// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "x64/lithium-codegen-x64.h"
#include "code-stubs.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// When invoking builtins, we need to record the safepoint in the middle of
// the invoke instruction sequence generated by the macro assembler.
class SafepointGenerator : public CallWrapper {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
Safepoint::DeoptMode mode)
: codegen_(codegen),
pointers_(pointers),
deopt_mode_(mode) { }
virtual ~SafepointGenerator() { }
virtual void BeforeCall(int call_size) const {
codegen_->EnsureSpaceForLazyDeopt(Deoptimizer::patch_size() - call_size);
}
virtual void AfterCall() const {
codegen_->RecordSafepoint(pointers_, deopt_mode_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
Safepoint::DeoptMode deopt_mode_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
HPhase phase("Z_Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in GeneratePrologue).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateJumpTable() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(GetStackSlotCount());
code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
void LCodeGen::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartArrayPointer<char> name(
info()->shared_info()->DebugName()->ToCString());
PrintF("Aborting LCodeGen in @\"%s\": ", *name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
void LCodeGen::Comment(const char* format, ...) {
if (!FLAG_code_comments) return;
char buffer[4 * KB];
StringBuilder builder(buffer, ARRAY_SIZE(buffer));
va_list arguments;
va_start(arguments, format);
builder.AddFormattedList(format, arguments);
va_end(arguments);
// Copy the string before recording it in the assembler to avoid
// issues when the stack allocated buffer goes out of scope.
int length = builder.position();
Vector<char> copy = Vector<char>::New(length + 1);
memcpy(copy.start(), builder.Finalize(), copy.length());
masm()->RecordComment(copy.start());
}
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
__ int3();
}
#endif
// Strict mode functions need to replace the receiver with undefined
// when called as functions (without an explicit receiver
// object). rcx is zero for method calls and non-zero for function
// calls.
if (!info_->is_classic_mode() || info_->is_native()) {
Label ok;
__ testq(rcx, rcx);
__ j(zero, &ok, Label::kNear);
// +1 for return address.
int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
__ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex);
__ movq(Operand(rsp, receiver_offset), kScratchRegister);
__ bind(&ok);
}
__ push(rbp); // Caller's frame pointer.
__ movq(rbp, rsp);
__ push(rsi); // Callee's context.
__ push(rdi); // Callee's JS function.
// Reserve space for the stack slots needed by the code.
int slots = GetStackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ Set(rax, slots);
__ movq(kScratchRegister, kSlotsZapValue, RelocInfo::NONE);
Label loop;
__ bind(&loop);
__ push(kScratchRegister);
__ decl(rax);
__ j(not_zero, &loop);
} else {
__ subq(rsp, Immediate(slots * kPointerSize));
#ifdef _MSC_VER
// On windows, you may not access the stack more than one page below
// the most recently mapped page. To make the allocated area randomly
// accessible, we write to each page in turn (the value is irrelevant).
const int kPageSize = 4 * KB;
for (int offset = slots * kPointerSize - kPageSize;
offset > 0;
offset -= kPageSize) {
__ movq(Operand(rsp, offset), rax);
}
#endif
}
}
// Possibly allocate a local context.
int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment(";;; Allocate local context");
// Argument to NewContext is the function, which is still in rdi.
__ push(rdi);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
RecordSafepoint(Safepoint::kNoLazyDeopt);
// Context is returned in both rax and rsi. It replaces the context
// passed to us. It's saved in the stack and kept live in rsi.
__ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
// Copy any necessary parameters into the context.
int num_parameters = scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ movq(rax, Operand(rbp, parameter_offset));
// Store it in the context.
int context_offset = Context::SlotOffset(var->index());
__ movq(Operand(rsi, context_offset), rax);
// Update the write barrier. This clobbers rax and rbx.
__ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
}
}
Comment(";;; End allocate local context");
}
// Trace the call.
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
bool LCodeGen::GenerateBody() {
ASSERT(is_generating());
bool emit_instructions = true;
for (current_instruction_ = 0;
!is_aborted() && current_instruction_ < instructions_->length();
current_instruction_++) {
LInstruction* instr = instructions_->at(current_instruction_);
if (instr->IsLabel()) {
LLabel* label = LLabel::cast(instr);
emit_instructions = !label->HasReplacement();
}
if (emit_instructions) {
Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
instr->CompileToNative(this);
}
}
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
return !is_aborted();
}
bool LCodeGen::GenerateJumpTable() {
for (int i = 0; i < jump_table_.length(); i++) {
__ bind(&jump_table_[i].label);
__ Jump(jump_table_[i].address, RelocInfo::RUNTIME_ENTRY);
}
return !is_aborted();
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
if (deferred_.length() > 0) {
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
__ bind(code->entry());
Comment(";;; Deferred code @%d: %s.",
code->instruction_index(),
code->instr()->Mnemonic());
code->Generate();
__ jmp(code->exit());
}
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
safepoints_.Emit(masm(), GetStackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
XMMRegister LCodeGen::ToDoubleRegister(int index) const {
return XMMRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
return op->IsConstantOperand() &&
chunk_->LookupLiteralRepresentation(op).IsInteger32();
}
bool LCodeGen::IsTaggedConstant(LConstantOperand* op) const {
return op->IsConstantOperand() &&
chunk_->LookupLiteralRepresentation(op).IsTagged();
}
int LCodeGen::ToInteger32(LConstantOperand* op) const {
Handle<Object> value = chunk_->LookupLiteral(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
value->Number());
return static_cast<int32_t>(value->Number());
}
double LCodeGen::ToDouble(LConstantOperand* op) const {
Handle<Object> value = chunk_->LookupLiteral(op);
return value->Number();
}
Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
Handle<Object> literal = chunk_->LookupLiteral(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsTagged());
return literal;
}
Operand LCodeGen::ToOperand(LOperand* op) const {
// Does not handle registers. In X64 assembler, plain registers are not
// representable as an Operand.
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
int index = op->index();
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
return Operand(rbp, -(index + 3) * kPointerSize);
} else {
// Incoming parameter. Skip the return address.
return Operand(rbp, -(index - 1) * kPointerSize);
}
}
void LCodeGen::WriteTranslation(LEnvironment* environment,
Translation* translation) {
if (environment == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = environment->values()->length();
// The output frame height does not include the parameters.
int height = translation_size - environment->parameter_count();
WriteTranslation(environment->outer(), translation);
int closure_id = DefineDeoptimizationLiteral(environment->closure());
switch (environment->frame_type()) {
case JS_FUNCTION:
translation->BeginJSFrame(environment->ast_id(), closure_id, height);
break;
case JS_CONSTRUCT:
translation->BeginConstructStubFrame(closure_id, translation_size);
break;
case ARGUMENTS_ADAPTOR:
translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
break;
default:
UNREACHABLE();
}
for (int i = 0; i < translation_size; ++i) {
LOperand* value = environment->values()->at(i);
// spilled_registers_ and spilled_double_registers_ are either
// both NULL or both set.
if (environment->spilled_registers() != NULL && value != NULL) {
if (value->IsRegister() &&
environment->spilled_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(translation,
environment->spilled_registers()[value->index()],
environment->HasTaggedValueAt(i));
} else if (
value->IsDoubleRegister() &&
environment->spilled_double_registers()[value->index()] != NULL) {
translation->MarkDuplicate();
AddToTranslation(
translation,
environment->spilled_double_registers()[value->index()],
false);
}
}
AddToTranslation(translation, value, environment->HasTaggedValueAt(i));
}
}
void LCodeGen::AddToTranslation(Translation* translation,
LOperand* op,
bool is_tagged) {
if (op == NULL) {
// TODO(twuerthinger): Introduce marker operands to indicate that this value
// is not present and must be reconstructed from the deoptimizer. Currently
// this is only used for the arguments object.
translation->StoreArgumentsObject();
} else if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsArgument()) {
ASSERT(is_tagged);
int src_index = GetStackSlotCount() + op->index();
translation->StoreStackSlot(src_index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
XMMRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(literal);
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCodeGeneric(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr,
SafepointMode safepoint_mode,
int argc) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size() - masm()->CallSize(code));
ASSERT(instr != NULL);
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
__ call(code, mode);
RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
// Signal that we don't inline smi code before these stubs in the
// optimizing code generator.
if (code->kind() == Code::BINARY_OP_IC ||
code->kind() == Code::COMPARE_IC) {
__ nop();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
}
void LCodeGen::CallRuntime(const Runtime::Function* function,
int num_arguments,
LInstruction* instr) {
ASSERT(instr != NULL);
ASSERT(instr->HasPointerMap());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
__ CallRuntime(function, num_arguments);
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
}
void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
int argc,
LInstruction* instr) {
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(id);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
Safepoint::DeoptMode mode) {
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
int jsframe_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
if (e->frame_type() == JS_FUNCTION) {
++jsframe_count;
}
}
Translation translation(&translations_, frame_count, jsframe_count);
WriteTranslation(environment, &translation);
int deoptimization_index = deoptimizations_.length();
int pc_offset = masm()->pc_offset();
environment->Register(deoptimization_index,
translation.index(),
(mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
deoptimizations_.Add(environment);
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
if (entry == NULL) {
Abort("bailout was not prepared");
return;
}
if (cc == no_condition) {
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
} else {
// We often have several deopts to the same entry, reuse the last
// jump entry if this is the case.
if (jump_table_.is_empty() ||
jump_table_.last().address != entry) {
jump_table_.Add(JumpTableEntry(entry));
}
__ j(cc, &jump_table_.last().label);
}
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
Handle<DeoptimizationInputData> data =
factory()->NewDeoptimizationInputData(length, TENURED);
Handle<ByteArray> translations = translations_.CreateByteArray();
data->SetTranslationByteArray(*translations);
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
Handle<FixedArray> literals =
factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, Smi::FromInt(env->ast_id()));
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
data->SetPc(i, Smi::FromInt(env->pc_offset()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal);
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepointWithLazyDeopt(
LInstruction* instr, SafepointMode safepoint_mode, int argc) {
if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
} else {
ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
RecordSafepointWithRegisters(
instr->pointer_map(), argc, Safepoint::kLazyDeopt);
}
}
void LCodeGen::RecordSafepoint(
LPointerMap* pointers,
Safepoint::Kind kind,
int arguments,
Safepoint::DeoptMode deopt_mode) {
ASSERT(kind == expected_safepoint_kind_);
const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
kind, arguments, deopt_mode);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index());
} else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
safepoint.DefinePointerRegister(ToRegister(pointer));
}
}
if (kind & Safepoint::kWithRegisters) {
// Register rsi always contains a pointer to the context.
safepoint.DefinePointerRegister(rsi);
}
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
}
void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
LPointerMap empty_pointers(RelocInfo::kNoPosition);
RecordSafepoint(&empty_pointers, deopt_mode);
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
Safepoint::DeoptMode deopt_mode) {
RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
}
void LCodeGen::RecordPosition(int position) {
if (position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
}
void LCodeGen::DoLabel(LLabel* label) {
if (label->is_loop_header()) {
Comment(";;; B%d - LOOP entry", label->block_id());
} else {
Comment(";;; B%d", label->block_id());
}
__ bind(label->label());
current_block_ = label->block_id();
DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
resolver_.Resolve(move);
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
}
void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
DoGap(instr);
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->result()).is(rax));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpConstructResult: {
RegExpConstructResultStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::RegExpExec: {
RegExpExecStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::NumberToString: {
NumberToStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringAdd: {
StringAddStub stub(NO_STRING_ADD_FLAGS);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::TranscendentalCache: {
TranscendentalCacheStub stub(instr->transcendental_type(),
TranscendentalCacheStub::TAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
// Nothing to do.
}
void LCodeGen::DoModI(LModI* instr) {
if (instr->hydrogen()->HasPowerOf2Divisor()) {
Register dividend = ToRegister(instr->InputAt(0));
int32_t divisor =
HConstant::cast(instr->hydrogen()->right())->Integer32Value();
if (divisor < 0) divisor = -divisor;
Label positive_dividend, done;
__ testl(dividend, dividend);
__ j(not_sign, &positive_dividend, Label::kNear);
__ negl(dividend);
__ andl(dividend, Immediate(divisor - 1));
__ negl(dividend);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ j(not_zero, &done, Label::kNear);
DeoptimizeIf(no_condition, instr->environment());
} else {
__ jmp(&done, Label::kNear);
}
__ bind(&positive_dividend);
__ andl(dividend, Immediate(divisor - 1));
__ bind(&done);
} else {
Label done, remainder_eq_dividend, slow, do_subtraction, both_positive;
Register left_reg = ToRegister(instr->InputAt(0));
Register right_reg = ToRegister(instr->InputAt(1));
Register result_reg = ToRegister(instr->result());
ASSERT(left_reg.is(rax));
ASSERT(result_reg.is(rdx));
ASSERT(!right_reg.is(rax));
ASSERT(!right_reg.is(rdx));
// Check for x % 0.
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(right_reg, right_reg);
DeoptimizeIf(zero, instr->environment());
}
__ testl(left_reg, left_reg);
__ j(zero, &remainder_eq_dividend, Label::kNear);
__ j(sign, &slow, Label::kNear);
__ testl(right_reg, right_reg);
__ j(not_sign, &both_positive, Label::kNear);
// The sign of the divisor doesn't matter.
__ neg(right_reg);
__ bind(&both_positive);
// If the dividend is smaller than the nonnegative
// divisor, the dividend is the result.
__ cmpl(left_reg, right_reg);
__ j(less, &remainder_eq_dividend, Label::kNear);
// Check if the divisor is a PowerOfTwo integer.
Register scratch = ToRegister(instr->TempAt(0));
__ movl(scratch, right_reg);
__ subl(scratch, Immediate(1));
__ testl(scratch, right_reg);
__ j(not_zero, &do_subtraction, Label::kNear);
__ andl(left_reg, scratch);
__ jmp(&remainder_eq_dividend, Label::kNear);
__ bind(&do_subtraction);
const int kUnfolds = 3;
// Try a few subtractions of the dividend.
__ movl(scratch, left_reg);
for (int i = 0; i < kUnfolds; i++) {
// Reduce the dividend by the divisor.
__ subl(left_reg, right_reg);
// Check if the dividend is less than the divisor.
__ cmpl(left_reg, right_reg);
__ j(less, &remainder_eq_dividend, Label::kNear);
}
__ movl(left_reg, scratch);
// Slow case, using idiv instruction.
__ bind(&slow);
// Sign extend eax to edx.
// (We are using only the low 32 bits of the values.)
