// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef LIVE_OBJECT_LIST
#include <ctype.h>
#include <stdlib.h>
#include "v8.h"
#include "checks.h"
#include "global-handles.h"
#include "heap.h"
#include "inspector.h"
#include "isolate.h"
#include "list-inl.h"
#include "liveobjectlist-inl.h"
#include "string-stream.h"
#include "v8utils.h"
#include "v8conversions.h"
namespace v8 {
namespace internal {
typedef int (*RawComparer)(const void*, const void*);
#ifdef CHECK_ALL_OBJECT_TYPES
#define DEBUG_LIVE_OBJECT_TYPES(v) \
v(Smi, "unexpected: Smi") \
\
v(CodeCache, "unexpected: CodeCache") \
v(BreakPointInfo, "unexpected: BreakPointInfo") \
v(DebugInfo, "unexpected: DebugInfo") \
v(TypeSwitchInfo, "unexpected: TypeSwitchInfo") \
v(SignatureInfo, "unexpected: SignatureInfo") \
v(Script, "unexpected: Script") \
v(ObjectTemplateInfo, "unexpected: ObjectTemplateInfo") \
v(FunctionTemplateInfo, "unexpected: FunctionTemplateInfo") \
v(CallHandlerInfo, "unexpected: CallHandlerInfo") \
v(InterceptorInfo, "unexpected: InterceptorInfo") \
v(AccessCheckInfo, "unexpected: AccessCheckInfo") \
v(AccessorInfo, "unexpected: AccessorInfo") \
v(ExternalTwoByteString, "unexpected: ExternalTwoByteString") \
v(ExternalAsciiString, "unexpected: ExternalAsciiString") \
v(ExternalString, "unexpected: ExternalString") \
v(SeqTwoByteString, "unexpected: SeqTwoByteString") \
v(SeqAsciiString, "unexpected: SeqAsciiString") \
v(SeqString, "unexpected: SeqString") \
v(JSFunctionResultCache, "unexpected: JSFunctionResultCache") \
v(GlobalContext, "unexpected: GlobalContext") \
v(MapCache, "unexpected: MapCache") \
v(CodeCacheHashTable, "unexpected: CodeCacheHashTable") \
v(CompilationCacheTable, "unexpected: CompilationCacheTable") \
v(SymbolTable, "unexpected: SymbolTable") \
v(Dictionary, "unexpected: Dictionary") \
v(HashTable, "unexpected: HashTable") \
v(DescriptorArray, "unexpected: DescriptorArray") \
v(ExternalFloatArray, "unexpected: ExternalFloatArray") \
v(ExternalUnsignedIntArray, "unexpected: ExternalUnsignedIntArray") \
v(ExternalIntArray, "unexpected: ExternalIntArray") \
v(ExternalUnsignedShortArray, "unexpected: ExternalUnsignedShortArray") \
v(ExternalShortArray, "unexpected: ExternalShortArray") \
v(ExternalUnsignedByteArray, "unexpected: ExternalUnsignedByteArray") \
v(ExternalByteArray, "unexpected: ExternalByteArray") \
v(JSValue, "unexpected: JSValue")
#else
#define DEBUG_LIVE_OBJECT_TYPES(v)
#endif
#define FOR_EACH_LIVE_OBJECT_TYPE(v) \
DEBUG_LIVE_OBJECT_TYPES(v) \
\
v(JSArray, "JSArray") \
v(JSRegExp, "JSRegExp") \
v(JSFunction, "JSFunction") \
v(JSGlobalObject, "JSGlobal") \
v(JSBuiltinsObject, "JSBuiltins") \
v(GlobalObject, "Global") \
v(JSGlobalProxy, "JSGlobalProxy") \
v(JSObject, "JSObject") \
\
v(Context, "meta: Context") \
v(ByteArray, "meta: ByteArray") \
v(ExternalPixelArray, "meta: PixelArray") \
v(ExternalArray, "meta: ExternalArray") \
v(FixedArray, "meta: FixedArray") \
v(String, "String") \
v(HeapNumber, "HeapNumber") \
\
v(Code, "meta: Code") \
v(Map, "meta: Map") \
v(Oddball, "Oddball") \
v(Foreign, "meta: Foreign") \
v(SharedFunctionInfo, "meta: SharedFunctionInfo") \
v(Struct, "meta: Struct") \
\
v(HeapObject, "HeapObject")
enum /* LiveObjectType */ {
#define DECLARE_OBJECT_TYPE_ENUM(type, name) kType##type,
FOR_EACH_LIVE_OBJECT_TYPE(DECLARE_OBJECT_TYPE_ENUM)
kInvalidLiveObjType,
kNumberOfTypes
#undef DECLARE_OBJECT_TYPE_ENUM
};
LiveObjectType GetObjectType(HeapObject* heap_obj) {
// TODO(mlam): investigate usint Map::instance_type() instead.
#define CHECK_FOR_OBJECT_TYPE(type, name) \
if (heap_obj->Is##type()) return kType##type;
FOR_EACH_LIVE_OBJECT_TYPE(CHECK_FOR_OBJECT_TYPE)
#undef CHECK_FOR_OBJECT_TYPE
UNREACHABLE();
return kInvalidLiveObjType;
}
inline const char* GetObjectTypeDesc(LiveObjectType type) {
static const char* const name[kNumberOfTypes] = {
#define DEFINE_OBJECT_TYPE_NAME(type, name) name,
FOR_EACH_LIVE_OBJECT_TYPE(DEFINE_OBJECT_TYPE_NAME)
"invalid"
#undef DEFINE_OBJECT_TYPE_NAME
};
ASSERT(type < kNumberOfTypes);
return name[type];
}
const char* GetObjectTypeDesc(HeapObject* heap_obj) {
LiveObjectType type = GetObjectType(heap_obj);
return GetObjectTypeDesc(type);
}
bool IsOfType(LiveObjectType type, HeapObject* obj) {
// Note: there are types that are more general (e.g. JSObject) that would
// have passed the Is##type_() test for more specialized types (e.g.
// JSFunction). If we find a more specialized match but we're looking for
// the general type, then we should reject the ones that matches the
// specialized type.
