"
" movq %rdi, %rsp\n" // set stack
" pushq %rsi\n" // retaddr to stack
" pushq %rdx\n" // f to stack
" pushq %rcx\n" // arg1 to stack
" movq $0, %rax\n" // zero all GP regs
" movq $0, %rbx\n"
" movq $0, %rcx\n"
" movq $0, %rdx\n"
" movq $0, %rsi\n"
" movq $0, %rdi\n"
" movq $0, %rbp\n"
" movq $0, %r8\n"
" movq $0, %r9\n"
" movq $0, %r10\n"
" movq $0, %r11\n"
" movq $0, %r12\n"
" movq $0, %r13\n"
" movq $0, %r14\n"
" movq $0, %r15\n"
" popq %rdi\n" // arg1 to correct arg reg
" ret\n" // jump to f
" ud2\n" // should never get here
".previous\n"
);
/*
Perform a clone system call. clone is strange because it has
fork()-like return-twice semantics, so it needs special
handling here.
Upon entry, we have:
int (*fn)(void*) in %rdi
void* child_stack in %rsi
int flags in %rdx
void* arg in %rcx
pid_t* child_tid in %r8
pid_t* parent_tid in %r9
void* tls_ptr at 8(%rsp)
System call requires:
int $__NR_clone in %rax
int flags in %rdi
void* child_stack in %rsi
pid_t* parent_tid in %rdx
pid_t* child_tid in %r10
void* tls_ptr in %r8
Returns a Long encoded in the linux-amd64 way, not a SysRes.
*/
#define __NR_CLONE VG_STRINGIFY(__NR_clone)
#define __NR_EXIT VG_STRINGIFY(__NR_exit)
extern
Long do_syscall_clone_amd64_linux ( Word (*fn)(void *),
void* stack,
Long flags,
void* arg,
Long* child_tid,
Long* parent_tid,
vki_modify_ldt_t * );
asm(
".text\n"
".globl do_syscall_clone_amd64_linux\n"
"do_syscall_clone_amd64_linux:\n"
// set up child stack, temporarily preserving fn and arg
" subq $16, %rsi\n" // make space on stack
" movq %rcx, 8(%rsi)\n" // save arg
" movq %rdi, 0(%rsi)\n" // save fn
// setup syscall
" movq $"__NR_CLONE", %rax\n" // syscall number
" movq %rdx, %rdi\n" // syscall arg1: flags
// %rsi already setup // syscall arg2: child_stack
" movq %r9, %rdx\n" // syscall arg3: parent_tid
" movq %r8, %r10\n" // syscall arg4: child_tid
" movq 8(%rsp), %r8\n" // syscall arg5: tls_ptr
" syscall\n" // clone()
" testq %rax, %rax\n" // child if retval == 0
" jnz 1f\n"
// CHILD - call thread function
" pop %rax\n" // pop fn
" pop %rdi\n" // pop fn arg1: arg
" call *%rax\n" // call fn
// exit with result
" movq %rax, %rdi\n" // arg1: return value from fn
" movq $"__NR_EXIT", %rax\n"
" syscall\n"
// Exit returned?!
" ud2\n"
"1:\n" // PARENT or ERROR
" ret\n"
".previous\n"
);
#undef __NR_CLONE
#undef __NR_EXIT
// forward declaration
static void setup_child ( ThreadArchState*, ThreadArchState* );
/*
When a client clones, we need to keep track of the new thread. This means:
1. allocate a ThreadId+ThreadState+stack for the the thread
2. initialize the thread's new VCPU state
3. create the thread using the same args as the client requested,
but using the scheduler entrypoint for EIP, and a separate stack
for ESP.
*/
static SysRes do_clone ( ThreadId ptid,
ULong flags, Addr rsp,
Long* parent_tidptr,
Long* child_tidptr,
Addr tlsaddr )
{
static const Bool debug = False;
ThreadId ctid = VG_(alloc_ThreadState)();
ThreadState* ptst = VG_(get_ThreadState)(ptid);
ThreadState* ctst = VG_(get_ThreadState)(ctid);
UWord* stack;
NSegment const* seg;
SysRes res;
Long rax;
vki_sigset_t blockall, savedmask;
VG_(sigfillset)(&blockall);
vg_assert(VG_(is_running_thread)(ptid));
vg_assert(VG_(is_valid_tid)(ctid));
stack = (UWord*)ML_(allocstack)(ctid);
if (stack == NULL) {
res = VG_(mk_SysRes_Error)( VKI_ENOMEM );
goto out;
}
/* Copy register state
Both parent and child return to the same place, and the code
following the clone syscall works out which is which, so we
don't need to worry about it.
The parent gets the child's new tid returned from clone, but the
child gets 0.
If the clone call specifies a NULL rsp for the new thread, then
it actually gets a copy of the parent's rsp.
*/
setup_child( &ctst->arch, &ptst->arch );
/* Make sys_clone appear to have returned Success(0) in the
child. */
ctst->arch.vex.guest_RAX = 0;
if (rsp != 0)
ctst->arch.vex.guest_RSP = rsp;
ctst->os_state.parent = ptid;
/* inherit signal mask */
ctst->sig_mask = ptst->sig_mask;
ctst->tmp_sig_mask = ptst->sig_mask;
/* Start the child with its threadgroup being the same as the
parent's. This is so that any exit_group calls that happen
after the child is created but before it sets its
os_state.threadgroup field for real (in thread_wrapper in
syswrap-linux.c), really kill the new thread. a.k.a this avoids
a race condition in which the thread is unkillable (via
exit_group) because its threadgroup is not set. The race window
is probably only a few hundred or a few thousand cycles long.