__ cdq();
// Check for (0 % -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label positive_left;
Label done;
__ testl(left_reg, left_reg);
__ j(not_sign, &positive_left, Label::kNear);
__ idivl(right_reg);
// Test the remainder for 0, because then the result would be -0.
__ testl(result_reg, result_reg);
__ j(not_zero, &done, Label::kNear);
DeoptimizeIf(no_condition, instr->environment());
__ bind(&positive_left);
__ idivl(right_reg);
__ bind(&done);
} else {
__ idivl(right_reg);
}
__ jmp(&done, Label::kNear);
__ bind(&remainder_eq_dividend);
__ movl(result_reg, left_reg);
__ bind(&done);
}
}
void LCodeGen::DoDivI(LDivI* instr) {
LOperand* right = instr->InputAt(1);
ASSERT(ToRegister(instr->result()).is(rax));
ASSERT(ToRegister(instr->InputAt(0)).is(rax));
ASSERT(!ToRegister(instr->InputAt(1)).is(rax));
ASSERT(!ToRegister(instr->InputAt(1)).is(rdx));
Register left_reg = rax;
// Check for x / 0.
Register right_reg = ToRegister(right);
if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
__ testl(right_reg, right_reg);
DeoptimizeIf(zero, instr->environment());
}
// Check for (0 / -x) that will produce negative zero.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label left_not_zero;
__ testl(left_reg, left_reg);
__ j(not_zero, &left_not_zero, Label::kNear);
__ testl(right_reg, right_reg);
DeoptimizeIf(sign, instr->environment());
__ bind(&left_not_zero);
}
// Check for (-kMinInt / -1).
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
Label left_not_min_int;
__ cmpl(left_reg, Immediate(kMinInt));
__ j(not_zero, &left_not_min_int, Label::kNear);
__ cmpl(right_reg, Immediate(-1));
DeoptimizeIf(zero, instr->environment());
__ bind(&left_not_min_int);
}
// Sign extend to rdx.
__ cdq();
__ idivl(right_reg);
// Deoptimize if remainder is not 0.
__ testl(rdx, rdx);
DeoptimizeIf(not_zero, instr->environment());
}
void LCodeGen::DoMulI(LMulI* instr) {
Register left = ToRegister(instr->InputAt(0));
LOperand* right = instr->InputAt(1);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ movl(kScratchRegister, left);
}
bool can_overflow =
instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
if (right->IsConstantOperand()) {
int right_value = ToInteger32(LConstantOperand::cast(right));
if (right_value == -1) {
__ negl(left);
} else if (right_value == 0) {
__ xorl(left, left);
} else if (right_value == 2) {
__ addl(left, left);
} else if (!can_overflow) {
// If the multiplication is known to not overflow, we
// can use operations that don't set the overflow flag
// correctly.
switch (right_value) {
case 1:
// Do nothing.
break;
case 3:
__ leal(left, Operand(left, left, times_2, 0));
break;
case 4:
__ shll(left, Immediate(2));
break;
case 5:
__ leal(left, Operand(left, left, times_4, 0));
break;
case 8:
__ shll(left, Immediate(3));
break;
case 9:
__ leal(left, Operand(left, left, times_8, 0));
break;
case 16:
__ shll(left, Immediate(4));
break;
default:
__ imull(left, left, Immediate(right_value));
break;
}
} else {
__ imull(left, left, Immediate(right_value));
}
} else if (right->IsStackSlot()) {
__ imull(left, ToOperand(right));
} else {
__ imull(left, ToRegister(right));
}
if (can_overflow) {
DeoptimizeIf(overflow, instr->environment());
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
__ testl(left, left);
__ j(not_zero, &done, Label::kNear);
if (right->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(right)) <= 0) {
DeoptimizeIf(no_condition, instr->environment());
}
} else if (right->IsStackSlot()) {
__ orl(kScratchRegister, ToOperand(right));
DeoptimizeIf(sign, instr->environment());
} else {
// Test the non-zero operand for negative sign.
__ orl(kScratchRegister, ToRegister(right));
DeoptimizeIf(sign, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsConstantOperand()) {
int right_operand = ToInteger32(LConstantOperand::cast(right));
switch (instr->op()) {
case Token::BIT_AND:
__ andl(ToRegister(left), Immediate(right_operand));
break;
case Token::BIT_OR:
__ orl(ToRegister(left), Immediate(right_operand));
break;
case Token::BIT_XOR:
__ xorl(ToRegister(left), Immediate(right_operand));
break;
default:
UNREACHABLE();
break;
}
} else if (right->IsStackSlot()) {
switch (instr->op()) {
case Token::BIT_AND:
__ andl(ToRegister(left), ToOperand(right));
break;
case Token::BIT_OR:
__ orl(ToRegister(left), ToOperand(right));
break;
case Token::BIT_XOR:
__ xorl(ToRegister(left), ToOperand(right));
break;
default:
UNREACHABLE();
break;
}
} else {
ASSERT(right->IsRegister());
switch (instr->op()) {
case Token::BIT_AND:
__ andl(ToRegister(left), ToRegister(right));
break;
case Token::BIT_OR:
__ orl(ToRegister(left), ToRegister(right));
break;
case Token::BIT_XOR:
__ xorl(ToRegister(left), ToRegister(right));
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
if (right->IsRegister()) {
ASSERT(ToRegister(right).is(rcx));
switch (instr->op()) {
case Token::SAR:
__ sarl_cl(ToRegister(left));
break;
case Token::SHR:
__ shrl_cl(ToRegister(left));
if (instr->can_deopt()) {
__ testl(ToRegister(left), ToRegister(left));
DeoptimizeIf(negative, instr->environment());
}
break;
case Token::SHL:
__ shll_cl(ToRegister(left));
break;
default:
UNREACHABLE();
break;
}
} else {
int value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::SAR:
if (shift_count != 0) {
__ sarl(ToRegister(left), Immediate(shift_count));
}
break;
case Token::SHR:
if (shift_count == 0 && instr->can_deopt()) {
__ testl(ToRegister(left), ToRegister(left));
DeoptimizeIf(negative, instr->environment());
} else {
__ shrl(ToRegister(left), Immediate(shift_count));
}
break;
case Token::SHL:
if (shift_count != 0) {
__ shll(ToRegister(left), Immediate(shift_count));
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
__ subl(ToRegister(left),
Immediate(ToInteger32(LConstantOperand::cast(right))));
} else if (right->IsRegister()) {
__ subl(ToRegister(left), ToRegister(right));
} else {
__ subl(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
ASSERT(instr->result()->IsRegister());
__ Set(ToRegister(instr->result()), instr->value());
}
void LCodeGen::DoConstantD(LConstantD* instr) {
ASSERT(instr->result()->IsDoubleRegister());
XMMRegister res = ToDoubleRegister(instr->result());
double v = instr->value();
uint64_t int_val = BitCast<uint64_t, double>(v);
// Use xor to produce +0.0 in a fast and compact way, but avoid to
// do so if the constant is -0.0.
if (int_val == 0) {
__ xorps(res, res);
} else {
Register tmp = ToRegister(instr->TempAt(0));
__ Set(tmp, int_val);
__ movq(res, tmp);
}
}
void LCodeGen::DoConstantT(LConstantT* instr) {
Handle<Object> value = instr->value();
if (value->IsSmi()) {
__ Move(ToRegister(instr->result()), value);
} else {
__ LoadHeapObject(ToRegister(instr->result()),
Handle<HeapObject>::cast(value));
}
}
void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ movq(result, FieldOperand(array, JSArray::kLengthOffset));
}
void LCodeGen::DoFixedArrayBaseLength(LFixedArrayBaseLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->InputAt(0));
__ movq(result, FieldOperand(array, FixedArrayBase::kLengthOffset));
}
void LCodeGen::DoElementsKind(LElementsKind* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
// Load map into |result|.
__ movq(result, FieldOperand(input, HeapObject::kMapOffset));
// Load the map's "bit field 2" into |result|. We only need the first byte.
__ movzxbq(result, FieldOperand(result, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ and_(result, Immediate(Map::kElementsKindMask));
__ shr(result, Immediate(Map::kElementsKindShift));
}
void LCodeGen::DoValueOf(LValueOf* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
ASSERT(input.is(result));
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(input, &done, Label::kNear);
// If the object is not a value type, return the object.
__ CmpObjectType(input, JS_VALUE_TYPE, kScratchRegister);
__ j(not_equal, &done, Label::kNear);
__ movq(result, FieldOperand(input, JSValue::kValueOffset));
__ bind(&done);
}
void LCodeGen::DoDateField(LDateField* instr) {
Register object = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
Smi* index = instr->index();
Label runtime, done;
ASSERT(object.is(result));
ASSERT(object.is(rax));
#ifdef DEBUG
__ AbortIfSmi(object);
__ CmpObjectType(object, JS_DATE_TYPE, kScratchRegister);
__ Assert(equal, "Trying to get date field from non-date.");
#endif
if (index->value() == 0) {
__ movq(result, FieldOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ movq(kScratchRegister, stamp);
__ cmpq(kScratchRegister, FieldOperand(object,
JSDate::kCacheStampOffset));
__ j(not_equal, &runtime, Label::kNear);
__ movq(result, FieldOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2);
#ifdef _WIN64
__ movq(rcx, object);
__ movq(rdx, index, RelocInfo::NONE);
#else
__ movq(rdi, object);
__ movq(rsi, index, RelocInfo::NONE);
#endif
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ bind(&done);
}
}
void LCodeGen::DoBitNotI(LBitNotI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->Equals(instr->result()));
__ not_(ToRegister(input));
}
void LCodeGen::DoThrow(LThrow* instr) {
__ push(ToRegister(instr->InputAt(0)));
CallRuntime(Runtime::kThrow, 1, instr);
if (FLAG_debug_code) {
Comment("Unreachable code.");
__ int3();
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
ASSERT(left->Equals(instr->result()));
if (right->IsConstantOperand()) {
__ addl(ToRegister(left),
Immediate(ToInteger32(LConstantOperand::cast(right))));
} else if (right->IsRegister()) {
__ addl(ToRegister(left), ToRegister(right));
} else {
__ addl(ToRegister(left), ToOperand(right));
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(overflow, instr->environment());
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
XMMRegister left = ToDoubleRegister(instr->InputAt(0));
XMMRegister right = ToDoubleRegister(instr->InputAt(1));
XMMRegister result = ToDoubleRegister(instr->result());
// All operations except MOD are computed in-place.
ASSERT(instr->op() == Token::MOD || left.is(result));
switch (instr->op()) {
case Token::ADD:
__ addsd(left, right);
break;
case Token::SUB:
__ subsd(left, right);
break;
case Token::MUL:
__ mulsd(left, right);
break;
case Token::DIV:
__ divsd(left, right);
break;
case Token::MOD:
__ PrepareCallCFunction(2);
__ movaps(xmm0, left);
ASSERT(right.is(xmm1));
__ CallCFunction(
ExternalReference::double_fp_operation(Token::MOD, isolate()), 2);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ movaps(result, xmm0);
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(rdx));
ASSERT(ToRegister(instr->InputAt(1)).is(rax));
ASSERT(ToRegister(instr->result()).is(rax));
BinaryOpStub stub(instr->op(), NO_OVERWRITE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ nop(); // Signals no inlined code.
}
int LCodeGen::GetNextEmittedBlock(int block) {
for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
LLabel* label = chunk_->GetLabel(i);
if (!label->HasReplacement()) return i;
}
return -1;
}
void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
int next_block = GetNextEmittedBlock(current_block_);
right_block = chunk_->LookupDestination(right_block);
left_block = chunk_->LookupDestination(left_block);
if (right_block == left_block) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ j(cc, chunk_->GetAssemblyLabel(left_block));
if (cc != always) {
__ jmp(chunk_->GetAssemblyLabel(right_block));
}
}
}
void LCodeGen::DoBranch(LBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Representation r = instr->hydrogen()->value()->representation();
if (r.IsInteger32()) {
Register reg = ToRegister(instr->InputAt(0));
__ testl(reg, reg);
EmitBranch(true_block, false_block, not_zero);
} else if (r.IsDouble()) {
XMMRegister reg = ToDoubleRegister(instr->InputAt(0));
__ xorps(xmm0, xmm0);
__ ucomisd(reg, xmm0);
EmitBranch(true_block, false_block, not_equal);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->InputAt(0));
HType type = instr->hydrogen()->value()->type();
if (type.IsBoolean()) {
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
EmitBranch(true_block, false_block, equal);
} else if (type.IsSmi()) {
__ SmiCompare(reg, Smi::FromInt(0));
EmitBranch(true_block, false_block, not_equal);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
// Avoid deopts in the case where we've never executed this path before.
if (expected.IsEmpty()) expected = ToBooleanStub::all_types();
if (expected.Contains(ToBooleanStub::UNDEFINED)) {
// undefined -> false.
__ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
__ j(equal, false_label);
}
if (expected.Contains(ToBooleanStub::BOOLEAN)) {
// true -> true.
__ CompareRoot(reg, Heap::kTrueValueRootIndex);
__ j(equal, true_label);
// false -> false.
__ CompareRoot(reg, Heap::kFalseValueRootIndex);
__ j(equal, false_label);
}
if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
// 'null' -> false.
__ CompareRoot(reg, Heap::kNullValueRootIndex);
__ j(equal, false_label);
}
if (expected.Contains(ToBooleanStub::SMI)) {
// Smis: 0 -> false, all other -> true.
__ Cmp(reg, Smi::FromInt(0));
__ j(equal, false_label);
__ JumpIfSmi(reg, true_label);
} else if (expected.NeedsMap()) {
// If we need a map later and have a Smi -> deopt.
__ testb(reg, Immediate(kSmiTagMask));
DeoptimizeIf(zero, instr->environment());
}
const Register map = kScratchRegister;
if (expected.NeedsMap()) {
__ movq(map, FieldOperand(reg, HeapObject::kMapOffset));
if (expected.CanBeUndetectable()) {
// Undetectable -> false.
__ testb(FieldOperand(map, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, false_label);
}
}
if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
// spec object -> true.
__ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
__ j(above_equal, true_label);
}
if (expected.Contains(ToBooleanStub::STRING)) {
// String value -> false iff empty.
Label not_string;
__ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
__ j(above_equal, ¬_string, Label::kNear);
__ cmpq(FieldOperand(reg, String::kLengthOffset), Immediate(0));
__ j(not_zero, true_label);
__ jmp(false_label);
__ bind(¬_string);
}
if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
// heap number -> false iff +0, -0, or NaN.