#define CHECK_OBJECT_TYPE(type_, name) \
if (obj->Is##type_()) return (type == kType##type_);
FOR_EACH_LIVE_OBJECT_TYPE(CHECK_OBJECT_TYPE)
#undef CHECK_OBJECT_TYPE
return false;
}
const AllocationSpace kInvalidSpace = static_cast<AllocationSpace>(-1);
static AllocationSpace FindSpaceFor(String* space_str) {
SmartArrayPointer<char> s =
space_str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
const char* key_str = *s;
switch (key_str[0]) {
case 'c':
if (strcmp(key_str, "cell") == 0) return CELL_SPACE;
if (strcmp(key_str, "code") == 0) return CODE_SPACE;
break;
case 'l':
if (strcmp(key_str, "lo") == 0) return LO_SPACE;
break;
case 'm':
if (strcmp(key_str, "map") == 0) return MAP_SPACE;
break;
case 'n':
if (strcmp(key_str, "new") == 0) return NEW_SPACE;
break;
case 'o':
if (strcmp(key_str, "old-pointer") == 0) return OLD_POINTER_SPACE;
if (strcmp(key_str, "old-data") == 0) return OLD_DATA_SPACE;
break;
}
return kInvalidSpace;
}
static bool InSpace(AllocationSpace space, HeapObject* heap_obj) {
Heap* heap = ISOLATE->heap();
if (space != LO_SPACE) {
return heap->InSpace(heap_obj, space);
}
// This is an optimization to speed up the check for an object in the LO
// space by exclusion because we know that all object pointers passed in
// here are guaranteed to be in the heap. Hence, it is safe to infer
// using an exclusion test.
// Note: calling Heap::InSpace(heap_obj, LO_SPACE) is too slow for our
// filters.
int first_space = static_cast<int>(FIRST_SPACE);
int last_space = static_cast<int>(LO_SPACE);
for (int sp = first_space; sp < last_space; sp++) {
if (heap->InSpace(heap_obj, static_cast<AllocationSpace>(sp))) {
return false;
}
}
SLOW_ASSERT(heap->InSpace(heap_obj, LO_SPACE));
return true;
}
static LiveObjectType FindTypeFor(String* type_str) {
SmartArrayPointer<char> s =
type_str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
#define CHECK_OBJECT_TYPE(type_, name) { \
const char* type_desc = GetObjectTypeDesc(kType##type_); \
const char* key_str = *s; \
if (strstr(type_desc, key_str) != NULL) return kType##type_; \
}
FOR_EACH_LIVE_OBJECT_TYPE(CHECK_OBJECT_TYPE)
#undef CHECK_OBJECT_TYPE
return kInvalidLiveObjType;
}
class LolFilter {
public:
explicit LolFilter(Handle<JSObject> filter_obj);
inline bool is_active() const { return is_active_; }
inline bool Matches(HeapObject* obj) {
return !is_active() || MatchesSlow(obj);
}
private:
void InitTypeFilter(Handle<JSObject> filter_obj);
void InitSpaceFilter(Handle<JSObject> filter_obj);
void InitPropertyFilter(Handle<JSObject> filter_obj);
bool MatchesSlow(HeapObject* obj);
bool is_active_;
LiveObjectType type_;
AllocationSpace space_;
Handle<String> prop_;
};
LolFilter::LolFilter(Handle<JSObject> filter_obj)
: is_active_(false),
type_(kInvalidLiveObjType),
space_(kInvalidSpace),
prop_() {
if (filter_obj.is_null()) return;
InitTypeFilter(filter_obj);
InitSpaceFilter(filter_obj);
InitPropertyFilter(filter_obj);
}
void LolFilter::InitTypeFilter(Handle<JSObject> filter_obj) {
Handle<String> type_sym = FACTORY->LookupAsciiSymbol("type");
MaybeObject* maybe_result = filter_obj->GetProperty(*type_sym);
Object* type_obj;
if (maybe_result->ToObject(&type_obj)) {
if (type_obj->IsString()) {
String* type_str = String::cast(type_obj);
type_ = FindTypeFor(type_str);
if (type_ != kInvalidLiveObjType) {
is_active_ = true;
}
}
}
}
void LolFilter::InitSpaceFilter(Handle<JSObject> filter_obj) {
Handle<String> space_sym = FACTORY->LookupAsciiSymbol("space");
MaybeObject* maybe_result = filter_obj->GetProperty(*space_sym);
Object* space_obj;
if (maybe_result->ToObject(&space_obj)) {
if (space_obj->IsString()) {
String* space_str = String::cast(space_obj);
space_ = FindSpaceFor(space_str);
if (space_ != kInvalidSpace) {
is_active_ = true;
}
}
}
}
void LolFilter::InitPropertyFilter(Handle<JSObject> filter_obj) {
Handle<String> prop_sym = FACTORY->LookupAsciiSymbol("prop");
MaybeObject* maybe_result = filter_obj->GetProperty(*prop_sym);
Object* prop_obj;
if (maybe_result->ToObject(&prop_obj)) {
if (prop_obj->IsString()) {
prop_ = Handle<String>(String::cast(prop_obj));
is_active_ = true;
}
}
}
bool LolFilter::MatchesSlow(HeapObject* obj) {
if ((type_ != kInvalidLiveObjType) && !IsOfType(type_, obj)) {
return false; // Fail because obj is not of the type of interest.
}
if ((space_ != kInvalidSpace) && !InSpace(space_, obj)) {
return false; // Fail because obj is not in the space of interest.
}
if (!prop_.is_null() && obj->IsJSObject()) {
LookupResult result;
obj->Lookup(*prop_, &result);
if (!result.IsProperty()) {
return false; // Fail because obj does not have the property of interest.
}
}
return true;
}
class LolIterator {
public:
LolIterator(LiveObjectList* older, LiveObjectList* newer)
: older_(older),
newer_(newer),
curr_(0),
elements_(0),
count_(0),
index_(0) { }
inline void Init() {
SetCurrent(newer_);
// If the elements_ list is empty, then move on to the next list as long
// as we're not at the last list (indicated by done()).
while ((elements_ == NULL) && !Done()) {
SetCurrent(curr_->prev_);
}
}
inline bool Done() const {
return (curr_ == older_);
}
// Object level iteration.
inline void Next() {
index_++;
if (index_ >= count_) {
// Iterate backwards until we get to the oldest list.
while (!Done()) {
SetCurrent(curr_->prev_);
// If we have elements to process, we're good to go.
if (elements_ != NULL) break;
// Else, we should advance to the next older list.