See #226116. */
ctst->os_state.threadgroup = ptst->os_state.threadgroup;
/* We don't really know where the client stack is, because its
allocated by the client. The best we can do is look at the
memory mappings and try to derive some useful information. We
assume that esp starts near its highest possible value, and can
only go down to the start of the mmaped segment. */
seg = VG_(am_find_nsegment)((Addr)rsp);
if (seg && seg->kind != SkResvn) {
ctst->client_stack_highest_word = (Addr)VG_PGROUNDUP(rsp);
ctst->client_stack_szB = ctst->client_stack_highest_word - seg->start;
VG_(register_stack)(seg->start, ctst->client_stack_highest_word);
if (debug)
VG_(printf)("tid %d: guessed client stack range %#lx-%#lx\n",
ctid, seg->start, VG_PGROUNDUP(rsp));
} else {
VG_(message)(Vg_UserMsg,
"!? New thread %d starts with RSP(%#lx) unmapped\n",
ctid, rsp);
ctst->client_stack_szB = 0;
}
/* Assume the clone will succeed, and tell any tool that wants to
know that this thread has come into existence. If the clone
fails, we'll send out a ll_exit notification for it at the out:
label below, to clean up. */
vg_assert(VG_(owns_BigLock_LL)(ptid));
VG_TRACK ( pre_thread_ll_create, ptid, ctid );
if (flags & VKI_CLONE_SETTLS) {
if (debug)
VG_(printf)("clone child has SETTLS: tls at %#lx\n", tlsaddr);
ctst->arch.vex.guest_FS_ZERO = tlsaddr;
}
flags &= ~VKI_CLONE_SETTLS;
/* start the thread with everything blocked */
VG_(sigprocmask)(VKI_SIG_SETMASK, &blockall, &savedmask);
/* Create the new thread */
rax = do_syscall_clone_amd64_linux(
ML_(start_thread_NORETURN), stack, flags, &VG_(threads)[ctid],
child_tidptr, parent_tidptr, NULL
);
res = VG_(mk_SysRes_amd64_linux)( rax );
VG_(sigprocmask)(VKI_SIG_SETMASK, &savedmask, NULL);
out:
if (sr_isError(res)) {
/* clone failed */
VG_(cleanup_thread)(&ctst->arch);
ctst->status = VgTs_Empty;
/* oops. Better tell the tool the thread exited in a hurry :-) */
VG_TRACK( pre_thread_ll_exit, ctid );
}
return res;
}
/* ---------------------------------------------------------------------
More thread stuff
------------------------------------------------------------------ */
void VG_(cleanup_thread) ( ThreadArchState *arch )
{
}
void setup_child ( /*OUT*/ ThreadArchState *child,
/*IN*/ ThreadArchState *parent )
{
/* We inherit our parent's guest state. */
child->vex = parent->vex;
child->vex_shadow1 = parent->vex_shadow1;
child->vex_shadow2 = parent->vex_shadow2;
}
/* ---------------------------------------------------------------------
PRE/POST wrappers for AMD64/Linux-specific syscalls
------------------------------------------------------------------ */
#define PRE(name) DEFN_PRE_TEMPLATE(amd64_linux, name)
#define POST(name) DEFN_POST_TEMPLATE(amd64_linux, name)
/* Add prototypes for the wrappers declared here, so that gcc doesn't
harass us for not having prototypes. Really this is a kludge --
the right thing to do is to make these wrappers 'static' since they
aren't visible outside this file, but that requires even more macro
magic. */
DECL_TEMPLATE(amd64_linux, sys_clone);
DECL_TEMPLATE(amd64_linux, sys_rt_sigreturn);
DECL_TEMPLATE(amd64_linux, sys_socket);
DECL_TEMPLATE(amd64_linux, sys_setsockopt);
DECL_TEMPLATE(amd64_linux, sys_getsockopt);
DECL_TEMPLATE(amd64_linux, sys_connect);
DECL_TEMPLATE(amd64_linux, sys_accept);
DECL_TEMPLATE(amd64_linux, sys_accept4);
DECL_TEMPLATE(amd64_linux, sys_sendto);
DECL_TEMPLATE(amd64_linux, sys_recvfrom);
DECL_TEMPLATE(amd64_linux, sys_sendmsg);
DECL_TEMPLATE(amd64_linux, sys_recvmsg);
DECL_TEMPLATE(amd64_linux, sys_shutdown);
DECL_TEMPLATE(amd64_linux, sys_bind);
DECL_TEMPLATE(amd64_linux, sys_listen);
DECL_TEMPLATE(amd64_linux, sys_getsockname);
DECL_TEMPLATE(amd64_linux, sys_getpeername);
DECL_TEMPLATE(amd64_linux, sys_socketpair);
DECL_TEMPLATE(amd64_linux, sys_semget);
DECL_TEMPLATE(amd64_linux, sys_semop);
DECL_TEMPLATE(amd64_linux, sys_semtimedop);
DECL_TEMPLATE(amd64_linux, sys_semctl);
DECL_TEMPLATE(amd64_linux, sys_msgget);
DECL_TEMPLATE(amd64_linux, sys_msgrcv);
DECL_TEMPLATE(amd64_linux, sys_msgsnd);
DECL_TEMPLATE(amd64_linux, sys_msgctl);
DECL_TEMPLATE(amd64_linux, sys_shmget);
DECL_TEMPLATE(amd64_linux, wrap_sys_shmat);
DECL_TEMPLATE(amd64_linux, sys_shmdt);
DECL_TEMPLATE(amd64_linux, sys_shmdt);
DECL_TEMPLATE(amd64_linux, sys_shmctl);
DECL_TEMPLATE(amd64_linux, sys_arch_prctl);
DECL_TEMPLATE(amd64_linux, sys_ptrace);
DECL_TEMPLATE(amd64_linux, sys_fadvise64);
DECL_TEMPLATE(amd64_linux, sys_mmap);
DECL_TEMPLATE(amd64_linux, sys_syscall184);
PRE(sys_clone)
{
ULong cloneflags;
PRINT("sys_clone ( %lx, %#lx, %#lx, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ2(int, "clone",
unsigned long, flags,
void *, child_stack);
if (ARG1 & VKI_CLONE_PARENT_SETTID) {
if (VG_(tdict).track_pre_reg_read) {
PRA3("clone", int *, parent_tidptr);
}
PRE_MEM_WRITE("clone(parent_tidptr)", ARG3, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG3, sizeof(Int), VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
if (ARG1 & VKI_CLONE_SETTLS) {
if (VG_(tdict).track_pre_reg_read) {
PRA4("clone", vki_modify_ldt_t *, tlsinfo);
}
PRE_MEM_READ("clone(tlsinfo)", ARG4, sizeof(vki_modify_ldt_t));
if (!VG_(am_is_valid_for_client)(ARG4, sizeof(vki_modify_ldt_t),
VKI_PROT_READ)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID)) {
if (VG_(tdict).track_pre_reg_read) {
PRA5("clone", int *, child_tidptr);
}
PRE_MEM_WRITE("clone(child_tidptr)", ARG4, sizeof(Int));
if (!VG_(am_is_valid_for_client)(ARG4, sizeof(Int), VKI_PROT_WRITE)) {
SET_STATUS_Failure( VKI_EFAULT );
return;
}
}
cloneflags = ARG1;
if (!ML_(client_signal_OK)(ARG1 & VKI_CSIGNAL)) {
SET_STATUS_Failure( VKI_EINVAL );
return;
}
/* Only look at the flags we really care about */
switch (cloneflags & (VKI_CLONE_VM | VKI_CLONE_FS