Label not_heap_number;
__ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, ¬_heap_number, Label::kNear);
__ xorps(xmm0, xmm0);
__ ucomisd(xmm0, FieldOperand(reg, HeapNumber::kValueOffset));
__ j(zero, false_label);
__ jmp(true_label);
__ bind(¬_heap_number);
}
// We've seen something for the first time -> deopt.
DeoptimizeIf(no_condition, instr->environment());
}
}
}
void LCodeGen::EmitGoto(int block) {
block = chunk_->LookupDestination(block);
int next_block = GetNextEmittedBlock(current_block_);
if (block != next_block) {
__ jmp(chunk_->GetAssemblyLabel(block));
}
}
void LCodeGen::DoGoto(LGoto* instr) {
EmitGoto(instr->block_id());
}
inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = equal;
break;
case Token::LT:
cond = is_unsigned ? below : less;
break;
case Token::GT:
cond = is_unsigned ? above : greater;
break;
case Token::LTE:
cond = is_unsigned ? below_equal : less_equal;
break;
case Token::GTE:
cond = is_unsigned ? above_equal : greater_equal;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
LOperand* left = instr->InputAt(0);
LOperand* right = instr->InputAt(1);
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
Condition cc = TokenToCondition(instr->op(), instr->is_double());
if (left->IsConstantOperand() && right->IsConstantOperand()) {
// We can statically evaluate the comparison.
double left_val = ToDouble(LConstantOperand::cast(left));
double right_val = ToDouble(LConstantOperand::cast(right));
int next_block =
EvalComparison(instr->op(), left_val, right_val) ? true_block
: false_block;
EmitGoto(next_block);
} else {
if (instr->is_double()) {
// Don't base result on EFLAGS when a NaN is involved. Instead
// jump to the false block.
__ ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
__ j(parity_even, chunk_->GetAssemblyLabel(false_block));
} else {
int32_t value;
if (right->IsConstantOperand()) {
value = ToInteger32(LConstantOperand::cast(right));
__ cmpl(ToRegister(left), Immediate(value));
} else if (left->IsConstantOperand()) {
value = ToInteger32(LConstantOperand::cast(left));
if (right->IsRegister()) {
__ cmpl(ToRegister(right), Immediate(value));
} else {
__ cmpl(ToOperand(right), Immediate(value));
}
// We transposed the operands. Reverse the condition.
cc = ReverseCondition(cc);
} else {
if (right->IsRegister()) {
__ cmpl(ToRegister(left), ToRegister(right));
} else {
__ cmpl(ToRegister(left), ToOperand(right));
}
}
}
EmitBranch(true_block, false_block, cc);
}
}
void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
Register left = ToRegister(instr->InputAt(0));
Register right = ToRegister(instr->InputAt(1));
int false_block = chunk_->LookupDestination(instr->false_block_id());
int true_block = chunk_->LookupDestination(instr->true_block_id());
__ cmpq(left, right);
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::DoCmpConstantEqAndBranch(LCmpConstantEqAndBranch* instr) {
Register left = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ cmpq(left, Immediate(instr->hydrogen()->right()));
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::DoIsNilAndBranch(LIsNilAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
int false_block = chunk_->LookupDestination(instr->false_block_id());
// If the expression is known to be untagged or a smi, then it's definitely
// not null, and it can't be a an undetectable object.
if (instr->hydrogen()->representation().IsSpecialization() ||
instr->hydrogen()->type().IsSmi()) {
EmitGoto(false_block);
return;
}
int true_block = chunk_->LookupDestination(instr->true_block_id());
Heap::RootListIndex nil_value = instr->nil() == kNullValue ?
Heap::kNullValueRootIndex :
Heap::kUndefinedValueRootIndex;
__ CompareRoot(reg, nil_value);
if (instr->kind() == kStrictEquality) {
EmitBranch(true_block, false_block, equal);
} else {
Heap::RootListIndex other_nil_value = instr->nil() == kNullValue ?
Heap::kUndefinedValueRootIndex :
Heap::kNullValueRootIndex;
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ j(equal, true_label);
__ CompareRoot(reg, other_nil_value);
__ j(equal, true_label);
__ JumpIfSmi(reg, false_label);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
Register scratch = ToRegister(instr->TempAt(0));
__ movq(scratch, FieldOperand(reg, HeapObject::kMapOffset));
__ testb(FieldOperand(scratch, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
EmitBranch(true_block, false_block, not_zero);
}
}
Condition LCodeGen::EmitIsObject(Register input,
Label* is_not_object,
Label* is_object) {
ASSERT(!input.is(kScratchRegister));
__ JumpIfSmi(input, is_not_object);
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ j(equal, is_object);
__ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
// Undetectable objects behave like undefined.
__ testb(FieldOperand(kScratchRegister, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, is_not_object);
__ movzxbl(kScratchRegister,
FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
__ cmpb(kScratchRegister, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ j(below, is_not_object);
__ cmpb(kScratchRegister, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
return below_equal;
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition true_cond = EmitIsObject(reg, false_label, true_label);
EmitBranch(true_block, false_block, true_cond);
}
Condition LCodeGen::EmitIsString(Register input,
Register temp1,
Label* is_not_string) {
__ JumpIfSmi(input, is_not_string);
Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
return cond;
}
void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition true_cond = EmitIsString(reg, temp, false_label);
EmitBranch(true_block, false_block, true_cond);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Condition is_smi;
if (instr->InputAt(0)->IsRegister()) {
Register input = ToRegister(instr->InputAt(0));
is_smi = masm()->CheckSmi(input);
} else {
Operand input = ToOperand(instr->InputAt(0));
is_smi = masm()->CheckSmi(input);
}
EmitBranch(true_block, false_block, is_smi);
}
void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ JumpIfSmi(input, chunk_->GetAssemblyLabel(false_block));
__ movq(temp, FieldOperand(input, HeapObject::kMapOffset));
__ testb(FieldOperand(temp, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
EmitBranch(true_block, false_block, not_zero);
}
void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
Token::Value op = instr->op();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = TokenToCondition(op, false);
__ testq(rax, rax);
EmitBranch(true_block, false_block, condition);
}
static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == FIRST_TYPE) return to;
ASSERT(from == to || to == LAST_TYPE);
return from;
}
static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
InstanceType from = instr->from();
InstanceType to = instr->to();
if (from == to) return equal;
if (to == LAST_TYPE) return above_equal;
if (from == FIRST_TYPE) return below_equal;
UNREACHABLE();
return equal;
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ JumpIfSmi(input, false_label);
__ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
EmitBranch(true_block, false_block, BranchCondition(instr->hydrogen()));
}
void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
Register input = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (FLAG_debug_code) {
__ AbortIfNotString(input);
}
__ movl(result, FieldOperand(input, String::kHashFieldOffset));
ASSERT(String::kHashShift >= kSmiTagSize);
__ IndexFromHash(result, result);
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ testl(FieldOperand(input, String::kHashFieldOffset),
Immediate(String::kContainsCachedArrayIndexMask));
EmitBranch(true_block, false_block, equal);
}
// Branches to a label or falls through with the answer in the z flag.
// Trashes the temp register.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String> class_name,
Register input,
Register temp,
Register temp2) {
ASSERT(!input.is(temp));
ASSERT(!input.is(temp2));
ASSERT(!temp.is(temp2));
__ JumpIfSmi(input, is_false);
if (class_name->IsEqualTo(CStrVector("Function"))) {
// Assuming the following assertions, we can use the same compares to test
// for both being a function type and being in the object type range.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_SPEC_OBJECT_TYPE - 1);
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
__ j(below, is_false);
__ j(equal, is_true);
__ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
__ j(equal, is_true);
} else {
// Faster code path to avoid two compares: subtract lower bound from the
// actual type and do a signed compare with the width of the type range.
__ movq(temp, FieldOperand(input, HeapObject::kMapOffset));
__ movzxbl(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
__ subq(temp2, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ cmpq(temp2, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ j(above, is_false);
}
// Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
// Check if the constructor in the map is a function.
__ movq(temp, FieldOperand(temp, Map::kConstructorOffset));
// Objects with a non-function constructor have class 'Object'.
__ CmpObjectType(temp, JS_FUNCTION_TYPE, kScratchRegister);
if (class_name->IsEqualTo(CStrVector("Object"))) {
__ j(not_equal, is_true);
} else {
__ j(not_equal, is_false);
}
// temp now contains the constructor function. Grab the
// instance class name from there.
__ movq(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
__ movq(temp, FieldOperand(temp,
SharedFunctionInfo::kInstanceClassNameOffset));
// The class name we are testing against is a symbol because it's a literal.
// The name in the constructor is a symbol because of the way the context is
// booted. This routine isn't expected to work for random API-created
// classes and it doesn't have to because you can't access it with natives
// syntax. Since both sides are symbols it is sufficient to use an identity
// comparison.
ASSERT(class_name->IsSymbol());
__ Cmp(temp, class_name);
// End with the answer in the z flag.
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
Register temp = ToRegister(instr->TempAt(0));
Register temp2 = ToRegister(instr->TempAt(1));
Handle<String> class_name = instr->hydrogen()->class_name();
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
EmitClassOfTest(true_label, false_label, class_name, input, temp, temp2);
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->InputAt(0));
int true_block = instr->true_block_id();
int false_block = instr->false_block_id();
__ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
InstanceofStub stub(InstanceofStub::kNoFlags);
__ push(ToRegister(instr->InputAt(0)));
__ push(ToRegister(instr->InputAt(1)));
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
Label true_value, done;
__ testq(rax, rax);
__ j(zero, &true_value, Label::kNear);
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
class DeferredInstanceOfKnownGlobal: public LDeferredCode {
public:
DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
LInstanceOfKnownGlobal* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
}
virtual LInstruction* instr() { return instr_; }
Label* map_check() { return &map_check_; }
private:
LInstanceOfKnownGlobal* instr_;
Label map_check_;
};
DeferredInstanceOfKnownGlobal* deferred;
deferred = new DeferredInstanceOfKnownGlobal(this, instr);
Label done, false_result;
Register object = ToRegister(instr->InputAt(0));
// A Smi is not an instance of anything.
__ JumpIfSmi(object, &false_result);
// This is the inlined call site instanceof cache. The two occurences of the
// hole value will be patched to the last map/result pair generated by the
// instanceof stub.
Label cache_miss;
// Use a temp register to avoid memory operands with variable lengths.
Register map = ToRegister(instr->TempAt(0));
__ movq(map, FieldOperand(object, HeapObject::kMapOffset));
__ bind(deferred->map_check()); // Label for calculating code patching.
Handle<JSGlobalPropertyCell> cache_cell =
factory()->NewJSGlobalPropertyCell(factory()->the_hole_value());
__ movq(kScratchRegister, cache_cell, RelocInfo::GLOBAL_PROPERTY_CELL);
__ cmpq(map, Operand(kScratchRegister, 0));
__ j(not_equal, &cache_miss, Label::kNear);
// Patched to load either true or false.
__ LoadRoot(ToRegister(instr->result()), Heap::kTheHoleValueRootIndex);
#ifdef DEBUG
// Check that the code size between patch label and patch sites is invariant.
Label end_of_patched_code;
__ bind(&end_of_patched_code);
ASSERT(true);
#endif
__ jmp(&done);
// The inlined call site cache did not match. Check for null and string
// before calling the deferred code.
__ bind(&cache_miss); // Null is not an instance of anything.
__ CompareRoot(object, Heap::kNullValueRootIndex);
__ j(equal, &false_result, Label::kNear);
// String values are not instances of anything.
__ JumpIfNotString(object, kScratchRegister, deferred->entry());
__ bind(&false_result);
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
__ bind(deferred->exit());
__ bind(&done);
}
void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
Label* map_check) {
{
PushSafepointRegistersScope scope(this);
InstanceofStub::Flags flags = static_cast<InstanceofStub::Flags>(
InstanceofStub::kNoFlags | InstanceofStub::kCallSiteInlineCheck);
InstanceofStub stub(flags);
__ push(ToRegister(instr->InputAt(0)));
__ PushHeapObject(instr->function());
static const int kAdditionalDelta = 10;
int delta =
masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
ASSERT(delta >= 0);
__ push_imm32(delta);
// We are pushing three values on the stack but recording a
// safepoint with two arguments because stub is going to
// remove the third argument from the stack before jumping
// to instanceof builtin on the slow path.
CallCodeGeneric(stub.GetCode(),
RelocInfo::CODE_TARGET,
instr,
RECORD_SAFEPOINT_WITH_REGISTERS,
2);
ASSERT(delta == masm_->SizeOfCodeGeneratedSince(map_check));
ASSERT(instr->HasDeoptimizationEnvironment());
LEnvironment* env = instr->deoptimization_environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
// Move result to a register that survives the end of the
// PushSafepointRegisterScope.
__ movq(kScratchRegister, rax);
}
__ testq(kScratchRegister, kScratchRegister);
Label load_false;
Label done;
__ j(not_zero, &load_false);
__ LoadRoot(rax, Heap::kTrueValueRootIndex);
__ jmp(&done);
__ bind(&load_false);
__ LoadRoot(rax, Heap::kFalseValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoCmpT(LCmpT* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = TokenToCondition(op, false);
Label true_value, done;
__ testq(rax, rax);
__ j(condition, &true_value, Label::kNear);
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
__ jmp(&done, Label::kNear);
__ bind(&true_value);
__ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace) {
// Preserve the return value on the stack and rely on the runtime
// call to return the value in the same register.
__ push(rax);
__ CallRuntime(Runtime::kTraceExit, 1);
}
__ movq(rsp, rbp);
__ pop(rbp);
__ Ret((GetParameterCount() + 1) * kPointerSize, rcx);
}
void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
Register result = ToRegister(instr->result());
__ LoadGlobalCell(result, instr->hydrogen()->cell());
if (instr->hydrogen()->RequiresHoleCheck()) {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(equal, instr->environment());
}
}
void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
ASSERT(ToRegister(instr->global_object()).is(rax));
ASSERT(ToRegister(instr->result()).is(rax));
__ Move(rcx, instr->name());
RelocInfo::Mode mode = instr->for_typeof() ? RelocInfo::CODE_TARGET :
RelocInfo::CODE_TARGET_CONTEXT;
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, mode, instr);
}
void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
Register value = ToRegister(instr->value());
Handle<JSGlobalPropertyCell> cell_handle = instr->hydrogen()->cell();
// If the cell we are storing to contains the hole it could have
// been deleted from the property dictionary. In that case, we need
// to update the property details in the property dictionary to mark
// it as no longer deleted. We deoptimize in that case.
if (instr->hydrogen()->RequiresHoleCheck()) {
// We have a temp because CompareRoot might clobber kScratchRegister.