}
}
}
inline int Id() const {
return elements_[index_].id_;
}
inline HeapObject* Obj() const {
return elements_[index_].obj_;
}
inline int LolObjCount() const {
if (curr_ != NULL) return curr_->obj_count_;
return 0;
}
protected:
inline void SetCurrent(LiveObjectList* new_curr) {
curr_ = new_curr;
if (curr_ != NULL) {
elements_ = curr_->elements_;
count_ = curr_->obj_count_;
index_ = 0;
}
}
LiveObjectList* older_;
LiveObjectList* newer_;
LiveObjectList* curr_;
LiveObjectList::Element* elements_;
int count_;
int index_;
};
class LolForwardIterator : public LolIterator {
public:
LolForwardIterator(LiveObjectList* first, LiveObjectList* last)
: LolIterator(first, last) {
}
inline void Init() {
SetCurrent(older_);
// If the elements_ list is empty, then move on to the next list as long
// as we're not at the last list (indicated by Done()).
while ((elements_ == NULL) && !Done()) {
SetCurrent(curr_->next_);
}
}
inline bool Done() const {
return (curr_ == newer_);
}
// Object level iteration.
inline void Next() {
index_++;
if (index_ >= count_) {
// Done with current list. Move on to the next.
while (!Done()) { // If not at the last list already, ...
SetCurrent(curr_->next_);
// If we have elements to process, we're good to go.
if (elements_ != NULL) break;
// Else, we should advance to the next list.
}
}
}
};
// Minimizes the white space in a string. Tabs and newlines are replaced
// with a space where appropriate.
static int CompactString(char* str) {
char* src = str;
char* dst = str;
char prev_ch = 0;
while (*dst != '\0') {
char ch = *src++;
// We will treat non-ASCII chars as '?'.
if ((ch & 0x80) != 0) {
ch = '?';
}
// Compact contiguous whitespace chars into a single ' '.
if (isspace(ch)) {
if (prev_ch != ' ') *dst++ = ' ';
prev_ch = ' ';
continue;
}
*dst++ = ch;
prev_ch = ch;
}
return (dst - str);
}
// Generates a custom description based on the specific type of
// object we're looking at. We only generate specialized
// descriptions where we can. In all other cases, we emit the
// generic info.
static void GenerateObjectDesc(HeapObject* obj,
char* buffer,
int buffer_size) {
Vector<char> buffer_v(buffer, buffer_size);
ASSERT(obj != NULL);
if (obj->IsJSArray()) {
JSArray* jsarray = JSArray::cast(obj);
double length = jsarray->length()->Number();
OS::SNPrintF(buffer_v,
"%p <%s> len %g",
reinterpret_cast<void*>(obj),
GetObjectTypeDesc(obj),
length);
} else if (obj->IsString()) {
String* str = String::cast(obj);
// Only grab up to 160 chars in case they are double byte.
// We'll only dump 80 of them after we compact them.
const int kMaxCharToDump = 80;
const int kMaxBufferSize = kMaxCharToDump * 2;
SmartArrayPointer<char> str_sp = str->ToCString(DISALLOW_NULLS,
ROBUST_STRING_TRAVERSAL,
0,
kMaxBufferSize);
char* str_cstr = *str_sp;
int length = CompactString(str_cstr);
OS::SNPrintF(buffer_v,
"%p <%s> '%.80s%s'",
reinterpret_cast<void*>(obj),
GetObjectTypeDesc(obj),
str_cstr,
(length > kMaxCharToDump) ? "..." : "");
} else if (obj->IsJSFunction() || obj->IsSharedFunctionInfo()) {
SharedFunctionInfo* sinfo;
if (obj->IsJSFunction()) {
JSFunction* func = JSFunction::cast(obj);
sinfo = func->shared();
} else {
sinfo = SharedFunctionInfo::cast(obj);
}
String* name = sinfo->DebugName();
SmartArrayPointer<char> name_sp =
name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
char* name_cstr = *name_sp;
HeapStringAllocator string_allocator;
StringStream stream(&string_allocator);
sinfo->SourceCodePrint(&stream, 50);
SmartArrayPointer<const char> source_sp = stream.ToCString();
const char* source_cstr = *source_sp;
OS::SNPrintF(buffer_v,
"%p <%s> '%s' %s",
reinterpret_cast<void*>(obj),
GetObjectTypeDesc(obj),
name_cstr,
source_cstr);
} else if (obj->IsFixedArray()) {
FixedArray* fixed = FixedArray::cast(obj);
OS::SNPrintF(buffer_v,
"%p <%s> len %d",
reinterpret_cast<void*>(obj),
GetObjectTypeDesc(obj),
fixed->length());
} else {
OS::SNPrintF(buffer_v,
"%p <%s>",
reinterpret_cast<void*>(obj),
GetObjectTypeDesc(obj));
}
}
// Utility function for filling in a line of detail in a verbose dump.
static bool AddObjDetail(Handle<FixedArray> arr,
int index,
int obj_id,
Handle<HeapObject> target,
const char* desc_str,
Handle<String> id_sym,
Handle<String> desc_sym,
Handle<String> size_sym,
Handle<JSObject> detail,
Handle<String> desc,
Handle<Object> error) {
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
detail = factory->NewJSObject(isolate->object_function());
if (detail->IsFailure()) {
error = detail;
return false;
}
int size = 0;
char buffer[512];
if (desc_str == NULL) {
ASSERT(!target.is_null());
HeapObject* obj = *target;
GenerateObjectDesc(obj, buffer, sizeof(buffer));
desc_str = buffer;
size = obj->Size();
}
desc = factory->NewStringFromAscii(CStrVector(desc_str));
if (desc->IsFailure()) {
error = desc;
return false;
}
{ MaybeObject* maybe_result = detail->SetProperty(*id_sym,
Smi::FromInt(obj_id),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return false;
}
{ MaybeObject* maybe_result = detail->SetProperty(*desc_sym,
*desc,
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return false;
}
{ MaybeObject* maybe_result = detail->SetProperty(*size_sym,
Smi::FromInt(size),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return false;
}
arr->set(index, *detail);
return true;
}
class DumpWriter {
public:
virtual ~DumpWriter() {}
virtual void ComputeTotalCountAndSize(LolFilter* filter,
int* count,
int* size) = 0;
virtual bool Write(Handle<FixedArray> elements_arr,
int start,
int dump_limit,
LolFilter* filter,
Handle<Object> error) = 0;
};
class LolDumpWriter: public DumpWriter {
public:
LolDumpWriter(LiveObjectList* older, LiveObjectList* newer)
: older_(older), newer_(newer) {
}
void ComputeTotalCountAndSize(LolFilter* filter, int* count, int* size) {
*count = 0;
*size = 0;
LolIterator it(older_, newer_);
for (it.Init(); !it.Done(); it.Next()) {
HeapObject* heap_obj = it.Obj();
if (!filter->Matches(heap_obj)) {
continue;
}
*size += heap_obj->Size();
(*count)++;
}
}
bool Write(Handle<FixedArray> elements_arr,
int start,
int dump_limit,
LolFilter* filter,
Handle<Object> error) {
// The lols are listed in latest to earliest. We want to dump from
// earliest to latest. So, compute the last element to start with.