| VKI_CLONE_FILES | VKI_CLONE_VFORK)) {
case VKI_CLONE_VM | VKI_CLONE_FS | VKI_CLONE_FILES:
/* thread creation */
SET_STATUS_from_SysRes(
do_clone(tid,
ARG1, /* flags */
(Addr)ARG2, /* child ESP */
(Long *)ARG3, /* parent_tidptr */
(Long *)ARG4, /* child_tidptr */
(Addr)ARG5)); /* set_tls */
break;
case VKI_CLONE_VFORK | VKI_CLONE_VM: /* vfork */
/* FALLTHROUGH - assume vfork == fork */
cloneflags &= ~(VKI_CLONE_VFORK | VKI_CLONE_VM);
case 0: /* plain fork */
SET_STATUS_from_SysRes(
ML_(do_fork_clone)(tid,
cloneflags, /* flags */
(Int *)ARG3, /* parent_tidptr */
(Int *)ARG4)); /* child_tidptr */
break;
default:
/* should we just ENOSYS? */
VG_(message)(Vg_UserMsg,
"Unsupported clone() flags: 0x%lx\n", ARG1);
VG_(message)(Vg_UserMsg,
"\n");
VG_(message)(Vg_UserMsg,
"The only supported clone() uses are:\n");
VG_(message)(Vg_UserMsg,
" - via a threads library (LinuxThreads or NPTL)\n");
VG_(message)(Vg_UserMsg,
" - via the implementation of fork or vfork\n");
VG_(unimplemented)
("Valgrind does not support general clone().");
}
if (SUCCESS) {
if (ARG1 & VKI_CLONE_PARENT_SETTID)
POST_MEM_WRITE(ARG3, sizeof(Int));
if (ARG1 & (VKI_CLONE_CHILD_SETTID | VKI_CLONE_CHILD_CLEARTID))
POST_MEM_WRITE(ARG4, sizeof(Int));
/* Thread creation was successful; let the child have the chance
to run */
*flags |= SfYieldAfter;
}
}
PRE(sys_rt_sigreturn)
{
/* This isn't really a syscall at all - it's a misuse of the
syscall mechanism by m_sigframe. VG_(sigframe_create) sets the
return address of the signal frames it creates to be a short
piece of code which does this "syscall". The only purpose of
the syscall is to call VG_(sigframe_destroy), which restores the
thread's registers from the frame and then removes it.
Consequently we must ask the syswrap driver logic not to write
back the syscall "result" as that would overwrite the
just-restored register state. */
ThreadState* tst;
PRINT("sys_rt_sigreturn ( )");
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
/* Adjust RSP to point to start of frame; skip back up over handler
ret addr */
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_RSP -= sizeof(Addr);
/* This is only so that the RIP is (might be) useful to report if
something goes wrong in the sigreturn. JRS 20070318: no idea
what this is for */
ML_(fixup_guest_state_to_restart_syscall)(&tst->arch);
/* Restore register state from frame and remove it, as
described above */
VG_(sigframe_destroy)(tid, True);
/* Tell the driver not to update the guest state with the "result",
and set a bogus result to keep it happy. */
*flags |= SfNoWriteResult;
SET_STATUS_Success(0);
/* Check to see if any signals arose as a result of this. */
*flags |= SfPollAfter;
}
PRE(sys_arch_prctl)
{
ThreadState* tst;
PRINT( "arch_prctl ( %ld, %lx )", ARG1, ARG2 );
vg_assert(VG_(is_valid_tid)(tid));
vg_assert(tid >= 1 && tid < VG_N_THREADS);
vg_assert(VG_(is_running_thread)(tid));
// Nb: can't use "ARG2".."ARG5" here because that's our own macro...
PRE_REG_READ2(long, "arch_prctl",
int, option, unsigned long, arg2);
// XXX: totally wrong... we need to look at the 'option' arg, and do
// PRE_MEM_READs/PRE_MEM_WRITEs as necessary...
/* "do" the syscall ourselves; the kernel never sees it */
if (ARG1 == VKI_ARCH_SET_FS) {
tst = VG_(get_ThreadState)(tid);
tst->arch.vex.guest_FS_ZERO = ARG2;
}
else if (ARG1 == VKI_ARCH_GET_FS) {
PRE_MEM_WRITE("arch_prctl(addr)", ARG2, sizeof(unsigned long));
tst = VG_(get_ThreadState)(tid);
*(unsigned long *)ARG2 = tst->arch.vex.guest_FS_ZERO;
POST_MEM_WRITE(ARG2, sizeof(unsigned long));
}
else {
VG_(core_panic)("Unsupported arch_prtctl option");
}
/* Note; the Status writeback to guest state that happens after
this wrapper returns does not change guest_FS_ZERO; hence that
direct assignment to the guest state is safe here. */
SET_STATUS_Success( 0 );
}
// Parts of this are amd64-specific, but the *PEEK* cases are generic.
//
// ARG3 is only used for pointers into the traced process's address
// space and for offsets into the traced process's struct
// user_regs_struct. It is never a pointer into this process's memory
// space, and we should therefore not check anything it points to.
PRE(sys_ptrace)
{
PRINT("sys_ptrace ( %ld, %ld, %#lx, %#lx )", ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(int, "ptrace",
long, request, long, pid, long, addr, long, data);
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
PRE_MEM_WRITE( "ptrace(peek)", ARG4,
sizeof (long));
break;
case VKI_PTRACE_GETREGS:
PRE_MEM_WRITE( "ptrace(getregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_GETFPREGS:
PRE_MEM_WRITE( "ptrace(getfpregs)", ARG4,
sizeof (struct vki_user_i387_struct));
break;
case VKI_PTRACE_SETREGS:
PRE_MEM_READ( "ptrace(setregs)", ARG4,
sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_SETFPREGS:
PRE_MEM_READ( "ptrace(setfpregs)", ARG4,
sizeof (struct vki_user_i387_struct));
break;
case VKI_PTRACE_GETEVENTMSG:
PRE_MEM_WRITE( "ptrace(geteventmsg)", ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
PRE_MEM_WRITE( "ptrace(getsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
case VKI_PTRACE_SETSIGINFO:
PRE_MEM_READ( "ptrace(setsiginfo)", ARG4, sizeof(vki_siginfo_t));
break;
default:
break;
}
}
POST(sys_ptrace)
{
switch (ARG1) {
case VKI_PTRACE_PEEKTEXT:
case VKI_PTRACE_PEEKDATA:
case VKI_PTRACE_PEEKUSR:
POST_MEM_WRITE( ARG4, sizeof (long));
break;
case VKI_PTRACE_GETREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_regs_struct));
break;
case VKI_PTRACE_GETFPREGS:
POST_MEM_WRITE( ARG4, sizeof (struct vki_user_i387_struct));
break;
case VKI_PTRACE_GETEVENTMSG:
POST_MEM_WRITE( ARG4, sizeof(unsigned long));
break;
case VKI_PTRACE_GETSIGINFO:
/* XXX: This is a simplification. Different parts of the
* siginfo_t are valid depending on the type of signal.