Register cell = ToRegister(instr->TempAt(0));
ASSERT(!value.is(cell));
__ movq(cell, cell_handle, RelocInfo::GLOBAL_PROPERTY_CELL);
__ CompareRoot(Operand(cell, 0), Heap::kTheHoleValueRootIndex);
DeoptimizeIf(equal, instr->environment());
// Store the value.
__ movq(Operand(cell, 0), value);
} else {
// Store the value.
__ movq(kScratchRegister, cell_handle, RelocInfo::GLOBAL_PROPERTY_CELL);
__ movq(Operand(kScratchRegister, 0), value);
}
// Cells are always rescanned, so no write barrier here.
}
void LCodeGen::DoStoreGlobalGeneric(LStoreGlobalGeneric* instr) {
ASSERT(ToRegister(instr->global_object()).is(rdx));
ASSERT(ToRegister(instr->value()).is(rax));
__ Move(rcx, instr->name());
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
? isolate()->builtins()->StoreIC_Initialize_Strict()
: isolate()->builtins()->StoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET_CONTEXT, instr);
}
void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ movq(result, ContextOperand(context, instr->slot_index()));
if (instr->hydrogen()->RequiresHoleCheck()) {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr->environment());
} else {
Label is_not_hole;
__ j(not_equal, &is_not_hole, Label::kNear);
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ bind(&is_not_hole);
}
}
}
void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
Register context = ToRegister(instr->context());
Register value = ToRegister(instr->value());
Operand target = ContextOperand(context, instr->slot_index());
Label skip_assignment;
if (instr->hydrogen()->RequiresHoleCheck()) {
__ CompareRoot(target, Heap::kTheHoleValueRootIndex);
if (instr->hydrogen()->DeoptimizesOnHole()) {
DeoptimizeIf(equal, instr->environment());
} else {
__ j(not_equal, &skip_assignment);
}
}
__ movq(target, value);
if (instr->hydrogen()->NeedsWriteBarrier()) {
HType type = instr->hydrogen()->value()->type();
SmiCheck check_needed =
type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
int offset = Context::SlotOffset(instr->slot_index());
Register scratch = ToRegister(instr->TempAt(0));
__ RecordWriteContextSlot(context,
offset,
value,
scratch,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
__ bind(&skip_assignment);
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
Register object = ToRegister(instr->InputAt(0));
Register result = ToRegister(instr->result());
if (instr->hydrogen()->is_in_object()) {
__ movq(result, FieldOperand(object, instr->hydrogen()->offset()));
} else {
__ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
__ movq(result, FieldOperand(result, instr->hydrogen()->offset()));
}
}
void LCodeGen::EmitLoadFieldOrConstantFunction(Register result,
Register object,
Handle<Map> type,
Handle<String> name) {
LookupResult lookup(isolate());
type->LookupInDescriptors(NULL, *name, &lookup);
ASSERT(lookup.IsFound() &&
(lookup.type() == FIELD || lookup.type() == CONSTANT_FUNCTION));
if (lookup.type() == FIELD) {
int index = lookup.GetLocalFieldIndexFromMap(*type);
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
__ movq(result, FieldOperand(object, offset + type->instance_size()));
} else {
// Non-negative property indices are in the properties array.
__ movq(result, FieldOperand(object, JSObject::kPropertiesOffset));
__ movq(result, FieldOperand(result, offset + FixedArray::kHeaderSize));
}
} else {
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*type));
__ LoadHeapObject(result, function);
}
}
void LCodeGen::DoLoadNamedFieldPolymorphic(LLoadNamedFieldPolymorphic* instr) {
Register object = ToRegister(instr->object());
Register result = ToRegister(instr->result());
int map_count = instr->hydrogen()->types()->length();
Handle<String> name = instr->hydrogen()->name();
if (map_count == 0) {
ASSERT(instr->hydrogen()->need_generic());
__ Move(rcx, instr->hydrogen()->name());
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
} else {
Label done;
for (int i = 0; i < map_count - 1; ++i) {
Handle<Map> map = instr->hydrogen()->types()->at(i);
Label next;
__ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
__ j(not_equal, &next, Label::kNear);
EmitLoadFieldOrConstantFunction(result, object, map, name);
__ jmp(&done, Label::kNear);
__ bind(&next);
}
Handle<Map> map = instr->hydrogen()->types()->last();
__ Cmp(FieldOperand(object, HeapObject::kMapOffset), map);
if (instr->hydrogen()->need_generic()) {
Label generic;
__ j(not_equal, &generic, Label::kNear);
EmitLoadFieldOrConstantFunction(result, object, map, name);
__ jmp(&done, Label::kNear);
__ bind(&generic);
__ Move(rcx, instr->hydrogen()->name());
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
} else {
DeoptimizeIf(not_equal, instr->environment());
EmitLoadFieldOrConstantFunction(result, object, map, name);
}
__ bind(&done);
}
}
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(rax));
ASSERT(ToRegister(instr->result()).is(rax));
__ Move(rcx, instr->name());
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Check that the function really is a function.
__ CmpObjectType(function, JS_FUNCTION_TYPE, result);
DeoptimizeIf(not_equal, instr->environment());
// Check whether the function has an instance prototype.
Label non_instance;
__ testb(FieldOperand(result, Map::kBitFieldOffset),
Immediate(1 << Map::kHasNonInstancePrototype));
__ j(not_zero, &non_instance, Label::kNear);
// Get the prototype or initial map from the function.
__ movq(result,
FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(equal, instr->environment());
// If the function does not have an initial map, we're done.
Label done;
__ CmpObjectType(result, MAP_TYPE, kScratchRegister);
__ j(not_equal, &done, Label::kNear);
// Get the prototype from the initial map.
__ movq(result, FieldOperand(result, Map::kPrototypeOffset));
__ jmp(&done, Label::kNear);
// Non-instance prototype: Fetch prototype from constructor field
// in the function's map.
__ bind(&non_instance);
__ movq(result, FieldOperand(result, Map::kConstructorOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadElements(LLoadElements* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
__ movq(result, FieldOperand(input, JSObject::kElementsOffset));
if (FLAG_debug_code) {
Label done, ok, fail;
__ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
Heap::kFixedArrayMapRootIndex);
__ j(equal, &done, Label::kNear);
__ CompareRoot(FieldOperand(result, HeapObject::kMapOffset),
Heap::kFixedCOWArrayMapRootIndex);
__ j(equal, &done, Label::kNear);
Register temp((result.is(rax)) ? rbx : rax);
__ push(temp);
__ movq(temp, FieldOperand(result, HeapObject::kMapOffset));
__ movzxbq(temp, FieldOperand(temp, Map::kBitField2Offset));
__ and_(temp, Immediate(Map::kElementsKindMask));
__ shr(temp, Immediate(Map::kElementsKindShift));
__ cmpl(temp, Immediate(FAST_ELEMENTS));
__ j(equal, &ok, Label::kNear);
__ cmpl(temp, Immediate(FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND));
__ j(less, &fail, Label::kNear);
__ cmpl(temp, Immediate(LAST_EXTERNAL_ARRAY_ELEMENTS_KIND));
__ j(less_equal, &ok, Label::kNear);
__ bind(&fail);
__ Abort("Check for fast or external elements failed");
__ bind(&ok);
__ pop(temp);
__ bind(&done);
}
}
void LCodeGen::DoLoadExternalArrayPointer(
LLoadExternalArrayPointer* instr) {
Register result = ToRegister(instr->result());
Register input = ToRegister(instr->InputAt(0));
__ movq(result, FieldOperand(input,
ExternalPixelArray::kExternalPointerOffset));
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Register arguments = ToRegister(instr->arguments());
Register length = ToRegister(instr->length());
Register result = ToRegister(instr->result());
if (instr->index()->IsRegister()) {
__ subl(length, ToRegister(instr->index()));
} else {
__ subl(length, ToOperand(instr->index()));
}
DeoptimizeIf(below_equal, instr->environment());
// There are two words between the frame pointer and the last argument.
// Subtracting from length accounts for one of them add one more.
__ movq(result, Operand(arguments, length, times_pointer_size, kPointerSize));
}
void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
Register result = ToRegister(instr->result());
// Load the result.
__ movq(result,
BuildFastArrayOperand(instr->elements(), instr->key(),
FAST_ELEMENTS,
FixedArray::kHeaderSize - kHeapObjectTag));
// Check for the hole value.
if (instr->hydrogen()->RequiresHoleCheck()) {
__ CompareRoot(result, Heap::kTheHoleValueRootIndex);
DeoptimizeIf(equal, instr->environment());
}
}
void LCodeGen::DoLoadKeyedFastDoubleElement(
LLoadKeyedFastDoubleElement* instr) {
XMMRegister result(ToDoubleRegister(instr->result()));
int offset = FixedDoubleArray::kHeaderSize - kHeapObjectTag +
sizeof(kHoleNanLower32);
Operand hole_check_operand = BuildFastArrayOperand(
instr->elements(),
instr->key(),
FAST_DOUBLE_ELEMENTS,
offset);
__ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
DeoptimizeIf(equal, instr->environment());
Operand double_load_operand = BuildFastArrayOperand(
instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS,
FixedDoubleArray::kHeaderSize - kHeapObjectTag);
__ movsd(result, double_load_operand);
}
Operand LCodeGen::BuildFastArrayOperand(
LOperand* elements_pointer,
LOperand* key,
ElementsKind elements_kind,
uint32_t offset) {
Register elements_pointer_reg = ToRegister(elements_pointer);
int shift_size = ElementsKindToShiftSize(elements_kind);
if (key->IsConstantOperand()) {
int constant_value = ToInteger32(LConstantOperand::cast(key));
if (constant_value & 0xF0000000) {
Abort("array index constant value too big");
}
return Operand(elements_pointer_reg,
constant_value * (1 << shift_size) + offset);
} else {
ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
return Operand(elements_pointer_reg, ToRegister(key),
scale_factor, offset);
}
}
void LCodeGen::DoLoadKeyedSpecializedArrayElement(
LLoadKeyedSpecializedArrayElement* instr) {
ElementsKind elements_kind = instr->elements_kind();
Operand operand(BuildFastArrayOperand(instr->external_pointer(),
instr->key(), elements_kind, 0));
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
XMMRegister result(ToDoubleRegister(instr->result()));
__ movss(result, operand);
__ cvtss2sd(result, result);
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ movsd(ToDoubleRegister(instr->result()), operand);
} else {
Register result(ToRegister(instr->result()));
switch (elements_kind) {
case EXTERNAL_BYTE_ELEMENTS:
__ movsxbq(result, operand);
break;
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case EXTERNAL_PIXEL_ELEMENTS:
__ movzxbq(result, operand);
break;
case EXTERNAL_SHORT_ELEMENTS:
__ movsxwq(result, operand);
break;
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ movzxwq(result, operand);
break;
case EXTERNAL_INT_ELEMENTS:
__ movsxlq(result, operand);
break;
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ movl(result, operand);
__ testl(result, result);
// TODO(danno): we could be more clever here, perhaps having a special
// version of the stub that detects if the overflow case actually
// happens, and generate code that returns a double rather than int.
DeoptimizeIf(negative, instr->environment());
break;
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(rdx));
ASSERT(ToRegister(instr->key()).is(rax));
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Register result = ToRegister(instr->result());
// Check for arguments adapter frame.
Label done, adapted;
__ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ Cmp(Operand(result, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adapted, Label::kNear);
// No arguments adaptor frame.
__ movq(result, rbp);
__ jmp(&done, Label::kNear);
// Arguments adaptor frame present.
__ bind(&adapted);
__ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// Result is the frame pointer for the frame if not adapted and for the real
// frame below the adaptor frame if adapted.
__ bind(&done);
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Register result = ToRegister(instr->result());
Label done;
// If no arguments adaptor frame the number of arguments is fixed.
if (instr->InputAt(0)->IsRegister()) {
__ cmpq(rbp, ToRegister(instr->InputAt(0)));
} else {
__ cmpq(rbp, ToOperand(instr->InputAt(0)));
}
__ movl(result, Immediate(scope()->num_parameters()));
__ j(equal, &done, Label::kNear);
// Arguments adaptor frame present. Get argument length from there.
__ movq(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiToInteger32(result,
Operand(result,
ArgumentsAdaptorFrameConstants::kLengthOffset));
// Argument length is in result register.
__ bind(&done);
}
void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
// If the receiver is null or undefined, we have to pass the global
// object as a receiver to normal functions. Values have to be
// passed unchanged to builtins and strict-mode functions.
Label global_object, receiver_ok;
// Do not transform the receiver to object for strict mode
// functions.
__ movq(kScratchRegister,
FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
__ testb(FieldOperand(kScratchRegister,
SharedFunctionInfo::kStrictModeByteOffset),
Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ j(not_equal, &receiver_ok, Label::kNear);
// Do not transform the receiver to object for builtins.
__ testb(FieldOperand(kScratchRegister,
SharedFunctionInfo::kNativeByteOffset),
Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
__ j(not_equal, &receiver_ok, Label::kNear);
// Normal function. Replace undefined or null with global receiver.
__ CompareRoot(receiver, Heap::kNullValueRootIndex);
__ j(equal, &global_object, Label::kNear);
__ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
__ j(equal, &global_object, Label::kNear);
// The receiver should be a JS object.
Condition is_smi = __ CheckSmi(receiver);
DeoptimizeIf(is_smi, instr->environment());
__ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, kScratchRegister);
DeoptimizeIf(below, instr->environment());
__ jmp(&receiver_ok, Label::kNear);
__ bind(&global_object);
// TODO(kmillikin): We have a hydrogen value for the global object. See
// if it's better to use it than to explicitly fetch it from the context
// here.
__ movq(receiver, ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(receiver,
FieldOperand(receiver, JSGlobalObject::kGlobalReceiverOffset));
__ bind(&receiver_ok);
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Register receiver = ToRegister(instr->receiver());
Register function = ToRegister(instr->function());
Register length = ToRegister(instr->length());
Register elements = ToRegister(instr->elements());
ASSERT(receiver.is(rax)); // Used for parameter count.
ASSERT(function.is(rdi)); // Required by InvokeFunction.
ASSERT(ToRegister(instr->result()).is(rax));
// Copy the arguments to this function possibly from the
// adaptor frame below it.
const uint32_t kArgumentsLimit = 1 * KB;
__ cmpq(length, Immediate(kArgumentsLimit));
DeoptimizeIf(above, instr->environment());
__ push(receiver);
__ movq(receiver, length);
// Loop through the arguments pushing them onto the execution
// stack.