int index = 0;
int count = 0;
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
// Prefetch some needed symbols.
Handle<String> id_sym = factory->LookupAsciiSymbol("id");
Handle<String> desc_sym = factory->LookupAsciiSymbol("desc");
Handle<String> size_sym = factory->LookupAsciiSymbol("size");
// Fill the array with the lol object details.
Handle<JSObject> detail;
Handle<String> desc;
Handle<HeapObject> target;
LiveObjectList* first_lol = (older_ != NULL) ?
older_->next_ : LiveObjectList::first_;
LiveObjectList* last_lol = (newer_ != NULL) ? newer_->next_ : NULL;
LolForwardIterator it(first_lol, last_lol);
for (it.Init(); !it.Done() && (index < dump_limit); it.Next()) {
HeapObject* heap_obj = it.Obj();
// Skip objects that have been filtered out.
if (!filter->Matches(heap_obj)) {
continue;
}
// Only report objects that are in the section of interest.
if (count >= start) {
target = Handle<HeapObject>(heap_obj);
bool success = AddObjDetail(elements_arr,
index++,
it.Id(),
target,
NULL,
id_sym,
desc_sym,
size_sym,
detail,
desc,
error);
if (!success) return false;
}
count++;
}
return true;
}
private:
LiveObjectList* older_;
LiveObjectList* newer_;
};
class RetainersDumpWriter: public DumpWriter {
public:
RetainersDumpWriter(Handle<HeapObject> target,
Handle<JSObject> instance_filter,
Handle<JSFunction> args_function)
: target_(target),
instance_filter_(instance_filter),
args_function_(args_function) {
}
void ComputeTotalCountAndSize(LolFilter* filter, int* count, int* size) {
Handle<FixedArray> retainers_arr;
Handle<Object> error;
*size = -1;
LiveObjectList::GetRetainers(target_,
instance_filter_,
retainers_arr,
0,
Smi::kMaxValue,
count,
filter,
NULL,
*args_function_,
error);
}
bool Write(Handle<FixedArray> elements_arr,
int start,
int dump_limit,
LolFilter* filter,
Handle<Object> error) {
int dummy;
int count;
// Fill the retainer objects.
count = LiveObjectList::GetRetainers(target_,
instance_filter_,
elements_arr,
start,
dump_limit,
&dummy,
filter,
NULL,
*args_function_,
error);
if (count < 0) {
return false;
}
return true;
}
private:
Handle<HeapObject> target_;
Handle<JSObject> instance_filter_;
Handle<JSFunction> args_function_;
};
class LiveObjectSummary {
public:
explicit LiveObjectSummary(LolFilter* filter)
: total_count_(0),
total_size_(0),
found_root_(false),
found_weak_root_(false),
filter_(filter) {
memset(counts_, 0, sizeof(counts_[0]) * kNumberOfEntries);
memset(sizes_, 0, sizeof(sizes_[0]) * kNumberOfEntries);
}
void Add(HeapObject* heap_obj) {
int size = heap_obj->Size();
LiveObjectType type = GetObjectType(heap_obj);
ASSERT(type != kInvalidLiveObjType);
counts_[type]++;
sizes_[type] += size;
total_count_++;
total_size_ += size;
}
void set_found_root() { found_root_ = true; }
void set_found_weak_root() { found_weak_root_ = true; }
inline int Count(LiveObjectType type) {
return counts_[type];
}
inline int Size(LiveObjectType type) {
return sizes_[type];
}
inline int total_count() {
return total_count_;
}
inline int total_size() {
return total_size_;
}
inline bool found_root() {
return found_root_;
}
inline bool found_weak_root() {
return found_weak_root_;
}
int GetNumberOfEntries() {
int entries = 0;
for (int i = 0; i < kNumberOfEntries; i++) {
if (counts_[i]) entries++;
}
return entries;
}
inline LolFilter* filter() { return filter_; }
static const int kNumberOfEntries = kNumberOfTypes;
private:
int counts_[kNumberOfEntries];
int sizes_[kNumberOfEntries];
int total_count_;
int total_size_;
bool found_root_;
bool found_weak_root_;
LolFilter* filter_;
};
// Abstraction for a summary writer.
class SummaryWriter {
public:
virtual ~SummaryWriter() {}
virtual void Write(LiveObjectSummary* summary) = 0;
};
// A summary writer for filling in a summary of lol lists and diffs.
class LolSummaryWriter: public SummaryWriter {
public:
LolSummaryWriter(LiveObjectList* older_lol,
LiveObjectList* newer_lol)
: older_(older_lol), newer_(newer_lol) {
}
void Write(LiveObjectSummary* summary) {
LolFilter* filter = summary->filter();
// Fill the summary with the lol object details.