*/
POST_MEM_WRITE( ARG4, sizeof(vki_siginfo_t));
break;
default:
break;
}
}
PRE(sys_socket)
{
PRINT("sys_socket ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "socket", int, domain, int, type, int, protocol);
}
POST(sys_socket)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_socket)(tid, VG_(mk_SysRes_Success)(RES));
SET_STATUS_from_SysRes(r);
}
PRE(sys_setsockopt)
{
PRINT("sys_setsockopt ( %ld, %ld, %ld, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "setsockopt",
int, s, int, level, int, optname,
const void *, optval, int, optlen);
ML_(generic_PRE_sys_setsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_getsockopt)
{
PRINT("sys_getsockopt ( %ld, %ld, %ld, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "getsockopt",
int, s, int, level, int, optname,
void *, optval, int, *optlen);
ML_(linux_PRE_sys_getsockopt)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
}
POST(sys_getsockopt)
{
vg_assert(SUCCESS);
ML_(linux_POST_sys_getsockopt)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_connect)
{
*flags |= SfMayBlock;
PRINT("sys_connect ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "connect",
int, sockfd, struct sockaddr *, serv_addr, int, addrlen);
ML_(generic_PRE_sys_connect)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_accept)
{
*flags |= SfMayBlock;
PRINT("sys_accept ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "accept",
int, s, struct sockaddr *, addr, int, *addrlen);
ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sys_accept4)
{
*flags |= SfMayBlock;
PRINT("sys_accept4 ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "accept4",
int, s, struct sockaddr *, addr, int, *addrlen, int, flags);
ML_(generic_PRE_sys_accept)(tid, ARG1,ARG2,ARG3);
}
POST(sys_accept4)
{
SysRes r;
vg_assert(SUCCESS);
r = ML_(generic_POST_sys_accept)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
SET_STATUS_from_SysRes(r);
}
PRE(sys_sendto)
{
*flags |= SfMayBlock;
PRINT("sys_sendto ( %ld, %#lx, %ld, %lu, %#lx, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "sendto",
int, s, const void *, msg, int, len,
unsigned int, flags,
const struct sockaddr *, to, int, tolen);
ML_(generic_PRE_sys_sendto)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_recvfrom)
{
*flags |= SfMayBlock;
PRINT("sys_recvfrom ( %ld, %#lx, %ld, %lu, %#lx, %#lx )",ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
PRE_REG_READ6(long, "recvfrom",
int, s, void *, buf, int, len, unsigned int, flags,
struct sockaddr *, from, int *, fromlen);
ML_(generic_PRE_sys_recvfrom)(tid, ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
POST(sys_recvfrom)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_recvfrom)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4,ARG5,ARG6);
}
PRE(sys_sendmsg)
{
*flags |= SfMayBlock;
PRINT("sys_sendmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "sendmsg",
int, s, const struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_sendmsg)(tid, "msg", (struct vki_msghdr *)ARG2);
}
PRE(sys_recvmsg)
{
*flags |= SfMayBlock;
PRINT("sys_recvmsg ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "recvmsg", int, s, struct msghdr *, msg, int, flags);
ML_(generic_PRE_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2);
}
POST(sys_recvmsg)
{
ML_(generic_POST_sys_recvmsg)(tid, "msg", (struct vki_msghdr *)ARG2, RES);
}
PRE(sys_shutdown)
{
*flags |= SfMayBlock;
PRINT("sys_shutdown ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(int, "shutdown", int, s, int, how);
}
PRE(sys_bind)
{
PRINT("sys_bind ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "bind",
int, sockfd, struct sockaddr *, my_addr, int, addrlen);
ML_(generic_PRE_sys_bind)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_listen)
{
PRINT("sys_listen ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(long, "listen", int, s, int, backlog);
}
PRE(sys_getsockname)
{
PRINT("sys_getsockname ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getsockname",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getsockname)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getsockname)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getsockname)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_getpeername)
{
PRINT("sys_getpeername ( %ld, %#lx, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "getpeername",
int, s, struct sockaddr *, name, int *, namelen);
ML_(generic_PRE_sys_getpeername)(tid, ARG1,ARG2,ARG3);
}
POST(sys_getpeername)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_getpeername)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3);
}
PRE(sys_socketpair)
{
PRINT("sys_socketpair ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "socketpair",
int, d, int, type, int, protocol, int*, sv);
ML_(generic_PRE_sys_socketpair)(tid, ARG1,ARG2,ARG3,ARG4);
}
POST(sys_socketpair)
{
vg_assert(SUCCESS);
ML_(generic_POST_sys_socketpair)(tid, VG_(mk_SysRes_Success)(RES),
ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semget)
{
PRINT("sys_semget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semget", vki_key_t, key, int, nsems, int, semflg);
}
PRE(sys_semop)
{
*flags |= SfMayBlock;
PRINT("sys_semop ( %ld, %#lx, %lu )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semop",
int, semid, struct sembuf *, sops, unsigned, nsoops);
ML_(generic_PRE_sys_semop)(tid, ARG1,ARG2,ARG3);
}
PRE(sys_semtimedop)
{
*flags |= SfMayBlock;