Label invoke, loop;
// length is a small non-negative integer, due to the test above.
__ testl(length, length);
__ j(zero, &invoke, Label::kNear);
__ bind(&loop);
__ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
__ decl(length);
__ j(not_zero, &loop);
// Invoke the function.
__ bind(&invoke);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
SafepointGenerator safepoint_generator(
this, pointers, Safepoint::kLazyDeopt);
ParameterCount actual(rax);
__ InvokeFunction(function, actual, CALL_FUNCTION,
safepoint_generator, CALL_AS_METHOD);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->InputAt(0);
EmitPushTaggedOperand(argument);
}
void LCodeGen::DoThisFunction(LThisFunction* instr) {
Register result = ToRegister(instr->result());
__ LoadHeapObject(result, instr->hydrogen()->closure());
}
void LCodeGen::DoContext(LContext* instr) {
Register result = ToRegister(instr->result());
__ movq(result, rsi);
}
void LCodeGen::DoOuterContext(LOuterContext* instr) {
Register context = ToRegister(instr->context());
Register result = ToRegister(instr->result());
__ movq(result,
Operand(context, Context::SlotOffset(Context::PREVIOUS_INDEX)));
}
void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
__ push(rsi); // The context is the first argument.
__ PushHeapObject(instr->hydrogen()->pairs());
__ Push(Smi::FromInt(instr->hydrogen()->flags()));
CallRuntime(Runtime::kDeclareGlobals, 3, instr);
}
void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
Register result = ToRegister(instr->result());
__ movq(result, GlobalObjectOperand());
}
void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
Register global = ToRegister(instr->global());
Register result = ToRegister(instr->result());
__ movq(result, FieldOperand(global, GlobalObject::kGlobalReceiverOffset));
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int arity,
LInstruction* instr,
CallKind call_kind) {
bool can_invoke_directly = !function->NeedsArgumentsAdaption() ||
function->shared()->formal_parameter_count() == arity;
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
if (can_invoke_directly) {
__ LoadHeapObject(rdi, function);
// Change context if needed.
bool change_context =
(info()->closure()->context() != function->context()) ||
scope()->contains_with() ||
(scope()->num_heap_slots() > 0);
if (change_context) {
__ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
}
// Set rax to arguments count if adaption is not needed. Assumes that rax
// is available to write to at this point.
if (!function->NeedsArgumentsAdaption()) {
__ Set(rax, arity);
}
// Invoke function.
__ SetCallKind(rcx, call_kind);
if (*function == *info()->closure()) {
__ CallSelf();
} else {
__ call(FieldOperand(rdi, JSFunction::kCodeEntryOffset));
}
// Set up deoptimization.
RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
} else {
// We need to adapt arguments.
SafepointGenerator generator(
this, pointers, Safepoint::kLazyDeopt);
ParameterCount count(arity);
__ InvokeFunction(function, count, CALL_FUNCTION, generator, call_kind);
}
// Restore context.
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
ASSERT(ToRegister(instr->result()).is(rax));
CallKnownFunction(instr->function(),
instr->arity(),
instr,
CALL_AS_METHOD);
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
Register input_reg = ToRegister(instr->InputAt(0));
__ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
DeoptimizeIf(not_equal, instr->environment());
Label done;
Register tmp = input_reg.is(rax) ? rcx : rax;
Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
// Preserve the value of all registers.
PushSafepointRegistersScope scope(this);
Label negative;
__ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive, just
// return it. We do not need to patch the stack since |input| and
// |result| are the same register and |input| will be restored
// unchanged by popping safepoint registers.
__ testl(tmp, Immediate(HeapNumber::kSignMask));
__ j(not_zero, &negative);
__ jmp(&done);
__ bind(&negative);
Label allocated, slow;
__ AllocateHeapNumber(tmp, tmp2, &slow);
__ jmp(&allocated);
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
// Set the pointer to the new heap number in tmp.
if (!tmp.is(rax)) {
__ movq(tmp, rax);
}
// Restore input_reg after call to runtime.
__ LoadFromSafepointRegisterSlot(input_reg, input_reg);
__ bind(&allocated);
__ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ shl(tmp2, Immediate(1));
__ shr(tmp2, Immediate(1));
__ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
__ StoreToSafepointRegisterSlot(input_reg, tmp);
__ bind(&done);
}
void LCodeGen::EmitIntegerMathAbs(LUnaryMathOperation* instr) {
Register input_reg = ToRegister(instr->InputAt(0));
__ testl(input_reg, input_reg);
Label is_positive;
__ j(not_sign, &is_positive);
__ negl(input_reg); // Sets flags.
DeoptimizeIf(negative, instr->environment());
__ bind(&is_positive);
}
void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
// Class for deferred case.
class DeferredMathAbsTaggedHeapNumber: public LDeferredCode {
public:
DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
LUnaryMathOperation* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() {
codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
}
virtual LInstruction* instr() { return instr_; }
private:
LUnaryMathOperation* instr_;
};
ASSERT(instr->InputAt(0)->Equals(instr->result()));
Representation r = instr->hydrogen()->value()->representation();
if (r.IsDouble()) {
XMMRegister scratch = xmm0;
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
__ xorps(scratch, scratch);
__ subsd(scratch, input_reg);
__ andpd(input_reg, scratch);
} else if (r.IsInteger32()) {
EmitIntegerMathAbs(instr);
} else { // Tagged case.
DeferredMathAbsTaggedHeapNumber* deferred =
new DeferredMathAbsTaggedHeapNumber(this, instr);
Register input_reg = ToRegister(instr->InputAt(0));
// Smi check.
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiToInteger32(input_reg, input_reg);
EmitIntegerMathAbs(instr);
__ Integer32ToSmi(input_reg, input_reg);
__ bind(deferred->exit());
}
}
void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
XMMRegister xmm_scratch = xmm0;
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
Label done;
if (CpuFeatures::IsSupported(SSE4_1)) {
CpuFeatures::Scope scope(SSE4_1);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Deoptimize if minus zero.
__ movq(output_reg, input_reg);
__ subq(output_reg, Immediate(1));
DeoptimizeIf(overflow, instr->environment());
}
__ roundsd(xmm_scratch, input_reg, Assembler::kRoundDown);
__ cvttsd2si(output_reg, xmm_scratch);
__ cmpl(output_reg, Immediate(0x80000000));
DeoptimizeIf(equal, instr->environment());
} else {
// Deoptimize on negative inputs.
__ xorps(xmm_scratch, xmm_scratch); // Zero the register.
__ ucomisd(input_reg, xmm_scratch);
DeoptimizeIf(below, instr->environment());
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Check for negative zero.
Label positive_sign;
__ j(above, &positive_sign, Label::kNear);
__ movmskpd(output_reg, input_reg);
__ testq(output_reg, Immediate(1));
DeoptimizeIf(not_zero, instr->environment());
__ Set(output_reg, 0);
__ jmp(&done);
__ bind(&positive_sign);
}
// Use truncating instruction (OK because input is positive).
__ cvttsd2si(output_reg, input_reg);
// Overflow is signalled with minint.
__ cmpl(output_reg, Immediate(0x80000000));
DeoptimizeIf(equal, instr->environment());
}
__ bind(&done);
}
void LCodeGen::DoMathRound(LUnaryMathOperation* instr) {
const XMMRegister xmm_scratch = xmm0;
Register output_reg = ToRegister(instr->result());
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
Label done;
// xmm_scratch = 0.5
__ movq(kScratchRegister, V8_INT64_C(0x3FE0000000000000), RelocInfo::NONE);
__ movq(xmm_scratch, kScratchRegister);
Label below_half;
__ ucomisd(xmm_scratch, input_reg);
// If input_reg is NaN, this doesn't jump.
__ j(above, &below_half, Label::kNear);
// input = input + 0.5
// This addition might give a result that isn't the correct for
// rounding, due to loss of precision, but only for a number that's
// so big that the conversion below will overflow anyway.
__ addsd(xmm_scratch, input_reg);
// Compute Math.floor(input).
// Use truncating instruction (OK because input is positive).
__ cvttsd2si(output_reg, xmm_scratch);
// Overflow is signalled with minint.
__ cmpl(output_reg, Immediate(0x80000000));
DeoptimizeIf(equal, instr->environment());
__ jmp(&done);
__ bind(&below_half);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bailout if negative (including -0).
__ movq(output_reg, input_reg);
__ testq(output_reg, output_reg);
DeoptimizeIf(negative, instr->environment());
} else {
// Bailout if below -0.5, otherwise round to (positive) zero, even
// if negative.
// xmm_scrach = -0.5
__ movq(kScratchRegister, V8_INT64_C(0xBFE0000000000000), RelocInfo::NONE);
__ movq(xmm_scratch, kScratchRegister);
__ ucomisd(input_reg, xmm_scratch);
DeoptimizeIf(below, instr->environment());
}
__ xorl(output_reg, output_reg);
__ bind(&done);
}
void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
__ sqrtsd(input_reg, input_reg);
}
void LCodeGen::DoMathPowHalf(LUnaryMathOperation* instr) {
XMMRegister xmm_scratch = xmm0;
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
ASSERT(ToDoubleRegister(instr->result()).is(input_reg));
// Note that according to ECMA-262 15.8.2.13:
// Math.pow(-Infinity, 0.5) == Infinity
// Math.sqrt(-Infinity) == NaN
Label done, sqrt;
// Check base for -Infinity. According to IEEE-754, double-precision
// -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
__ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000), RelocInfo::NONE);
__ movq(xmm_scratch, kScratchRegister);
__ ucomisd(xmm_scratch, input_reg);
// Comparing -Infinity with NaN results in "unordered", which sets the
// zero flag as if both were equal. However, it also sets the carry flag.
__ j(not_equal, &sqrt, Label::kNear);
__ j(carry, &sqrt, Label::kNear);
// If input is -Infinity, return Infinity.
__ xorps(input_reg, input_reg);
__ subsd(input_reg, xmm_scratch);
__ jmp(&done, Label::kNear);
// Square root.
__ bind(&sqrt);
__ xorps(xmm_scratch, xmm_scratch);
__ addsd(input_reg, xmm_scratch); // Convert -0 to +0.
__ sqrtsd(input_reg, input_reg);
__ bind(&done);
}
void LCodeGen::DoPower(LPower* instr) {
Representation exponent_type = instr->hydrogen()->right()->representation();
// Having marked this as a call, we can use any registers.
// Just make sure that the input/output registers are the expected ones.
// Choose register conforming to calling convention (when bailing out).
#ifdef _WIN64
Register exponent = rdx;
#else
Register exponent = rdi;
#endif
ASSERT(!instr->InputAt(1)->IsRegister() ||
ToRegister(instr->InputAt(1)).is(exponent));
ASSERT(!instr->InputAt(1)->IsDoubleRegister() ||
ToDoubleRegister(instr->InputAt(1)).is(xmm1));
ASSERT(ToDoubleRegister(instr->InputAt(0)).is(xmm2));
ASSERT(ToDoubleRegister(instr->result()).is(xmm3));
if (exponent_type.IsTagged()) {
Label no_deopt;
__ JumpIfSmi(exponent, &no_deopt);
__ CmpObjectType(exponent, HEAP_NUMBER_TYPE, rcx);
DeoptimizeIf(not_equal, instr->environment());
__ bind(&no_deopt);
MathPowStub stub(MathPowStub::TAGGED);
__ CallStub(&stub);
} else if (exponent_type.IsInteger32()) {
MathPowStub stub(MathPowStub::INTEGER);
__ CallStub(&stub);
} else {
ASSERT(exponent_type.IsDouble());
MathPowStub stub(MathPowStub::DOUBLE);
__ CallStub(&stub);
}
}
void LCodeGen::DoRandom(LRandom* instr) {
class DeferredDoRandom: public LDeferredCode {
public:
DeferredDoRandom(LCodeGen* codegen, LRandom* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredRandom(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LRandom* instr_;
};
DeferredDoRandom* deferred = new DeferredDoRandom(this, instr);
// Having marked this instruction as a call we can use any
// registers.
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
// Choose the right register for the first argument depending on
// calling convention.
#ifdef _WIN64
ASSERT(ToRegister(instr->InputAt(0)).is(rcx));
Register global_object = rcx;
#else
ASSERT(ToRegister(instr->InputAt(0)).is(rdi));
Register global_object = rdi;
#endif
static const int kSeedSize = sizeof(uint32_t);
STATIC_ASSERT(kPointerSize == 2 * kSeedSize);
__ movq(global_object,
FieldOperand(global_object, GlobalObject::kGlobalContextOffset));
static const int kRandomSeedOffset =
FixedArray::kHeaderSize + Context::RANDOM_SEED_INDEX * kPointerSize;
__ movq(rbx, FieldOperand(global_object, kRandomSeedOffset));
// rbx: FixedArray of the global context's random seeds
// Load state[0].
__ movl(rax, FieldOperand(rbx, ByteArray::kHeaderSize));
// If state[0] == 0, call runtime to initialize seeds.
__ testl(rax, rax);
__ j(zero, deferred->entry());
// Load state[1].
__ movl(rcx, FieldOperand(rbx, ByteArray::kHeaderSize + kSeedSize));
// state[0] = 18273 * (state[0] & 0xFFFF) + (state[0] >> 16)
// Only operate on the lower 32 bit of rax.
__ movl(rdx, rax);
__ andl(rdx, Immediate(0xFFFF));
__ imull(rdx, rdx, Immediate(18273));
__ shrl(rax, Immediate(16));
__ addl(rax, rdx);
// Save state[0].
__ movl(FieldOperand(rbx, ByteArray::kHeaderSize), rax);
// state[1] = 36969 * (state[1] & 0xFFFF) + (state[1] >> 16)
__ movl(rdx, rcx);
__ andl(rdx, Immediate(0xFFFF));
__ imull(rdx, rdx, Immediate(36969));
__ shrl(rcx, Immediate(16));
__ addl(rcx, rdx);
// Save state[1].
__ movl(FieldOperand(rbx, ByteArray::kHeaderSize + kSeedSize), rcx);
// Random bit pattern = (state[0] << 14) + (state[1] & 0x3FFFF)
__ shll(rax, Immediate(14));
__ andl(rcx, Immediate(0x3FFFF));
__ addl(rax, rcx);
__ bind(deferred->exit());
// Convert 32 random bits in rax to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
__ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single.
__ movd(xmm2, rcx);
__ movd(xmm1, rax);
__ cvtss2sd(xmm2, xmm2);
__ xorps(xmm1, xmm2);
__ subsd(xmm1, xmm2);
}
void LCodeGen::DoDeferredRandom(LRandom* instr) {
__ PrepareCallCFunction(1);
__ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
// Return value is in rax.