LolIterator it(older_, newer_);
for (it.Init(); !it.Done(); it.Next()) {
HeapObject* heap_obj = it.Obj();
if (!filter->Matches(heap_obj)) {
continue;
}
summary->Add(heap_obj);
}
}
private:
LiveObjectList* older_;
LiveObjectList* newer_;
};
// A summary writer for filling in a retainers list.
class RetainersSummaryWriter: public SummaryWriter {
public:
RetainersSummaryWriter(Handle<HeapObject> target,
Handle<JSObject> instance_filter,
Handle<JSFunction> args_function)
: target_(target),
instance_filter_(instance_filter),
args_function_(args_function) {
}
void Write(LiveObjectSummary* summary) {
Handle<FixedArray> retainers_arr;
Handle<Object> error;
int dummy_total_count;
LiveObjectList::GetRetainers(target_,
instance_filter_,
retainers_arr,
0,
Smi::kMaxValue,
&dummy_total_count,
summary->filter(),
summary,
*args_function_,
error);
}
private:
Handle<HeapObject> target_;
Handle<JSObject> instance_filter_;
Handle<JSFunction> args_function_;
};
uint32_t LiveObjectList::next_element_id_ = 1;
int LiveObjectList::list_count_ = 0;
int LiveObjectList::last_id_ = 0;
LiveObjectList* LiveObjectList::first_ = NULL;
LiveObjectList* LiveObjectList::last_ = NULL;
LiveObjectList::LiveObjectList(LiveObjectList* prev, int capacity)
: prev_(prev),
next_(NULL),
capacity_(capacity),
obj_count_(0) {
elements_ = NewArray<Element>(capacity);
id_ = ++last_id_;
list_count_++;
}
LiveObjectList::~LiveObjectList() {
DeleteArray<Element>(elements_);
delete prev_;
}
int LiveObjectList::GetTotalObjCountAndSize(int* size_p) {
int size = 0;
int count = 0;
LiveObjectList* lol = this;
do {
// Only compute total size if requested i.e. when size_p is not null.
if (size_p != NULL) {
Element* elements = lol->elements_;
for (int i = 0; i < lol->obj_count_; i++) {
HeapObject* heap_obj = elements[i].obj_;
size += heap_obj->Size();
}
}
count += lol->obj_count_;
lol = lol->prev_;
} while (lol != NULL);
if (size_p != NULL) {
*size_p = size;
}
return count;
}
// Adds an object to the lol.
// Returns true if successful, else returns false.
bool LiveObjectList::Add(HeapObject* obj) {
// If the object is already accounted for in the prev list which we inherit
// from, then no need to add it to this list.
if ((prev() != NULL) && (prev()->Find(obj) != NULL)) {
return true;
}
ASSERT(obj_count_ <= capacity_);
if (obj_count_ == capacity_) {
// The heap must have grown and we have more objects than capacity to store
// them.
return false; // Fail this addition.
}
Element& element = elements_[obj_count_++];
element.id_ = next_element_id_++;
element.obj_ = obj;
return true;
}
// Comparator used for sorting and searching the lol.
int LiveObjectList::CompareElement(const Element* a, const Element* b) {
const HeapObject* obj1 = a->obj_;
const HeapObject* obj2 = b->obj_;
// For lol elements, it doesn't matter which comes first if 2 elements point
// to the same object (which gets culled later). Hence, we only care about
// the the greater than / less than relationships.
return (obj1 > obj2) ? 1 : (obj1 == obj2) ? 0 : -1;
}
// Looks for the specified object in the lol, and returns its element if found.
LiveObjectList::Element* LiveObjectList::Find(HeapObject* obj) {
LiveObjectList* lol = this;
Element key;
Element* result = NULL;
key.obj_ = obj;
// Iterate through the chain of lol's to look for the object.
while ((result == NULL) && (lol != NULL)) {
result = reinterpret_cast<Element*>(
bsearch(&key, lol->elements_, lol->obj_count_,
sizeof(Element),
reinterpret_cast<RawComparer>(CompareElement)));
lol = lol->prev_;
}
return result;
}
// "Nullifies" (convert the HeapObject* into an SMI) so that it will get cleaned
// up in the GCEpilogue, while preserving the sort order of the lol.
// NOTE: the lols need to be already sorted before NullifyMostRecent() is
// called.
void LiveObjectList::NullifyMostRecent(HeapObject* obj) {
LiveObjectList* lol = last();
Element key;
Element* result = NULL;
key.obj_ = obj;
// Iterate through the chain of lol's to look for the object.
while (lol != NULL) {
result = reinterpret_cast<Element*>(
bsearch(&key, lol->elements_, lol->obj_count_,
sizeof(Element),
reinterpret_cast<RawComparer>(CompareElement)));
if (result != NULL) {
// Since there may be more than one (we are nullifying dup's after all),
// find the first in the current lol, and nullify that. The lol should
// be sorted already to make this easy (see the use of SortAll()).
int i = result - lol->elements_;
// NOTE: we sort the lol in increasing order. So, if an object has been
// "nullified" (its lowest bit will be cleared to make it look like an
// SMI), it would/should show up before the equivalent dups that have not
// yet been "nullified". Hence, we should be searching backwards for the
// first occurence of a matching object and nullify that instance. This
// will ensure that we preserve the expected sorting order.
for (i--; i > 0; i--) {
Element* element = &lol->elements_[i];
HeapObject* curr_obj = element->obj_;
if (curr_obj != obj) {
break; // No more matches. Let's move on.
}
result = element; // Let this earlier match be the result.
}
// Nullify the object.
NullifyNonLivePointer(&result->obj_);
return;
}
lol = lol->prev_;
}
}
// Sorts the lol.
void LiveObjectList::Sort() {
if (obj_count_ > 0) {
Vector<Element> elements_v(elements_, obj_count_);
elements_v.Sort(CompareElement);
}
}
// Sorts all captured lols starting from the latest.
void LiveObjectList::SortAll() {
LiveObjectList* lol = last();
while (lol != NULL) {
lol->Sort();
lol = lol->prev_;
}
}
// Counts the number of objects in the heap.
static int CountHeapObjects() {
int count = 0;
// Iterate over all the heap spaces and count the number of objects.
HeapIterator iterator;
HeapObject* heap_obj = NULL;
while ((heap_obj = iterator.next()) != NULL) {
count++;
}
return count;
}
// Captures a current snapshot of all objects in the heap.
MaybeObject* LiveObjectList::Capture() {
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
// Count the number of objects in the heap.
int total_count = CountHeapObjects();
int count = total_count;
int size = 0;
LiveObjectList* last_lol = last();
if (last_lol != NULL) {
count -= last_lol->TotalObjCount();
}
LiveObjectList* lol;
// Create a lol large enough to track all the objects.
lol = new LiveObjectList(last_lol, count);
if (lol == NULL) {
return NULL; // No memory to proceed.