PRINT("sys_semtimedop ( %ld, %#lx, %lu, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semtimedop",
int, semid, struct sembuf *, sops, unsigned, nsoops,
struct timespec *, timeout);
ML_(generic_PRE_sys_semtimedop)(tid, ARG1,ARG2,ARG3,ARG4);
}
PRE(sys_semctl)
{
switch (ARG3 & ~VKI_IPC_64) {
case VKI_IPC_INFO:
case VKI_SEM_INFO:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct seminfo *, arg);
break;
case VKI_IPC_STAT:
case VKI_SEM_STAT:
case VKI_IPC_SET:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, struct semid_ds *, arg);
break;
case VKI_GETALL:
case VKI_SETALL:
PRINT("sys_semctl ( %ld, %ld, %ld, %#lx )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "semctl",
int, semid, int, semnum, int, cmd, unsigned short *, arg);
break;
default:
PRINT("sys_semctl ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "semctl",
int, semid, int, semnum, int, cmd);
break;
}
ML_(generic_PRE_sys_semctl)(tid, ARG1,ARG2,ARG3|VKI_IPC_64,ARG4);
}
POST(sys_semctl)
{
ML_(generic_POST_sys_semctl)(tid, RES,ARG1,ARG2,ARG3|VKI_IPC_64,ARG4);
}
PRE(sys_msgget)
{
PRINT("sys_msgget ( %ld, %ld )",ARG1,ARG2);
PRE_REG_READ2(long, "msgget", vki_key_t, key, int, msgflg);
}
PRE(sys_msgsnd)
{
PRINT("sys_msgsnd ( %ld, %#lx, %ld, %ld )",ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "msgsnd",
int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz, int, msgflg);
ML_(linux_PRE_sys_msgsnd)(tid, ARG1,ARG2,ARG3,ARG4);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
PRE(sys_msgrcv)
{
PRINT("sys_msgrcv ( %ld, %#lx, %ld, %ld, %ld )",ARG1,ARG2,ARG3,ARG4,ARG5);
PRE_REG_READ5(long, "msgrcv",
int, msqid, struct msgbuf *, msgp, vki_size_t, msgsz,
long, msgytp, int, msgflg);
ML_(linux_PRE_sys_msgrcv)(tid, ARG1,ARG2,ARG3,ARG4,ARG5);
if ((ARG4 & VKI_IPC_NOWAIT) == 0)
*flags |= SfMayBlock;
}
POST(sys_msgrcv)
{
ML_(linux_POST_sys_msgrcv)(tid, RES,ARG1,ARG2,ARG3,ARG4,ARG5);
}
PRE(sys_msgctl)
{
PRINT("sys_msgctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "msgctl",
int, msqid, int, cmd, struct msqid_ds *, buf);
ML_(linux_PRE_sys_msgctl)(tid, ARG1,ARG2,ARG3);
}
POST(sys_msgctl)
{
ML_(linux_POST_sys_msgctl)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmget)
{
PRINT("sys_shmget ( %ld, %ld, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmget", vki_key_t, key, vki_size_t, size, int, shmflg);
}
PRE(wrap_sys_shmat)
{
UWord arg2tmp;
PRINT("wrap_sys_shmat ( %ld, %#lx, %ld )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmat",
int, shmid, const void *, shmaddr, int, shmflg);
arg2tmp = ML_(generic_PRE_sys_shmat)(tid, ARG1,ARG2,ARG3);
if (arg2tmp == 0)
SET_STATUS_Failure( VKI_EINVAL );
else
ARG2 = arg2tmp; // used in POST
}
POST(wrap_sys_shmat)
{
ML_(generic_POST_sys_shmat)(tid, RES,ARG1,ARG2,ARG3);
}
PRE(sys_shmdt)
{
PRINT("sys_shmdt ( %#lx )",ARG1);
PRE_REG_READ1(long, "shmdt", const void *, shmaddr);
if (!ML_(generic_PRE_sys_shmdt)(tid, ARG1))
SET_STATUS_Failure( VKI_EINVAL );
}
POST(sys_shmdt)
{
ML_(generic_POST_sys_shmdt)(tid, RES,ARG1);
}
PRE(sys_shmctl)
{
PRINT("sys_shmctl ( %ld, %ld, %#lx )",ARG1,ARG2,ARG3);
PRE_REG_READ3(long, "shmctl",
int, shmid, int, cmd, struct shmid_ds *, buf);
ML_(generic_PRE_sys_shmctl)(tid, ARG1,ARG2|VKI_IPC_64,ARG3);
}
POST(sys_shmctl)
{
ML_(generic_POST_sys_shmctl)(tid, RES,ARG1,ARG2|VKI_IPC_64,ARG3);
}
PRE(sys_fadvise64)
{
PRINT("sys_fadvise64 ( %ld, %ld, %lu, %ld )", ARG1,ARG2,ARG3,ARG4);
PRE_REG_READ4(long, "fadvise64",
int, fd, vki_loff_t, offset, vki_size_t, len, int, advice);
}
PRE(sys_mmap)
{
SysRes r;
PRINT("sys_mmap ( %#lx, %llu, %ld, %ld, %d, %ld )",
ARG1, (ULong)ARG2, ARG3, ARG4, (Int)ARG5, ARG6 );
PRE_REG_READ6(long, "mmap",
unsigned long, start, unsigned long, length,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, offset);
r = ML_(generic_PRE_sys_mmap)( tid, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6 );
SET_STATUS_from_SysRes(r);
}
/* ---------------------------------------------------------------
PRE/POST wrappers for AMD64/Linux-variant specific syscalls
------------------------------------------------------------ */
PRE(sys_syscall184)
{
Int err;
/* 184 is used by sys_bproc. If we're not on a declared bproc
variant, fail in the usual way, since it is otherwise unused. */
if (!VG_(strstr)(VG_(clo_kernel_variant), "bproc")) {
PRINT("non-existent syscall! (syscall 184)");
PRE_REG_READ0(long, "ni_syscall(184)");
SET_STATUS_Failure( VKI_ENOSYS );
return;
}
err = ML_(linux_variant_PRE_sys_bproc)( ARG1, ARG2, ARG3,
ARG4, ARG5, ARG6 );
if (err) {
SET_STATUS_Failure( err );
return;
}
/* Let it go through. */
*flags |= SfMayBlock; /* who knows? play safe. */
}
POST(sys_syscall184)
{
ML_(linux_variant_POST_sys_bproc)( ARG1, ARG2, ARG3,
ARG4, ARG5, ARG6 );
}
#undef PRE
#undef POST
/* ---------------------------------------------------------------------
The AMD64/Linux syscall table
------------------------------------------------------------------ */
/* Add an amd64-linux specific wrapper to a syscall table. */
#define PLAX_(const, name) WRAPPER_ENTRY_X_(amd64_linux, const, name)
#define PLAXY(const, name) WRAPPER_ENTRY_XY(amd64_linux, const, name)
// This table maps from __NR_xxx syscall numbers (from
// linux/include/asm-x86_64/unistd.h) to the appropriate PRE/POST sys_foo()
// wrappers on AMD64 (as per sys_call_table in
// linux/arch/x86_64/kernel/entry.S).
//
// When implementing these wrappers, you need to work out if the wrapper is
// generic, Linux-only (but arch-independent), or AMD64/Linux only.