}
void LCodeGen::DoMathLog(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathTan(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::TAN,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathCos(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::COS,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoMathSin(LUnaryMathOperation* instr) {
ASSERT(ToDoubleRegister(instr->result()).is(xmm1));
TranscendentalCacheStub stub(TranscendentalCache::SIN,
TranscendentalCacheStub::UNTAGGED);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathAbs:
DoMathAbs(instr);
break;
case kMathFloor:
DoMathFloor(instr);
break;
case kMathRound:
DoMathRound(instr);
break;
case kMathSqrt:
DoMathSqrt(instr);
break;
case kMathPowHalf:
DoMathPowHalf(instr);
break;
case kMathCos:
DoMathCos(instr);
break;
case kMathSin:
DoMathSin(instr);
break;
case kMathTan:
DoMathTan(instr);
break;
case kMathLog:
DoMathLog(instr);
break;
default:
UNREACHABLE();
}
}
void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
ASSERT(ToRegister(instr->function()).is(rdi));
ASSERT(instr->HasPointerMap());
ASSERT(instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
ParameterCount count(instr->arity());
__ InvokeFunction(rdi, count, CALL_FUNCTION, generator, CALL_AS_METHOD);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
ASSERT(ToRegister(instr->key()).is(rcx));
ASSERT(ToRegister(instr->result()).is(rax));
int arity = instr->arity();
Handle<Code> ic =
isolate()->stub_cache()->ComputeKeyedCallInitialize(arity);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallNamed(LCallNamed* instr) {
ASSERT(ToRegister(instr->result()).is(rax));
int arity = instr->arity();
RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
Handle<Code> ic =
isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
__ Move(rcx, instr->name());
CallCode(ic, mode, instr);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallFunction(LCallFunction* instr) {
ASSERT(ToRegister(instr->function()).is(rdi));
ASSERT(ToRegister(instr->result()).is(rax));
int arity = instr->arity();
CallFunctionStub stub(arity, NO_CALL_FUNCTION_FLAGS);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(rax));
int arity = instr->arity();
RelocInfo::Mode mode = RelocInfo::CODE_TARGET_CONTEXT;
Handle<Code> ic =
isolate()->stub_cache()->ComputeCallInitialize(arity, mode);
__ Move(rcx, instr->name());
CallCode(ic, mode, instr);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(rax));
CallKnownFunction(instr->target(), instr->arity(), instr, CALL_AS_FUNCTION);
}
void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(rdi));
ASSERT(ToRegister(instr->result()).is(rax));
CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
__ Set(rax, instr->arity());
CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
CallRuntime(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
Register object = ToRegister(instr->object());
Register value = ToRegister(instr->value());
int offset = instr->offset();
if (!instr->transition().is_null()) {
__ Move(FieldOperand(object, HeapObject::kMapOffset), instr->transition());
}
// Do the store.
HType type = instr->hydrogen()->value()->type();
SmiCheck check_needed =
type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
if (instr->is_in_object()) {
__ movq(FieldOperand(object, offset), value);
if (instr->hydrogen()->NeedsWriteBarrier()) {
Register temp = ToRegister(instr->TempAt(0));
// Update the write barrier for the object for in-object properties.
__ RecordWriteField(object,
offset,
value,
temp,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
} else {
Register temp = ToRegister(instr->TempAt(0));
__ movq(temp, FieldOperand(object, JSObject::kPropertiesOffset));
__ movq(FieldOperand(temp, offset), value);
if (instr->hydrogen()->NeedsWriteBarrier()) {
// Update the write barrier for the properties array.
// object is used as a scratch register.
__ RecordWriteField(temp,
offset,
value,
object,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
}
}
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(rdx));
ASSERT(ToRegister(instr->value()).is(rax));
__ Move(rcx, instr->hydrogen()->name());
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
? isolate()->builtins()->StoreIC_Initialize_Strict()
: isolate()->builtins()->StoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStoreKeyedSpecializedArrayElement(
LStoreKeyedSpecializedArrayElement* instr) {
ElementsKind elements_kind = instr->elements_kind();
Operand operand(BuildFastArrayOperand(instr->external_pointer(),
instr->key(), elements_kind, 0));
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS) {
XMMRegister value(ToDoubleRegister(instr->value()));
__ cvtsd2ss(value, value);
__ movss(operand, value);
} else if (elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
__ movsd(operand, ToDoubleRegister(instr->value()));
} else {
Register value(ToRegister(instr->value()));
switch (elements_kind) {
case EXTERNAL_PIXEL_ELEMENTS:
case EXTERNAL_BYTE_ELEMENTS:
case EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ movb(operand, value);
break;
case EXTERNAL_SHORT_ELEMENTS:
case EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ movw(operand, value);
break;
case EXTERNAL_INT_ELEMENTS:
case EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ movl(operand, value);
break;
case EXTERNAL_FLOAT_ELEMENTS:
case EXTERNAL_DOUBLE_ELEMENTS:
case FAST_ELEMENTS:
case FAST_SMI_ONLY_ELEMENTS:
case FAST_DOUBLE_ELEMENTS:
case DICTIONARY_ELEMENTS:
case NON_STRICT_ARGUMENTS_ELEMENTS:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
if (instr->length()->IsRegister()) {
Register reg = ToRegister(instr->length());
if (FLAG_debug_code) {
__ AbortIfNotZeroExtended(reg);
}
if (instr->index()->IsConstantOperand()) {
__ cmpq(reg,
Immediate(ToInteger32(LConstantOperand::cast(instr->index()))));
} else {
Register reg2 = ToRegister(instr->index());
if (FLAG_debug_code) {
__ AbortIfNotZeroExtended(reg2);
}
__ cmpq(reg, reg2);
}
} else {
if (instr->index()->IsConstantOperand()) {
__ cmpq(ToOperand(instr->length()),
Immediate(ToInteger32(LConstantOperand::cast(instr->index()))));
} else {
__ cmpq(ToOperand(instr->length()), ToRegister(instr->index()));
}
}
DeoptimizeIf(below_equal, instr->environment());
}
void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
Register value = ToRegister(instr->value());
Register elements = ToRegister(instr->object());
Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
// Do the store.
if (instr->key()->IsConstantOperand()) {
ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
int offset =
ToInteger32(const_operand) * kPointerSize + FixedArray::kHeaderSize;
__ movq(FieldOperand(elements, offset), value);
} else {
__ movq(FieldOperand(elements,
key,
times_pointer_size,
FixedArray::kHeaderSize),
value);
}
if (instr->hydrogen()->NeedsWriteBarrier()) {
HType type = instr->hydrogen()->value()->type();
SmiCheck check_needed =
type.IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
// Compute address of modified element and store it into key register.
__ lea(key, FieldOperand(elements,
key,
times_pointer_size,
FixedArray::kHeaderSize));
__ RecordWrite(elements,
key,
value,
kSaveFPRegs,
EMIT_REMEMBERED_SET,
check_needed);
}
}
void LCodeGen::DoStoreKeyedFastDoubleElement(
LStoreKeyedFastDoubleElement* instr) {
XMMRegister value = ToDoubleRegister(instr->value());
Label have_value;
__ ucomisd(value, value);
__ j(parity_odd, &have_value); // NaN.
__ Set(kScratchRegister, BitCast<uint64_t>(
FixedDoubleArray::canonical_not_the_hole_nan_as_double()));
__ movq(value, kScratchRegister);
__ bind(&have_value);
Operand double_store_operand = BuildFastArrayOperand(
instr->elements(), instr->key(), FAST_DOUBLE_ELEMENTS,
FixedDoubleArray::kHeaderSize - kHeapObjectTag);
__ movsd(double_store_operand, value);
}
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(rdx));
ASSERT(ToRegister(instr->key()).is(rcx));
ASSERT(ToRegister(instr->value()).is(rax));
Handle<Code> ic = (instr->strict_mode_flag() == kStrictMode)
? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
: isolate()->builtins()->KeyedStoreIC_Initialize();
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
Register object_reg = ToRegister(instr->object());
Register new_map_reg = ToRegister(instr->new_map_reg());
Handle<Map> from_map = instr->original_map();
Handle<Map> to_map = instr->transitioned_map();
ElementsKind from_kind = from_map->elements_kind();
ElementsKind to_kind = to_map->elements_kind();
Label not_applicable;
__ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
__ j(not_equal, ¬_applicable);
__ movq(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
if (from_kind == FAST_SMI_ONLY_ELEMENTS && to_kind == FAST_ELEMENTS) {
__ movq(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
// Write barrier.
ASSERT_NE(instr->temp_reg(), NULL);
__ RecordWriteField(object_reg, HeapObject::kMapOffset, new_map_reg,
ToRegister(instr->temp_reg()), kDontSaveFPRegs);
} else if (from_kind == FAST_SMI_ONLY_ELEMENTS &&
to_kind == FAST_DOUBLE_ELEMENTS) {
Register fixed_object_reg = ToRegister(instr->temp_reg());
ASSERT(fixed_object_reg.is(rdx));
ASSERT(new_map_reg.is(rbx));
__ movq(fixed_object_reg, object_reg);
CallCode(isolate()->builtins()->TransitionElementsSmiToDouble(),
RelocInfo::CODE_TARGET, instr);
} else if (from_kind == FAST_DOUBLE_ELEMENTS && to_kind == FAST_ELEMENTS) {
Register fixed_object_reg = ToRegister(instr->temp_reg());
ASSERT(fixed_object_reg.is(rdx));
ASSERT(new_map_reg.is(rbx));
__ movq(fixed_object_reg, object_reg);
CallCode(isolate()->builtins()->TransitionElementsDoubleToObject(),
RelocInfo::CODE_TARGET, instr);
} else {
UNREACHABLE();
}
__ bind(¬_applicable);
}
void LCodeGen::DoStringAdd(LStringAdd* instr) {
EmitPushTaggedOperand(instr->left());
EmitPushTaggedOperand(instr->right());
StringAddStub stub(NO_STRING_CHECK_IN_STUB);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
class DeferredStringCharCodeAt: public LDeferredCode {
public:
DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LStringCharCodeAt* instr_;
};
DeferredStringCharCodeAt* deferred =
new DeferredStringCharCodeAt(this, instr);
StringCharLoadGenerator::Generate(masm(),
ToRegister(instr->string()),
ToRegister(instr->index()),
ToRegister(instr->result()),
deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Set(result, 0);
PushSafepointRegistersScope scope(this);
__ push(string);
// Push the index as a smi. This is safe because of the checks in
// DoStringCharCodeAt above.
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
if (instr->index()->IsConstantOperand()) {
int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
__ Push(Smi::FromInt(const_index));
} else {
Register index = ToRegister(instr->index());
__ Integer32ToSmi(index, index);
__ push(index);
}
CallRuntimeFromDeferred(Runtime::kStringCharCodeAt, 2, instr);
if (FLAG_debug_code) {
__ AbortIfNotSmi(rax);
}
__ SmiToInteger32(rax, rax);
__ StoreToSafepointRegisterSlot(result, rax);
}
void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
class DeferredStringCharFromCode: public LDeferredCode {
public:
DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LStringCharFromCode* instr_;
};
DeferredStringCharFromCode* deferred =
new DeferredStringCharFromCode(this, instr);
ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
ASSERT(!char_code.is(result));
__ cmpl(char_code, Immediate(String::kMaxAsciiCharCode));
__ j(above, deferred->entry());
__ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
__ movq(result, FieldOperand(result,
char_code, times_pointer_size,
FixedArray::kHeaderSize));
__ CompareRoot(result, Heap::kUndefinedValueRootIndex);
__ j(equal, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
Register char_code = ToRegister(instr->char_code());
Register result = ToRegister(instr->result());
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Set(result, 0);
PushSafepointRegistersScope scope(this);
__ Integer32ToSmi(char_code, char_code);
__ push(char_code);
CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr);
__ StoreToSafepointRegisterSlot(result, rax);
}
void LCodeGen::DoStringLength(LStringLength* instr) {
Register string = ToRegister(instr->string());
Register result = ToRegister(instr->result());
__ movq(result, FieldOperand(string, String::kLengthOffset));
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() || input->IsStackSlot());
LOperand* output = instr->result();
ASSERT(output->IsDoubleRegister());
if (input->IsRegister()) {
__ cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
} else {
__ cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
}
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
__ Integer32ToSmi(reg, reg);
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD: public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LNumberTagD* instr_;
};
XMMRegister input_reg = ToDoubleRegister(instr->InputAt(0));
Register reg = ToRegister(instr->result());
Register tmp = ToRegister(instr->TempAt(0));
DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
__ AllocateHeapNumber(reg, tmp, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
__ movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ Move(reg, Smi::FromInt(0));
{
PushSafepointRegistersScope scope(this);
CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr);
// Ensure that value in rax survives popping registers.
__ movq(kScratchRegister, rax);
}
__ movq(reg, kScratchRegister);
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
ASSERT(instr->InputAt(0)->Equals(instr->result()));
Register input = ToRegister(instr->InputAt(0));
ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
__ Integer32ToSmi(input, input);
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
ASSERT(instr->InputAt(0)->Equals(instr->result()));
Register input = ToRegister(instr->InputAt(0));
if (instr->needs_check()) {
Condition is_smi = __ CheckSmi(input);
DeoptimizeIf(NegateCondition(is_smi), instr->environment());
}
__ SmiToInteger32(input, input);
}
void LCodeGen::EmitNumberUntagD(Register input_reg,
XMMRegister result_reg,
bool deoptimize_on_undefined,
bool deoptimize_on_minus_zero,
LEnvironment* env) {
Label load_smi, done;
// Smi check.
__ JumpIfSmi(input_reg, &load_smi, Label::kNear);
// Heap number map check.
__ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
if (deoptimize_on_undefined) {
DeoptimizeIf(not_equal, env);
} else {
Label heap_number;
__ j(equal, &heap_number, Label::kNear);
__ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
DeoptimizeIf(not_equal, env);
// Convert undefined to NaN. Compute NaN as 0/0.
__ xorps(result_reg, result_reg);
__ divsd(result_reg, result_reg);
__ jmp(&done, Label::kNear);
__ bind(&heap_number);
}
// Heap number to XMM conversion.
__ movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
if (deoptimize_on_minus_zero) {
XMMRegister xmm_scratch = xmm0;
__ xorps(xmm_scratch, xmm_scratch);
__ ucomisd(xmm_scratch, result_reg);
__ j(not_equal, &done, Label::kNear);
__ movmskpd(kScratchRegister, result_reg);
__ testq(kScratchRegister, Immediate(1));
DeoptimizeIf(not_zero, env);
}
__ jmp(&done, Label::kNear);
// Smi to XMM conversion
__ bind(&load_smi);
__ SmiToInteger32(kScratchRegister, input_reg);
__ cvtlsi2sd(result_reg, kScratchRegister);
__ bind(&done);
}
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
Label done, heap_number;
Register input_reg = ToRegister(instr->InputAt(0));
// Heap number map check.
__ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
if (instr->truncating()) {
__ j(equal, &heap_number, Label::kNear);
// Check for undefined. Undefined is converted to zero for truncating
// conversions.
__ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
DeoptimizeIf(not_equal, instr->environment());
__ Set(input_reg, 0);
__ jmp(&done, Label::kNear);
__ bind(&heap_number);
__ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ cvttsd2siq(input_reg, xmm0);
__ Set(kScratchRegister, V8_UINT64_C(0x8000000000000000));
__ cmpq(input_reg, kScratchRegister);
DeoptimizeIf(equal, instr->environment());
} else {
// Deoptimize if we don't have a heap number.
DeoptimizeIf(not_equal, instr->environment());
XMMRegister xmm_temp = ToDoubleRegister(instr->TempAt(0));
__ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ cvttsd2si(input_reg, xmm0);
__ cvtlsi2sd(xmm_temp, input_reg);
__ ucomisd(xmm0, xmm_temp);
DeoptimizeIf(not_equal, instr->environment());
DeoptimizeIf(parity_even, instr->environment()); // NaN.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ testl(input_reg, input_reg);
__ j(not_zero, &done);
__ movmskpd(input_reg, xmm0);
__ andl(input_reg, Immediate(1));
DeoptimizeIf(not_zero, instr->environment());
}
}
__ bind(&done);
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
class DeferredTaggedToI: public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LTaggedToI* instr_;
};
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
ASSERT(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
__ JumpIfNotSmi(input_reg, deferred->entry());
__ SmiToInteger32(input_reg, input_reg);
__ bind(deferred->exit());
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
LOperand* result = instr->result();
ASSERT(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
XMMRegister result_reg = ToDoubleRegister(result);
EmitNumberUntagD(input_reg, result_reg,
instr->hydrogen()->deoptimize_on_undefined(),
instr->hydrogen()->deoptimize_on_minus_zero(),
instr->environment());
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsDoubleRegister());
LOperand* result = instr->result();
ASSERT(result->IsRegister());
XMMRegister input_reg = ToDoubleRegister(input);
Register result_reg = ToRegister(result);
if (instr->truncating()) {
// Performs a truncating conversion of a floating point number as used by
// the JS bitwise operations.
__ cvttsd2siq(result_reg, input_reg);
__ movq(kScratchRegister, V8_INT64_C(0x8000000000000000), RelocInfo::NONE);
__ cmpq(result_reg, kScratchRegister);
DeoptimizeIf(equal, instr->environment());
} else {
__ cvttsd2si(result_reg, input_reg);
__ cvtlsi2sd(xmm0, result_reg);
__ ucomisd(xmm0, input_reg);
DeoptimizeIf(not_equal, instr->environment());
DeoptimizeIf(parity_even, instr->environment()); // NaN.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Label done;
// The integer converted back is equal to the original. We
// only have to test if we got -0 as an input.
__ testl(result_reg, result_reg);
__ j(not_zero, &done, Label::kNear);
__ movmskpd(result_reg, input_reg);
// Bit 0 contains the sign of the double in input_reg.
// If input was positive, we are ok and return 0, otherwise
// deoptimize.
__ andl(result_reg, Immediate(1));
DeoptimizeIf(not_zero, instr->environment());
__ bind(&done);
}
}
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->InputAt(0);
Condition cc = masm()->CheckSmi(ToRegister(input));
DeoptimizeIf(NegateCondition(cc), instr->environment());
}
void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
LOperand* input = instr->InputAt(0);
Condition cc = masm()->CheckSmi(ToRegister(input));
DeoptimizeIf(cc, instr->environment());
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Register input = ToRegister(instr->InputAt(0));
__ movq(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
if (instr->hydrogen()->is_interval_check()) {
InstanceType first;
InstanceType last;
instr->hydrogen()->GetCheckInterval(&first, &last);
__ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
Immediate(static_cast<int8_t>(first)));
// If there is only one type in the interval check for equality.
if (first == last) {
DeoptimizeIf(not_equal, instr->environment());
} else {
DeoptimizeIf(below, instr->environment());
// Omit check for the last type.
if (last != LAST_TYPE) {
__ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
Immediate(static_cast<int8_t>(last)));
DeoptimizeIf(above, instr->environment());
}
}
} else {
uint8_t mask;
uint8_t tag;
instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
if (IsPowerOf2(mask)) {
ASSERT(tag == 0 || IsPowerOf2(tag));
__ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
Immediate(mask));
DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment());
} else {
__ movzxbl(kScratchRegister,
FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
__ andb(kScratchRegister, Immediate(mask));
__ cmpb(kScratchRegister, Immediate(tag));
DeoptimizeIf(not_equal, instr->environment());
}
}
}
void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
Register reg = ToRegister(instr->value());
Handle<JSFunction> target = instr->hydrogen()->target();
if (isolate()->heap()->InNewSpace(*target)) {
Handle<JSGlobalPropertyCell> cell =
isolate()->factory()->NewJSGlobalPropertyCell(target);
__ movq(kScratchRegister, cell, RelocInfo::GLOBAL_PROPERTY_CELL);
__ cmpq(reg, Operand(kScratchRegister, 0));
} else {
__ Cmp(reg, target);
}
DeoptimizeIf(not_equal, instr->environment());
}
void LCodeGen::DoCheckMapCommon(Register reg,
Handle<Map> map,
CompareMapMode mode,
LEnvironment* env) {
Label success;
__ CompareMap(reg, map, &success, mode);
DeoptimizeIf(not_equal, env);
__ bind(&success);
}
void LCodeGen::DoCheckMap(LCheckMap* instr) {
LOperand* input = instr->InputAt(0);
ASSERT(input->IsRegister());
Register reg = ToRegister(input);
Handle<Map> map = instr->hydrogen()->map();
DoCheckMapCommon(reg, map, instr->hydrogen()->mode(), instr->environment());
}
void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
Register result_reg = ToRegister(instr->result());
Register temp_reg = ToRegister(instr->TempAt(0));
__ ClampDoubleToUint8(value_reg, xmm0, result_reg, temp_reg);
}
void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
ASSERT(instr->unclamped()->Equals(instr->result()));
Register value_reg = ToRegister(instr->result());
__ ClampUint8(value_reg);
}
void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
ASSERT(instr->unclamped()->Equals(instr->result()));
Register input_reg = ToRegister(instr->unclamped());
Register temp_reg = ToRegister(instr->TempAt(0));
XMMRegister temp_xmm_reg = ToDoubleRegister(instr->TempAt(1));
Label is_smi, done, heap_number;
__ JumpIfSmi(input_reg, &is_smi);
// Check for heap number
__ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
factory()->heap_number_map());
__ j(equal, &heap_number, Label::kNear);
// Check for undefined. Undefined is converted to zero for clamping
// conversions.
__ Cmp(input_reg, factory()->undefined_value());
DeoptimizeIf(not_equal, instr->environment());
__ movq(input_reg, Immediate(0));
__ jmp(&done, Label::kNear);
// Heap number
__ bind(&heap_number);
__ movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
__ ClampDoubleToUint8(xmm0, temp_xmm_reg, input_reg, temp_reg);
__ jmp(&done, Label::kNear);
// smi
__ bind(&is_smi);
__ SmiToInteger32(input_reg, input_reg);
__ ClampUint8(input_reg);
__ bind(&done);
}
void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
Register reg = ToRegister(instr->TempAt(0));
Handle<JSObject> holder = instr->holder();
Handle<JSObject> current_prototype = instr->prototype();
// Load prototype object.
__ LoadHeapObject(reg, current_prototype);
// Check prototype maps up to the holder.
while (!current_prototype.is_identical_to(holder)) {
DoCheckMapCommon(reg, Handle<Map>(current_prototype->map()),
ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
current_prototype =
Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
// Load next prototype object.
__ LoadHeapObject(reg, current_prototype);
}
// Check the holder map.
DoCheckMapCommon(reg, Handle<Map>(current_prototype->map()),
ALLOW_ELEMENT_TRANSITION_MAPS, instr->environment());
}
void LCodeGen::DoAllocateObject(LAllocateObject* instr) {
class DeferredAllocateObject: public LDeferredCode {
public:
DeferredAllocateObject(LCodeGen* codegen, LAllocateObject* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredAllocateObject(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LAllocateObject* instr_;
};
DeferredAllocateObject* deferred = new DeferredAllocateObject(this, instr);
Register result = ToRegister(instr->result());
Register scratch = ToRegister(instr->TempAt(0));
Handle<JSFunction> constructor = instr->hydrogen()->constructor();
Handle<Map> initial_map(constructor->initial_map());
int instance_size = initial_map->instance_size();
ASSERT(initial_map->pre_allocated_property_fields() +
initial_map->unused_property_fields() -
initial_map->inobject_properties() == 0);
// Allocate memory for the object. The initial map might change when
// the constructor's prototype changes, but instance size and property
// counts remain unchanged (if slack tracking finished).
ASSERT(!constructor->shared()->IsInobjectSlackTrackingInProgress());
__ AllocateInNewSpace(instance_size,
result,
no_reg,
scratch,
deferred->entry(),
TAG_OBJECT);
// Load the initial map.
Register map = scratch;
__ LoadHeapObject(scratch, constructor);
__ movq(map, FieldOperand(scratch, JSFunction::kPrototypeOrInitialMapOffset));
if (FLAG_debug_code) {
__ AbortIfSmi(map);
__ cmpb(FieldOperand(map, Map::kInstanceSizeOffset),
Immediate(instance_size >> kPointerSizeLog2));
__ Assert(equal, "Unexpected instance size");
__ cmpb(FieldOperand(map, Map::kPreAllocatedPropertyFieldsOffset),
Immediate(initial_map->pre_allocated_property_fields()));
__ Assert(equal, "Unexpected pre-allocated property fields count");
__ cmpb(FieldOperand(map, Map::kUnusedPropertyFieldsOffset),
Immediate(initial_map->unused_property_fields()));
__ Assert(equal, "Unexpected unused property fields count");
__ cmpb(FieldOperand(map, Map::kInObjectPropertiesOffset),
Immediate(initial_map->inobject_properties()));
__ Assert(equal, "Unexpected in-object property fields count");
}
// Initialize map and fields of the newly allocated object.
ASSERT(initial_map->instance_type() == JS_OBJECT_TYPE);
__ movq(FieldOperand(result, JSObject::kMapOffset), map);
__ LoadRoot(scratch, Heap::kEmptyFixedArrayRootIndex);
__ movq(FieldOperand(result, JSObject::kElementsOffset), scratch);
__ movq(FieldOperand(result, JSObject::kPropertiesOffset), scratch);
if (initial_map->inobject_properties() != 0) {
__ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
for (int i = 0; i < initial_map->inobject_properties(); i++) {
int property_offset = JSObject::kHeaderSize + i * kPointerSize;
__ movq(FieldOperand(result, property_offset), scratch);
}
}
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredAllocateObject(LAllocateObject* instr) {
Register result = ToRegister(instr->result());
Handle<JSFunction> constructor = instr->hydrogen()->constructor();
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
__ Set(result, 0);
PushSafepointRegistersScope scope(this);
__ PushHeapObject(constructor);
CallRuntimeFromDeferred(Runtime::kNewObject, 1, instr);
__ StoreToSafepointRegisterSlot(result, rax);
}
void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
Heap* heap = isolate()->heap();
ElementsKind boilerplate_elements_kind =
instr->hydrogen()->boilerplate_elements_kind();
// Deopt if the array literal boilerplate ElementsKind is of a type different
// than the expected one. The check isn't necessary if the boilerplate has
// already been converted to FAST_ELEMENTS.
if (boilerplate_elements_kind != FAST_ELEMENTS) {
__ LoadHeapObject(rax, instr->hydrogen()->boilerplate_object());
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
// Load the map's "bit field 2".
__ movb(rbx, FieldOperand(rbx, Map::kBitField2Offset));
// Retrieve elements_kind from bit field 2.
__ and_(rbx, Immediate(Map::kElementsKindMask));
__ cmpb(rbx, Immediate(boilerplate_elements_kind <<
Map::kElementsKindShift));
DeoptimizeIf(not_equal, instr->environment());
}
// Set up the parameters to the stub/runtime call.
__ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ push(FieldOperand(rax, JSFunction::kLiteralsOffset));
__ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
// Boilerplate already exists, constant elements are never accessed.
// Pass an empty fixed array.
__ Push(Handle<FixedArray>(heap->empty_fixed_array()));
// Pick the right runtime function or stub to call.
int length = instr->hydrogen()->length();
if (instr->hydrogen()->IsCopyOnWrite()) {
ASSERT(instr->hydrogen()->depth() == 1);
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
} else {
FastCloneShallowArrayStub::Mode mode =
boilerplate_elements_kind == FAST_DOUBLE_ELEMENTS
? FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
: FastCloneShallowArrayStub::CLONE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::EmitDeepCopy(Handle<JSObject> object,
Register result,
Register source,
int* offset) {
ASSERT(!source.is(rcx));
ASSERT(!result.is(rcx));
// Only elements backing stores for non-COW arrays need to be copied.
Handle<FixedArrayBase> elements(object->elements());
bool has_elements = elements->length() > 0 &&
elements->map() != isolate()->heap()->fixed_cow_array_map();
// Increase the offset so that subsequent objects end up right after
// this object and its backing store.
int object_offset = *offset;
int object_size = object->map()->instance_size();
int elements_offset = *offset + object_size;
int elements_size = has_elements ? elements->Size() : 0;
*offset += object_size + elements_size;
// Copy object header.