}
// The HeapIterator needs to be in its own scope because it disables
// allocation, and we need allocate below.
{
// Iterate over all the heap spaces and add the objects.
HeapIterator iterator;
HeapObject* heap_obj = NULL;
bool failed = false;
while (!failed && (heap_obj = iterator.next()) != NULL) {
failed = !lol->Add(heap_obj);
size += heap_obj->Size();
}
ASSERT(!failed);
lol->Sort();
// Add the current lol to the list of lols.
if (last_ != NULL) {
last_->next_ = lol;
} else {
first_ = lol;
}
last_ = lol;
#ifdef VERIFY_LOL
if (FLAG_verify_lol) {
Verify(true);
}
#endif
}
Handle<String> id_sym = factory->LookupAsciiSymbol("id");
Handle<String> count_sym = factory->LookupAsciiSymbol("count");
Handle<String> size_sym = factory->LookupAsciiSymbol("size");
Handle<JSObject> result = factory->NewJSObject(isolate->object_function());
if (result->IsFailure()) return Object::cast(*result);
{ MaybeObject* maybe_result = result->SetProperty(*id_sym,
Smi::FromInt(lol->id()),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
}
{ MaybeObject* maybe_result = result->SetProperty(*count_sym,
Smi::FromInt(total_count),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
}
{ MaybeObject* maybe_result = result->SetProperty(*size_sym,
Smi::FromInt(size),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
}
return *result;
}
// Delete doesn't actually deletes an lol. It just marks it as invisible since
// its contents are considered to be part of subsequent lists as well. The
// only time we'll actually delete the lol is when we Reset() or if the lol is
// invisible, and its element count reaches 0.
bool LiveObjectList::Delete(int id) {
LiveObjectList* lol = last();
while (lol != NULL) {
if (lol->id() == id) {
break;
}
lol = lol->prev_;
}
// If no lol is found for this id, then we fail to delete.
if (lol == NULL) return false;
// Else, mark the lol as invisible i.e. id == 0.
lol->id_ = 0;
list_count_--;
ASSERT(list_count_ >= 0);
if (lol->obj_count_ == 0) {
// Point the next lol's prev to this lol's prev.
LiveObjectList* next = lol->next_;
LiveObjectList* prev = lol->prev_;
// Point next's prev to prev.
if (next != NULL) {
next->prev_ = lol->prev_;
} else {
last_ = lol->prev_;
}
// Point prev's next to next.
if (prev != NULL) {
prev->next_ = lol->next_;
} else {
first_ = lol->next_;
}
lol->prev_ = NULL;
lol->next_ = NULL;
// Delete this now empty and invisible lol.
delete lol;
}
// Just in case we've marked everything invisible, then clean up completely.
if (list_count_ == 0) {
Reset();
}
return true;
}
MaybeObject* LiveObjectList::Dump(int older_id,
int newer_id,
int start_idx,
int dump_limit,
Handle<JSObject> filter_obj) {
if ((older_id < 0) || (newer_id < 0) || (last() == NULL)) {
return Failure::Exception(); // Fail: 0 is not a valid lol id.
}
if (newer_id < older_id) {
// They are not in the expected order. Swap them.
int temp = older_id;
older_id = newer_id;
newer_id = temp;
}
LiveObjectList* newer_lol = FindLolForId(newer_id, last());
LiveObjectList* older_lol = FindLolForId(older_id, newer_lol);
// If the id is defined, and we can't find a LOL for it, then we have an
// invalid id.
if ((newer_id != 0) && (newer_lol == NULL)) {
return Failure::Exception(); // Fail: the newer lol id is invalid.
}
if ((older_id != 0) && (older_lol == NULL)) {
return Failure::Exception(); // Fail: the older lol id is invalid.
}
LolFilter filter(filter_obj);
LolDumpWriter writer(older_lol, newer_lol);
return DumpPrivate(&writer, start_idx, dump_limit, &filter);
}
MaybeObject* LiveObjectList::DumpPrivate(DumpWriter* writer,
int start,
int dump_limit,
LolFilter* filter) {
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
// Calculate the number of entries of the dump.
int count = -1;
int size = -1;
writer->ComputeTotalCountAndSize(filter, &count, &size);
// Adjust for where to start the dump.
if ((start < 0) || (start >= count)) {
return Failure::Exception(); // invalid start.
}
int remaining_count = count - start;
if (dump_limit > remaining_count) {
dump_limit = remaining_count;
}
// Allocate an array to hold the result.
Handle<FixedArray> elements_arr = factory->NewFixedArray(dump_limit);
if (elements_arr->IsFailure()) return Object::cast(*elements_arr);
// Fill in the dump.
Handle<Object> error;
bool success = writer->Write(elements_arr,
start,
dump_limit,
filter,
error);
if (!success) return Object::cast(*error);
MaybeObject* maybe_result;
// Allocate the result body.
Handle<JSObject> body = factory->NewJSObject(isolate->object_function());
if (body->IsFailure()) return Object::cast(*body);
// Set the updated body.count.
Handle<String> count_sym = factory->LookupAsciiSymbol("count");
maybe_result = body->SetProperty(*count_sym,
Smi::FromInt(count),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
// Set the updated body.size if appropriate.
if (size >= 0) {
Handle<String> size_sym = factory->LookupAsciiSymbol("size");
maybe_result = body->SetProperty(*size_sym,
Smi::FromInt(size),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
}
// Set body.first_index.
Handle<String> first_sym = factory->LookupAsciiSymbol("first_index");
maybe_result = body->SetProperty(*first_sym,
Smi::FromInt(start),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
// Allocate the JSArray of the elements.
Handle<JSObject> elements = factory->NewJSObject(isolate->array_function());
if (elements->IsFailure()) return Object::cast(*elements);
maybe_result = Handle<JSArray>::cast(elements)->SetContent(*elements_arr);
if (maybe_result->IsFailure()) return maybe_result;
// Set body.elements.
Handle<String> elements_sym = factory->LookupAsciiSymbol("elements");
maybe_result = body->SetProperty(*elements_sym,
*elements,
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
return *body;
}
MaybeObject* LiveObjectList::Summarize(int older_id,
int newer_id,
Handle<JSObject> filter_obj) {
if ((older_id < 0) || (newer_id < 0) || (last() == NULL)) {
return Failure::Exception(); // Fail: 0 is not a valid lol id.