static SyscallTableEntry syscall_table[] = {
GENXY(__NR_read, sys_read), // 0
GENX_(__NR_write, sys_write), // 1
GENXY(__NR_open, sys_open), // 2
GENXY(__NR_close, sys_close), // 3
GENXY(__NR_stat, sys_newstat), // 4
GENXY(__NR_fstat, sys_newfstat), // 5
GENXY(__NR_lstat, sys_newlstat), // 6
GENXY(__NR_poll, sys_poll), // 7
LINX_(__NR_lseek, sys_lseek), // 8
PLAX_(__NR_mmap, sys_mmap), // 9
GENXY(__NR_mprotect, sys_mprotect), // 10
GENXY(__NR_munmap, sys_munmap), // 11
GENX_(__NR_brk, sys_brk), // 12
LINXY(__NR_rt_sigaction, sys_rt_sigaction), // 13
LINXY(__NR_rt_sigprocmask, sys_rt_sigprocmask), // 14
PLAX_(__NR_rt_sigreturn, sys_rt_sigreturn), // 15
LINXY(__NR_ioctl, sys_ioctl), // 16
GENXY(__NR_pread64, sys_pread64), // 17
GENX_(__NR_pwrite64, sys_pwrite64), // 18
GENXY(__NR_readv, sys_readv), // 19
GENX_(__NR_writev, sys_writev), // 20
GENX_(__NR_access, sys_access), // 21
LINXY(__NR_pipe, sys_pipe), // 22
GENX_(__NR_select, sys_select), // 23
LINX_(__NR_sched_yield, sys_sched_yield), // 24
GENX_(__NR_mremap, sys_mremap), // 25
GENX_(__NR_msync, sys_msync), // 26
GENXY(__NR_mincore, sys_mincore), // 27
GENX_(__NR_madvise, sys_madvise), // 28
PLAX_(__NR_shmget, sys_shmget), // 29
PLAXY(__NR_shmat, wrap_sys_shmat), // 30
PLAXY(__NR_shmctl, sys_shmctl), // 31
GENXY(__NR_dup, sys_dup), // 32
GENXY(__NR_dup2, sys_dup2), // 33
GENX_(__NR_pause, sys_pause), // 34
GENXY(__NR_nanosleep, sys_nanosleep), // 35
GENXY(__NR_getitimer, sys_getitimer), // 36
GENX_(__NR_alarm, sys_alarm), // 37
GENXY(__NR_setitimer, sys_setitimer), // 38
GENX_(__NR_getpid, sys_getpid), // 39
LINXY(__NR_sendfile, sys_sendfile), // 40
PLAXY(__NR_socket, sys_socket), // 41
PLAX_(__NR_connect, sys_connect), // 42
PLAXY(__NR_accept, sys_accept), // 43
PLAX_(__NR_sendto, sys_sendto), // 44
PLAXY(__NR_recvfrom, sys_recvfrom), // 45
PLAX_(__NR_sendmsg, sys_sendmsg), // 46
PLAXY(__NR_recvmsg, sys_recvmsg), // 47
PLAX_(__NR_shutdown, sys_shutdown), // 48
PLAX_(__NR_bind, sys_bind), // 49
PLAX_(__NR_listen, sys_listen), // 50
PLAXY(__NR_getsockname, sys_getsockname), // 51
PLAXY(__NR_getpeername, sys_getpeername), // 52
PLAXY(__NR_socketpair, sys_socketpair), // 53
PLAX_(__NR_setsockopt, sys_setsockopt), // 54
PLAXY(__NR_getsockopt, sys_getsockopt), // 55
PLAX_(__NR_clone, sys_clone), // 56
GENX_(__NR_fork, sys_fork), // 57
GENX_(__NR_vfork, sys_fork), // 58 treat as fork
GENX_(__NR_execve, sys_execve), // 59
GENX_(__NR_exit, sys_exit), // 60
GENXY(__NR_wait4, sys_wait4), // 61
GENX_(__NR_kill, sys_kill), // 62
GENXY(__NR_uname, sys_newuname), // 63
PLAX_(__NR_semget, sys_semget), // 64
PLAX_(__NR_semop, sys_semop), // 65
PLAXY(__NR_semctl, sys_semctl), // 66
PLAXY(__NR_shmdt, sys_shmdt), // 67
PLAX_(__NR_msgget, sys_msgget), // 68
PLAX_(__NR_msgsnd, sys_msgsnd), // 69
PLAXY(__NR_msgrcv, sys_msgrcv), // 70
PLAXY(__NR_msgctl, sys_msgctl), // 71
LINXY(__NR_fcntl, sys_fcntl), // 72
GENX_(__NR_flock, sys_flock), // 73
GENX_(__NR_fsync, sys_fsync), // 74
GENX_(__NR_fdatasync, sys_fdatasync), // 75
GENX_(__NR_truncate, sys_truncate), // 76
GENX_(__NR_ftruncate, sys_ftruncate), // 77
GENXY(__NR_getdents, sys_getdents), // 78
GENXY(__NR_getcwd, sys_getcwd), // 79
GENX_(__NR_chdir, sys_chdir), // 80
GENX_(__NR_fchdir, sys_fchdir), // 81
GENX_(__NR_rename, sys_rename), // 82
GENX_(__NR_mkdir, sys_mkdir), // 83
GENX_(__NR_rmdir, sys_rmdir), // 84
GENXY(__NR_creat, sys_creat), // 85
GENX_(__NR_link, sys_link), // 86
GENX_(__NR_unlink, sys_unlink), // 87
GENX_(__NR_symlink, sys_symlink), // 88
GENX_(__NR_readlink, sys_readlink), // 89
GENX_(__NR_chmod, sys_chmod), // 90
GENX_(__NR_fchmod, sys_fchmod), // 91
GENX_(__NR_chown, sys_chown), // 92
GENX_(__NR_fchown, sys_fchown), // 93
GENX_(__NR_lchown, sys_lchown), // 94
GENX_(__NR_umask, sys_umask), // 95
GENXY(__NR_gettimeofday, sys_gettimeofday), // 96
GENXY(__NR_getrlimit, sys_getrlimit), // 97
GENXY(__NR_getrusage, sys_getrusage), // 98
LINXY(__NR_sysinfo, sys_sysinfo), // 99
GENXY(__NR_times, sys_times), // 100
PLAXY(__NR_ptrace, sys_ptrace), // 101
GENX_(__NR_getuid, sys_getuid), // 102
LINXY(__NR_syslog, sys_syslog), // 103
GENX_(__NR_getgid, sys_getgid), // 104
GENX_(__NR_setuid, sys_setuid), // 105
GENX_(__NR_setgid, sys_setgid), // 106
GENX_(__NR_geteuid, sys_geteuid), // 107
GENX_(__NR_getegid, sys_getegid), // 108
GENX_(__NR_setpgid, sys_setpgid), // 109
GENX_(__NR_getppid, sys_getppid), // 110
GENX_(__NR_getpgrp, sys_getpgrp), // 111
GENX_(__NR_setsid, sys_setsid), // 112
GENX_(__NR_setreuid, sys_setreuid), // 113
GENX_(__NR_setregid, sys_setregid), // 114
GENXY(__NR_getgroups, sys_getgroups), // 115
GENX_(__NR_setgroups, sys_setgroups), // 116
LINX_(__NR_setresuid, sys_setresuid), // 117
LINXY(__NR_getresuid, sys_getresuid), // 118
LINX_(__NR_setresgid, sys_setresgid), // 119