ASSERT(object->properties()->length() == 0);
int inobject_properties = object->map()->inobject_properties();
int header_size = object_size - inobject_properties * kPointerSize;
for (int i = 0; i < header_size; i += kPointerSize) {
if (has_elements && i == JSObject::kElementsOffset) {
__ lea(rcx, Operand(result, elements_offset));
} else {
__ movq(rcx, FieldOperand(source, i));
}
__ movq(FieldOperand(result, object_offset + i), rcx);
}
// Copy in-object properties.
for (int i = 0; i < inobject_properties; i++) {
int total_offset = object_offset + object->GetInObjectPropertyOffset(i);
Handle<Object> value = Handle<Object>(object->InObjectPropertyAt(i));
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
__ lea(rcx, Operand(result, *offset));
__ movq(FieldOperand(result, total_offset), rcx);
__ LoadHeapObject(source, value_object);
EmitDeepCopy(value_object, result, source, offset);
} else if (value->IsHeapObject()) {
__ LoadHeapObject(rcx, Handle<HeapObject>::cast(value));
__ movq(FieldOperand(result, total_offset), rcx);
} else {
__ movq(rcx, value, RelocInfo::NONE);
__ movq(FieldOperand(result, total_offset), rcx);
}
}
if (has_elements) {
// Copy elements backing store header.
__ LoadHeapObject(source, elements);
for (int i = 0; i < FixedArray::kHeaderSize; i += kPointerSize) {
__ movq(rcx, FieldOperand(source, i));
__ movq(FieldOperand(result, elements_offset + i), rcx);
}
// Copy elements backing store content.
int elements_length = elements->length();
if (elements->IsFixedDoubleArray()) {
Handle<FixedDoubleArray> double_array =
Handle<FixedDoubleArray>::cast(elements);
for (int i = 0; i < elements_length; i++) {
int64_t value = double_array->get_representation(i);
int total_offset =
elements_offset + FixedDoubleArray::OffsetOfElementAt(i);
__ movq(rcx, value, RelocInfo::NONE);
__ movq(FieldOperand(result, total_offset), rcx);
}
} else if (elements->IsFixedArray()) {
for (int i = 0; i < elements_length; i++) {
int total_offset = elements_offset + FixedArray::OffsetOfElementAt(i);
Handle<Object> value = JSObject::GetElement(object, i);
if (value->IsJSObject()) {
Handle<JSObject> value_object = Handle<JSObject>::cast(value);
__ lea(rcx, Operand(result, *offset));
__ movq(FieldOperand(result, total_offset), rcx);
__ LoadHeapObject(source, value_object);
EmitDeepCopy(value_object, result, source, offset);
} else if (value->IsHeapObject()) {
__ LoadHeapObject(rcx, Handle<HeapObject>::cast(value));
__ movq(FieldOperand(result, total_offset), rcx);
} else {
__ movq(rcx, value, RelocInfo::NONE);
__ movq(FieldOperand(result, total_offset), rcx);
}
}
} else {
UNREACHABLE();
}
}
}
void LCodeGen::DoFastLiteral(LFastLiteral* instr) {
int size = instr->hydrogen()->total_size();
// Allocate all objects that are part of the literal in one big
// allocation. This avoids multiple limit checks.
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ Push(Smi::FromInt(size));
CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
__ bind(&allocated);
int offset = 0;
__ LoadHeapObject(rbx, instr->hydrogen()->boilerplate());
EmitDeepCopy(instr->hydrogen()->boilerplate(), rax, rbx, &offset);
ASSERT_EQ(size, offset);
}
void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
Handle<FixedArray> literals(instr->environment()->closure()->literals());
Handle<FixedArray> constant_properties =
instr->hydrogen()->constant_properties();
// Set up the parameters to the stub/runtime call.
__ PushHeapObject(literals);
__ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
__ Push(constant_properties);
int flags = instr->hydrogen()->fast_elements()
? ObjectLiteral::kFastElements
: ObjectLiteral::kNoFlags;
flags |= instr->hydrogen()->has_function()
? ObjectLiteral::kHasFunction
: ObjectLiteral::kNoFlags;
__ Push(Smi::FromInt(flags));
// Pick the right runtime function or stub to call.
int properties_count = constant_properties->length() / 2;
if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
} else if (flags != ObjectLiteral::kFastElements ||
properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
} else {
FastCloneShallowObjectStub stub(properties_count);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
ASSERT(ToRegister(instr->InputAt(0)).is(rax));
__ push(rax);
CallRuntime(Runtime::kToFastProperties, 1, instr);
}
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
Label materialized;
// Registers will be used as follows:
// rdi = JS function.
// rcx = literals array.
// rbx = regexp literal.
// rax = regexp literal clone.
__ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
__ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset));
int literal_offset = FixedArray::kHeaderSize +
instr->hydrogen()->literal_index() * kPointerSize;
__ movq(rbx, FieldOperand(rcx, literal_offset));
__ CompareRoot(rbx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &materialized, Label::kNear);
// Create regexp literal using runtime function
// Result will be in rax.
__ push(rcx);
__ Push(Smi::FromInt(instr->hydrogen()->literal_index()));
__ Push(instr->hydrogen()->pattern());
__ Push(instr->hydrogen()->flags());
CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
__ movq(rbx, rax);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ push(rbx);
__ Push(Smi::FromInt(size));
CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
__ pop(rbx);
__ bind(&allocated);
// Copy the content into the newly allocated memory.
// (Unroll copy loop once for better throughput).
for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
__ movq(rdx, FieldOperand(rbx, i));
__ movq(rcx, FieldOperand(rbx, i + kPointerSize));
__ movq(FieldOperand(rax, i), rdx);
__ movq(FieldOperand(rax, i + kPointerSize), rcx);
}
if ((size % (2 * kPointerSize)) != 0) {
__ movq(rdx, FieldOperand(rbx, size - kPointerSize));
__ movq(FieldOperand(rax, size - kPointerSize), rdx);
}
}
void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning.
Handle<SharedFunctionInfo> shared_info = instr->shared_info();
bool pretenure = instr->hydrogen()->pretenure();
if (!pretenure && shared_info->num_literals() == 0) {
FastNewClosureStub stub(shared_info->language_mode());
__ Push(shared_info);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else {
__ push(rsi);
__ Push(shared_info);
__ PushRoot(pretenure ?
Heap::kTrueValueRootIndex :
Heap::kFalseValueRootIndex);
CallRuntime(Runtime::kNewClosure, 3, instr);
}
}
void LCodeGen::DoTypeof(LTypeof* instr) {
LOperand* input = instr->InputAt(0);
EmitPushTaggedOperand(input);
CallRuntime(Runtime::kTypeof, 1, instr);
}
void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
ASSERT(!operand->IsDoubleRegister());
if (operand->IsConstantOperand()) {
Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
if (object->IsSmi()) {
__ Push(Handle<Smi>::cast(object));
} else {
__ PushHeapObject(Handle<HeapObject>::cast(object));
}
} else if (operand->IsRegister()) {
__ push(ToRegister(operand));
} else {
__ push(ToOperand(operand));
}
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->InputAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition final_branch_condition =
EmitTypeofIs(true_label, false_label, input, instr->type_literal());
if (final_branch_condition != no_condition) {
EmitBranch(true_block, false_block, final_branch_condition);
}
}
Condition LCodeGen::EmitTypeofIs(Label* true_label,
Label* false_label,
Register input,
Handle<String> type_name) {
Condition final_branch_condition = no_condition;
if (type_name->Equals(heap()->number_symbol())) {
__ JumpIfSmi(input, true_label);
__ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
Heap::kHeapNumberMapRootIndex);
final_branch_condition = equal;
} else if (type_name->Equals(heap()->string_symbol())) {
__ JumpIfSmi(input, false_label);
__ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
__ j(above_equal, false_label);
__ testb(FieldOperand(input, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
final_branch_condition = zero;
} else if (type_name->Equals(heap()->boolean_symbol())) {
__ CompareRoot(input, Heap::kTrueValueRootIndex);
__ j(equal, true_label);
__ CompareRoot(input, Heap::kFalseValueRootIndex);
final_branch_condition = equal;
} else if (FLAG_harmony_typeof && type_name->Equals(heap()->null_symbol())) {
__ CompareRoot(input, Heap::kNullValueRootIndex);
final_branch_condition = equal;
} else if (type_name->Equals(heap()->undefined_symbol())) {
__ CompareRoot(input, Heap::kUndefinedValueRootIndex);
__ j(equal, true_label);
__ JumpIfSmi(input, false_label);
// Check for undetectable objects => true.
__ movq(input, FieldOperand(input, HeapObject::kMapOffset));
__ testb(FieldOperand(input, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
final_branch_condition = not_zero;
} else if (type_name->Equals(heap()->function_symbol())) {
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ JumpIfSmi(input, false_label);
__ CmpObjectType(input, JS_FUNCTION_TYPE, input);
__ j(equal, true_label);
__ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
final_branch_condition = equal;
} else if (type_name->Equals(heap()->object_symbol())) {
__ JumpIfSmi(input, false_label);
if (!FLAG_harmony_typeof) {
__ CompareRoot(input, Heap::kNullValueRootIndex);
__ j(equal, true_label);
}
__ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
__ j(below, false_label);
__ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
__ j(above, false_label);
// Check for undetectable objects => false.
__ testb(FieldOperand(input, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
final_branch_condition = zero;
} else {
__ jmp(false_label);
}
return final_branch_condition;
}
void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
Register temp = ToRegister(instr->TempAt(0));
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
EmitIsConstructCall(temp);
EmitBranch(true_block, false_block, equal);
}
void LCodeGen::EmitIsConstructCall(Register temp) {
// Get the frame pointer for the calling frame.
__ movq(temp, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ Cmp(Operand(temp, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(not_equal, &check_frame_marker, Label::kNear);
__ movq(temp, Operand(rax, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ Cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
Smi::FromInt(StackFrame::CONSTRUCT));
}
void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
// Ensure that we have enough space after the previous lazy-bailout
// instruction for patching the code here.
int current_pc = masm()->pc_offset();
if (current_pc < last_lazy_deopt_pc_ + space_needed) {
int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
__ Nop(padding_size);
}
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
last_lazy_deopt_pc_ = masm()->pc_offset();
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
DeoptimizeIf(no_condition, instr->environment());
}
void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
LOperand* obj = instr->object();
LOperand* key = instr->key();
EmitPushTaggedOperand(obj);
EmitPushTaggedOperand(key);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
// Create safepoint generator that will also ensure enough space in the
// reloc info for patching in deoptimization (since this is invoking a
// builtin)
SafepointGenerator safepoint_generator(
this, pointers, Safepoint::kLazyDeopt);
__ Push(Smi::FromInt(strict_mode_flag()));
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, safepoint_generator);
}
void LCodeGen::DoIn(LIn* instr) {
LOperand* obj = instr->object();
LOperand* key = instr->key();
EmitPushTaggedOperand(key);
EmitPushTaggedOperand(obj);
ASSERT(instr->HasPointerMap() && instr->HasDeoptimizationEnvironment());
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
SafepointGenerator safepoint_generator(
this, pointers, Safepoint::kLazyDeopt);
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION, safepoint_generator);
}
void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
PushSafepointRegistersScope scope(this);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ CallRuntimeSaveDoubles(Runtime::kStackGuard);
RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
class DeferredStackCheck: public LDeferredCode {
public:
DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
virtual LInstruction* instr() { return instr_; }
private:
LStackCheck* instr_;
};
ASSERT(instr->HasEnvironment());
LEnvironment* env = instr->environment();
// There is no LLazyBailout instruction for stack-checks. We have to
// prepare for lazy deoptimization explicitly here.
if (instr->hydrogen()->is_function_entry()) {
// Perform stack overflow check.
Label done;
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(above_equal, &done, Label::kNear);
StackCheckStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
last_lazy_deopt_pc_ = masm()->pc_offset();
__ bind(&done);
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
} else {
ASSERT(instr->hydrogen()->is_backwards_branch());
// Perform stack overflow check if this goto needs it before jumping.
DeferredStackCheck* deferred_stack_check =
new DeferredStackCheck(this, instr);
__ CompareRoot(rsp, Heap::kStackLimitRootIndex);
__ j(below, deferred_stack_check->entry());
EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
last_lazy_deopt_pc_ = masm()->pc_offset();
__ bind(instr->done_label());
deferred_stack_check->SetExit(instr->done_label());
RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
// Don't record a deoptimization index for the safepoint here.
// This will be done explicitly when emitting call and the safepoint in
// the deferred code.
}
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
// This is a pseudo-instruction that ensures that the environment here is
// properly registered for deoptimization and records the assembler's PC
// offset.
LEnvironment* environment = instr->environment();
environment->SetSpilledRegisters(instr->SpilledRegisterArray(),
instr->SpilledDoubleRegisterArray());
// If the environment were already registered, we would have no way of
// backpatching it with the spill slot operands.
ASSERT(!environment->HasBeenRegistered());
RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
ASSERT(osr_pc_offset_ == -1);
osr_pc_offset_ = masm()->pc_offset();
}
void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
DeoptimizeIf(equal, instr->environment());
Register null_value = rdi;
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
__ cmpq(rax, null_value);
DeoptimizeIf(equal, instr->environment());
Condition cc = masm()->CheckSmi(rax);
DeoptimizeIf(cc, instr->environment());
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ CmpObjectType(rax, LAST_JS_PROXY_TYPE, rcx);
DeoptimizeIf(below_equal, instr->environment());
Label use_cache, call_runtime;
__ CheckEnumCache(null_value, &call_runtime);
__ movq(rax, FieldOperand(rax, HeapObject::kMapOffset));
__ jmp(&use_cache, Label::kNear);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(rax);
CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
__ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset),
Heap::kMetaMapRootIndex);
DeoptimizeIf(not_equal, instr->environment());
__ bind(&use_cache);
}
void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
Register map = ToRegister(instr->map());
Register result = ToRegister(instr->result());
__ LoadInstanceDescriptors(map, result);
__ movq(result,
FieldOperand(result, DescriptorArray::kEnumerationIndexOffset));
__ movq(result,
FieldOperand(result, FixedArray::SizeFor(instr->idx())));
Condition cc = masm()->CheckSmi(result);
DeoptimizeIf(cc, instr->environment());
}
void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
Register object = ToRegister(instr->value());
__ cmpq(ToRegister(instr->map()),
FieldOperand(object, HeapObject::kMapOffset));
DeoptimizeIf(not_equal, instr->environment());
}
void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
Register object = ToRegister(instr->object());
Register index = ToRegister(instr->index());
Label out_of_object, done;
__ SmiToInteger32(index, index);
__ cmpl(index, Immediate(0));
__ j(less, &out_of_object);
__ movq(object, FieldOperand(object,
index,
times_pointer_size,
JSObject::kHeaderSize));
__ jmp(&done, Label::kNear);
__ bind(&out_of_object);
__ movq(object, FieldOperand(object, JSObject::kPropertiesOffset));
__ negl(index);
// Index is now equal to out of object property index plus 1.
__ movq(object, FieldOperand(object,
index,
times_pointer_size,
FixedArray::kHeaderSize - kPointerSize));
__ bind(&done);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64