}
if (newer_id < older_id) {
// They are not in the expected order. Swap them.
int temp = older_id;
older_id = newer_id;
newer_id = temp;
}
LiveObjectList* newer_lol = FindLolForId(newer_id, last());
LiveObjectList* older_lol = FindLolForId(older_id, newer_lol);
// If the id is defined, and we can't find a LOL for it, then we have an
// invalid id.
if ((newer_id != 0) && (newer_lol == NULL)) {
return Failure::Exception(); // Fail: the newer lol id is invalid.
}
if ((older_id != 0) && (older_lol == NULL)) {
return Failure::Exception(); // Fail: the older lol id is invalid.
}
LolFilter filter(filter_obj);
LolSummaryWriter writer(older_lol, newer_lol);
return SummarizePrivate(&writer, &filter, false);
}
// Creates a summary report for the debugger.
// Note: the SummaryWriter takes care of iterating over objects and filling in
// the summary.
MaybeObject* LiveObjectList::SummarizePrivate(SummaryWriter* writer,
LolFilter* filter,
bool is_tracking_roots) {
HandleScope scope;
MaybeObject* maybe_result;
LiveObjectSummary summary(filter);
writer->Write(&summary);
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
// The result body will look like this:
// body: {
// count: <total_count>,
// size: <total_size>,
// found_root: <boolean>, // optional.
// found_weak_root: <boolean>, // optional.
// summary: [
// {
// desc: "<object type name>",
// count: <count>,
// size: size
// },
// ...
// ]
// }
// Prefetch some needed symbols.
Handle<String> desc_sym = factory->LookupAsciiSymbol("desc");
Handle<String> count_sym = factory->LookupAsciiSymbol("count");
Handle<String> size_sym = factory->LookupAsciiSymbol("size");
Handle<String> summary_sym = factory->LookupAsciiSymbol("summary");
// Allocate the summary array.
int entries_count = summary.GetNumberOfEntries();
Handle<FixedArray> summary_arr =
factory->NewFixedArray(entries_count);
if (summary_arr->IsFailure()) return Object::cast(*summary_arr);
int idx = 0;
for (int i = 0; i < LiveObjectSummary::kNumberOfEntries; i++) {
// Allocate the summary record.
Handle<JSObject> detail = factory->NewJSObject(isolate->object_function());
if (detail->IsFailure()) return Object::cast(*detail);
// Fill in the summary record.
LiveObjectType type = static_cast<LiveObjectType>(i);
int count = summary.Count(type);
if (count) {
const char* desc_cstr = GetObjectTypeDesc(type);
Handle<String> desc = factory->LookupAsciiSymbol(desc_cstr);
int size = summary.Size(type);
maybe_result = detail->SetProperty(*desc_sym,
*desc,
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
maybe_result = detail->SetProperty(*count_sym,
Smi::FromInt(count),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
maybe_result = detail->SetProperty(*size_sym,
Smi::FromInt(size),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
summary_arr->set(idx++, *detail);
}
}
// Wrap the summary fixed array in a JS array.
Handle<JSObject> summary_obj =
factory->NewJSObject(isolate->array_function());
if (summary_obj->IsFailure()) return Object::cast(*summary_obj);
maybe_result = Handle<JSArray>::cast(summary_obj)->SetContent(*summary_arr);
if (maybe_result->IsFailure()) return maybe_result;
// Create the body object.
Handle<JSObject> body = factory->NewJSObject(isolate->object_function());
if (body->IsFailure()) return Object::cast(*body);
// Fill out the body object.
int total_count = summary.total_count();
int total_size = summary.total_size();
maybe_result = body->SetProperty(*count_sym,
Smi::FromInt(total_count),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
maybe_result = body->SetProperty(*size_sym,
Smi::FromInt(total_size),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
if (is_tracking_roots) {
int found_root = summary.found_root();
int found_weak_root = summary.found_weak_root();
Handle<String> root_sym = factory->LookupAsciiSymbol("found_root");
Handle<String> weak_root_sym =
factory->LookupAsciiSymbol("found_weak_root");
maybe_result = body->SetProperty(*root_sym,
Smi::FromInt(found_root),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
maybe_result = body->SetProperty(*weak_root_sym,
Smi::FromInt(found_weak_root),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
}
maybe_result = body->SetProperty(*summary_sym,
*summary_obj,
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
return *body;
}
// Returns an array listing the captured lols.
// Note: only dumps the section starting at start_idx and only up to
// dump_limit entries.
MaybeObject* LiveObjectList::Info(int start_idx, int dump_limit) {
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
HandleScope scope(isolate);
MaybeObject* maybe_result;
int total_count = LiveObjectList::list_count();
int dump_count = total_count;
// Adjust for where to start the dump.
if (total_count == 0) {
start_idx = 0; // Ensure this to get an empty list.
} else if ((start_idx < 0) || (start_idx >= total_count)) {
return Failure::Exception(); // invalid start.
}
dump_count -= start_idx;
// Adjust for the dump limit.
if (dump_count > dump_limit) {
dump_count = dump_limit;
}
// Allocate an array to hold the result.
Handle<FixedArray> list = factory->NewFixedArray(dump_count);
if (list->IsFailure()) return Object::cast(*list);
// Prefetch some needed symbols.
Handle<String> id_sym = factory->LookupAsciiSymbol("id");
Handle<String> count_sym = factory->LookupAsciiSymbol("count");
Handle<String> size_sym = factory->LookupAsciiSymbol("size");
// Fill the array with the lol details.
int idx = 0;
LiveObjectList* lol = first_;
while ((lol != NULL) && (idx < start_idx)) { // Skip tail entries.
if (lol->id() != 0) {
idx++;
}
lol = lol->next();
}
idx = 0;
while ((lol != NULL) && (dump_limit != 0)) {
if (lol->id() != 0) {
int count;
int size;
count = lol->GetTotalObjCountAndSize(&size);
Handle<JSObject> detail =
factory->NewJSObject(isolate->object_function());
if (detail->IsFailure()) return Object::cast(*detail);
maybe_result = detail->SetProperty(*id_sym,
Smi::FromInt(lol->id()),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
maybe_result = detail->SetProperty(*count_sym,
Smi::FromInt(count),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
maybe_result = detail->SetProperty(*size_sym,
Smi::FromInt(size),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
list->set(idx++, *detail);
dump_limit--;
}
lol = lol->next();
}
// Return the result as a JS array.