LINXY(__NR_getresgid, sys_getresgid), // 120
GENX_(__NR_getpgid, sys_getpgid), // 121
LINX_(__NR_setfsuid, sys_setfsuid), // 122
LINX_(__NR_setfsgid, sys_setfsgid), // 123
GENX_(__NR_getsid, sys_getsid), // 124
LINXY(__NR_capget, sys_capget), // 125
LINX_(__NR_capset, sys_capset), // 126
LINXY(__NR_rt_sigpending, sys_rt_sigpending), // 127
LINXY(__NR_rt_sigtimedwait, sys_rt_sigtimedwait),// 128
LINXY(__NR_rt_sigqueueinfo, sys_rt_sigqueueinfo),// 129
LINX_(__NR_rt_sigsuspend, sys_rt_sigsuspend), // 130
GENXY(__NR_sigaltstack, sys_sigaltstack), // 131
LINX_(__NR_utime, sys_utime), // 132
GENX_(__NR_mknod, sys_mknod), // 133
// (__NR_uselib, sys_uselib), // 134
LINX_(__NR_personality, sys_personality), // 135
// (__NR_ustat, sys_ustat), // 136
GENXY(__NR_statfs, sys_statfs), // 137
GENXY(__NR_fstatfs, sys_fstatfs), // 138
// (__NR_sysfs, sys_sysfs), // 139
GENX_(__NR_getpriority, sys_getpriority), // 140
GENX_(__NR_setpriority, sys_setpriority), // 141
LINXY(__NR_sched_setparam, sys_sched_setparam), // 142
LINXY(__NR_sched_getparam, sys_sched_getparam), // 143
LINX_(__NR_sched_setscheduler, sys_sched_setscheduler), // 144
LINX_(__NR_sched_getscheduler, sys_sched_getscheduler), // 145
LINX_(__NR_sched_get_priority_max, sys_sched_get_priority_max), // 146
LINX_(__NR_sched_get_priority_min, sys_sched_get_priority_min), // 147
LINXY(__NR_sched_rr_get_interval, sys_sched_rr_get_interval), // 148
GENX_(__NR_mlock, sys_mlock), // 149
GENX_(__NR_munlock, sys_munlock), // 150
GENX_(__NR_mlockall, sys_mlockall), // 151
LINX_(__NR_munlockall, sys_munlockall), // 152
LINX_(__NR_vhangup, sys_vhangup), // 153
// (__NR_modify_ldt, sys_modify_ldt), // 154
// (__NR_pivot_root, sys_pivot_root), // 155
LINXY(__NR__sysctl, sys_sysctl), // 156
LINXY(__NR_prctl, sys_prctl), // 157
PLAX_(__NR_arch_prctl, sys_arch_prctl), // 158
LINXY(__NR_adjtimex, sys_adjtimex), // 159
GENX_(__NR_setrlimit, sys_setrlimit), // 160
GENX_(__NR_chroot, sys_chroot), // 161
GENX_(__NR_sync, sys_sync), // 162
// (__NR_acct, sys_acct), // 163
GENX_(__NR_settimeofday, sys_settimeofday), // 164
LINX_(__NR_mount, sys_mount), // 165
LINX_(__NR_umount2, sys_umount), // 166
// (__NR_swapon, sys_swapon), // 167
// (__NR_swapoff, sys_swapoff), // 168
// (__NR_reboot, sys_reboot), // 169
// (__NR_sethostname, sys_sethostname), // 170
// (__NR_setdomainname, sys_setdomainname), // 171
GENX_(__NR_iopl, sys_iopl), // 172
LINX_(__NR_ioperm, sys_ioperm), // 173
GENX_(__NR_create_module, sys_ni_syscall), // 174
LINX_(__NR_init_module, sys_init_module), // 175
LINX_(__NR_delete_module, sys_delete_module), // 176
// (__NR_get_kernel_syms, sys_ni_syscall), // 177
// (__NR_query_module, sys_ni_syscall), // 178
LINX_(__NR_quotactl, sys_quotactl), // 179
// (__NR_nfsservctl, sys_nfsservctl), // 180
// (__NR_getpmsg, sys_ni_syscall), // 181
// (__NR_putpmsg, sys_ni_syscall), // 182
// (__NR_afs_syscall, sys_ni_syscall), // 183
PLAXY(184, sys_syscall184), // 184 // sys_bproc?
// (__NR_security, sys_ni_syscall), // 185
LINX_(__NR_gettid, sys_gettid), // 186
LINX_(__NR_readahead, sys_readahead), // 187
LINX_(__NR_setxattr, sys_setxattr), // 188
LINX_(__NR_lsetxattr, sys_lsetxattr), // 189
LINX_(__NR_fsetxattr, sys_fsetxattr), // 190
LINXY(__NR_getxattr, sys_getxattr), // 191
LINXY(__NR_lgetxattr, sys_lgetxattr), // 192
LINXY(__NR_fgetxattr, sys_fgetxattr), // 193
LINXY(__NR_listxattr, sys_listxattr), // 194
LINXY(__NR_llistxattr, sys_llistxattr), // 195
LINXY(__NR_flistxattr, sys_flistxattr), // 196
LINX_(__NR_removexattr, sys_removexattr), // 197
LINX_(__NR_lremovexattr, sys_lremovexattr), // 198
LINX_(__NR_fremovexattr, sys_fremovexattr), // 199
LINXY(__NR_tkill, sys_tkill), // 200
GENXY(__NR_time, sys_time), /*was sys_time64*/ // 201
LINXY(__NR_futex, sys_futex), // 202
LINX_(__NR_sched_setaffinity, sys_sched_setaffinity), // 203
LINXY(__NR_sched_getaffinity, sys_sched_getaffinity), // 204
// (__NR_set_thread_area, sys_ni_syscall), // 205
LINXY(__NR_io_setup, sys_io_setup), // 206
LINX_(__NR_io_destroy, sys_io_destroy), // 207
LINXY(__NR_io_getevents, sys_io_getevents), // 208
LINX_(__NR_io_submit, sys_io_submit), // 209
LINXY(__NR_io_cancel, sys_io_cancel), // 210
// (__NR_get_thread_area, sys_ni_syscall), // 211
LINXY(__NR_lookup_dcookie, sys_lookup_dcookie), // 212
LINXY(__NR_epoll_create, sys_epoll_create), // 213
// (__NR_epoll_ctl_old, sys_ni_syscall), // 214
// (__NR_epoll_wait_old, sys_ni_syscall), // 215
// (__NR_remap_file_pages, sys_remap_file_pages)// 216
GENXY(__NR_getdents64, sys_getdents64), // 217
LINX_(__NR_set_tid_address, sys_set_tid_address),// 218
// (__NR_restart_syscall, sys_restart_syscall),// 219
PLAX_(__NR_semtimedop, sys_semtimedop), // 220
PLAX_(__NR_fadvise64, sys_fadvise64), // 221
LINXY(__NR_timer_create, sys_timer_create), // 222
LINXY(__NR_timer_settime, sys_timer_settime), // 223
LINXY(__NR_timer_gettime, sys_timer_gettime), // 224
LINX_(__NR_timer_getoverrun, sys_timer_getoverrun), // 225
LINX_(__NR_timer_delete, sys_timer_delete), // 226
LINX_(__NR_clock_settime, sys_clock_settime), // 227
LINXY(__NR_clock_gettime, sys_clock_gettime), // 228
LINXY(__NR_clock_getres, sys_clock_getres), // 229
LINXY(__NR_clock_nanosleep, sys_clock_nanosleep),// 230
LINX_(__NR_exit_group, sys_exit_group), // 231
LINXY(__NR_epoll_wait, sys_epoll_wait), // 232
LINX_(__NR_epoll_ctl, sys_epoll_ctl), // 233
LINXY(__NR_tgkill, sys_tgkill), // 234
GENX_(__NR_utimes, sys_utimes), // 235
// (__NR_vserver, sys_ni_syscall), // 236
LINX_(__NR_mbind, sys_mbind), // 237
LINX_(__NR_set_mempolicy, sys_set_mempolicy), // 238
LINXY(__NR_get_mempolicy, sys_get_mempolicy), // 239
LINXY(__NR_mq_open, sys_mq_open), // 240
LINX_(__NR_mq_unlink, sys_mq_unlink), // 241
LINX_(__NR_mq_timedsend, sys_mq_timedsend), // 242
LINXY(__NR_mq_timedreceive, sys_mq_timedreceive),// 243
LINX_(__NR_mq_notify, sys_mq_notify), // 244
LINXY(__NR_mq_getsetattr, sys_mq_getsetattr), // 245
// (__NR_kexec_load, sys_ni_syscall), // 246
LINXY(__NR_waitid, sys_waitid), // 247
LINX_(__NR_add_key, sys_add_key), // 248
LINX_(__NR_request_key, sys_request_key), // 249
LINXY(__NR_keyctl, sys_keyctl), // 250
LINX_(__NR_ioprio_set, sys_ioprio_set), // 251
LINX_(__NR_ioprio_get, sys_ioprio_get), // 252
LINX_(__NR_inotify_init, sys_inotify_init), // 253
LINX_(__NR_inotify_add_watch, sys_inotify_add_watch), // 254
LINX_(__NR_inotify_rm_watch, sys_inotify_rm_watch), // 255
// LINX_(__NR_migrate_pages, sys_migrate_pages), // 256
LINXY(__NR_openat, sys_openat), // 257
LINX_(__NR_mkdirat, sys_mkdirat), // 258
LINX_(__NR_mknodat, sys_mknodat), // 259
LINX_(__NR_fchownat, sys_fchownat), // 260
LINX_(__NR_futimesat, sys_futimesat), // 261
LINXY(__NR_newfstatat, sys_newfstatat), // 262
LINX_(__NR_unlinkat, sys_unlinkat), // 263
LINX_(__NR_renameat, sys_renameat), // 264
LINX_(__NR_linkat, sys_linkat), // 265
LINX_(__NR_symlinkat, sys_symlinkat), // 266
LINX_(__NR_readlinkat, sys_readlinkat), // 267
LINX_(__NR_fchmodat, sys_fchmodat), // 268
LINX_(__NR_faccessat, sys_faccessat), // 269
LINX_(__NR_pselect6, sys_pselect6), // 270
LINXY(__NR_ppoll, sys_ppoll), // 271
// LINX_(__NR_unshare, sys_unshare), // 272
LINX_(__NR_set_robust_list, sys_set_robust_list), // 273
LINXY(__NR_get_robust_list, sys_get_robust_list), // 274
LINX_(__NR_splice, sys_splice), // 275
LINX_(__NR_tee, sys_tee), // 276
LINX_(__NR_sync_file_range, sys_sync_file_range), // 277
LINXY(__NR_vmsplice, sys_vmsplice), // 278
LINXY(__NR_move_pages, sys_move_pages), // 279
LINX_(__NR_utimensat, sys_utimensat), // 280
LINXY(__NR_epoll_pwait, sys_epoll_pwait), // 281
LINXY(__NR_signalfd, sys_signalfd), // 282
LINXY(__NR_timerfd_create, sys_timerfd_create), // 283
LINX_(__NR_eventfd, sys_eventfd), // 284
LINX_(__NR_fallocate, sys_fallocate), // 285
LINXY(__NR_timerfd_settime, sys_timerfd_settime), // 286
LINXY(__NR_timerfd_gettime, sys_timerfd_gettime), // 287
PLAXY(__NR_accept4, sys_accept4), // 288
LINXY(__NR_signalfd4, sys_signalfd4), // 289
LINX_(__NR_eventfd2, sys_eventfd2), // 290
LINXY(__NR_epoll_create1, sys_epoll_create1), // 291
LINXY(__NR_dup3, sys_dup3), // 292
LINXY(__NR_pipe2, sys_pipe2), // 293
LINXY(__NR_inotify_init1, sys_inotify_init1), // 294
LINXY(__NR_preadv, sys_preadv), // 295
LINX_(__NR_pwritev, sys_pwritev), // 296
LINXY(__NR_rt_tgsigqueueinfo, sys_rt_tgsigqueueinfo),// 297
LINXY(__NR_perf_event_open, sys_perf_event_open), // 298
LINXY(__NR_recvmmsg, sys_recvmmsg), // 299
// LINX_(__NR_fanotify_init, sys_ni_syscall), // 300
// LINX_(__NR_fanotify_mark, sys_ni_syscall), // 301
LINXY(__NR_prlimit64, sys_prlimit64), // 302
// LINX_(__NR_name_to_handle_at, sys_ni_syscall), // 303
// LINX_(__NR_open_by_handle_at, sys_ni_syscall), // 304
// LINX_(__NR_clock_adjtime, sys_ni_syscall), // 305
// LINX_(__NR_syncfs, sys_ni_syscall), // 306
LINXY(__NR_sendmmsg, sys_sendmmsg), // 307
// LINX_(__NR_setns, sys_ni_syscall), // 308
LINXY(__NR_getcpu, sys_getcpu), // 309
LINXY(__NR_process_vm_readv, sys_process_vm_readv), // 310
LINX_(__NR_process_vm_writev, sys_process_vm_writev) // 311
};
SyscallTableEntry* ML_(get_linux_syscall_entry) ( UInt sysno )
{
const UInt syscall_table_size
= sizeof(syscall_table) / sizeof(syscall_table[0]);
/* Is it in the contiguous initial section of the table? */
if (sysno < syscall_table_size) {
SyscallTableEntry* sys = &syscall_table[sysno];
if (sys->before == NULL)
return NULL; /* no entry */
else
return sys;
}
/* Can't find a wrapper */
return NULL;
}
#endif // defined(VGP_amd64_linux)
/*--------------------------------------------------------------------*/
/*--- end ---*/
/*--------------------------------------------------------------------*/