Handle<JSObject> lols = factory->NewJSObject(isolate->array_function());
maybe_result = Handle<JSArray>::cast(lols)->SetContent(*list);
if (maybe_result->IsFailure()) return maybe_result;
Handle<JSObject> result = factory->NewJSObject(isolate->object_function());
if (result->IsFailure()) return Object::cast(*result);
maybe_result = result->SetProperty(*count_sym,
Smi::FromInt(total_count),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
Handle<String> first_sym = factory->LookupAsciiSymbol("first_index");
maybe_result = result->SetProperty(*first_sym,
Smi::FromInt(start_idx),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
Handle<String> lists_sym = factory->LookupAsciiSymbol("lists");
maybe_result = result->SetProperty(*lists_sym,
*lols,
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
return *result;
}
// Deletes all captured lols.
void LiveObjectList::Reset() {
LiveObjectList* lol = last();
// Just delete the last. Each lol will delete it's prev automatically.
delete lol;
next_element_id_ = 1;
list_count_ = 0;
last_id_ = 0;
first_ = NULL;
last_ = NULL;
}
// Gets the object for the specified obj id.
Object* LiveObjectList::GetObj(int obj_id) {
Element* element = FindElementFor<int>(GetElementId, obj_id);
if (element != NULL) {
return Object::cast(element->obj_);
}
return HEAP->undefined_value();
}
// Gets the obj id for the specified address if valid.
int LiveObjectList::GetObjId(Object* obj) {
// Make a heap object pointer from the address.
HeapObject* hobj = HeapObject::cast(obj);
Element* element = FindElementFor<HeapObject*>(GetElementObj, hobj);
if (element != NULL) {
return element->id_;
}
return 0; // Invalid address.
}
// Gets the obj id for the specified address if valid.
Object* LiveObjectList::GetObjId(Handle<String> address) {
SmartArrayPointer<char> addr_str =
address->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
Isolate* isolate = Isolate::Current();
// Extract the address value from the string.
int value =
static_cast<int>(StringToInt(isolate->unicode_cache(), *address, 16));
Object* obj = reinterpret_cast<Object*>(value);
return Smi::FromInt(GetObjId(obj));
}
// Helper class for copying HeapObjects.
class LolVisitor: public ObjectVisitor {
public:
LolVisitor(HeapObject* target, Handle<HeapObject> handle_to_skip)
: target_(target), handle_to_skip_(handle_to_skip), found_(false) {}
void VisitPointer(Object** p) { CheckPointer(p); }
void VisitPointers(Object** start, Object** end) {
// Check all HeapObject pointers in [start, end).
for (Object** p = start; !found() && p < end; p++) CheckPointer(p);
}
inline bool found() const { return found_; }
inline bool reset() { return found_ = false; }
private:
inline void CheckPointer(Object** p) {
Object* object = *p;
if (HeapObject::cast(object) == target_) {
// We may want to skip this handle because the handle may be a local
// handle in a handle scope in one of our callers. Once we return,
// that handle will be popped. Hence, we don't want to count it as
// a root that would have kept the target object alive.
if (!handle_to_skip_.is_null() &&
handle_to_skip_.location() == reinterpret_cast<HeapObject**>(p)) {
return; // Skip this handle.
}
found_ = true;
}
}
HeapObject* target_;
Handle<HeapObject> handle_to_skip_;
bool found_;
};
inline bool AddRootRetainerIfFound(const LolVisitor& visitor,
LolFilter* filter,
LiveObjectSummary* summary,
void (*SetRootFound)(LiveObjectSummary* s),
int start,
int dump_limit,
int* total_count,
Handle<FixedArray> retainers_arr,
int* count,
int* index,
const char* root_name,
Handle<String> id_sym,
Handle<String> desc_sym,
Handle<String> size_sym,
Handle<Object> error) {
HandleScope scope;
// Scratch handles.
Handle<JSObject> detail;
Handle<String> desc;
Handle<HeapObject> retainer;
if (visitor.found()) {
if (!filter->is_active()) {
(*total_count)++;
if (summary) {
SetRootFound(summary);
} else if ((*total_count > start) && ((*index) < dump_limit)) {
(*count)++;
if (!retainers_arr.is_null()) {
return AddObjDetail(retainers_arr,
(*index)++,
0,
retainer,
root_name,
id_sym,
desc_sym,
size_sym,
detail,
desc,
error);
}
}
}
}
return true;
}
inline void SetFoundRoot(LiveObjectSummary* summary) {
summary->set_found_root();
}
inline void SetFoundWeakRoot(LiveObjectSummary* summary) {
summary->set_found_weak_root();
}
int LiveObjectList::GetRetainers(Handle<HeapObject> target,
Handle<JSObject> instance_filter,
Handle<FixedArray> retainers_arr,
int start,
int dump_limit,
int* total_count,
LolFilter* filter,
LiveObjectSummary* summary,
JSFunction* arguments_function,
Handle<Object> error) {
HandleScope scope;
// Scratch handles.
Handle<JSObject> detail;
Handle<String> desc;
Handle<HeapObject> retainer;
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
// Prefetch some needed symbols.
Handle<String> id_sym = factory->LookupAsciiSymbol("id");
Handle<String> desc_sym = factory->LookupAsciiSymbol("desc");
Handle<String> size_sym = factory->LookupAsciiSymbol("size");
NoHandleAllocation ha;
int count = 0;
int index = 0;
Handle<JSObject> last_obj;
*total_count = 0;
// Iterate roots.
LolVisitor lol_visitor(*target, target);
isolate->heap()->IterateStrongRoots(&lol_visitor, VISIT_ALL);
if (!AddRootRetainerIfFound(lol_visitor,
filter,
summary,
SetFoundRoot,
start,
dump_limit,
total_count,
retainers_arr,
&count,
&index,
"<root>",
id_sym,
desc_sym,
size_sym,
error)) {
return -1;
}
lol_visitor.reset();
isolate->heap()->IterateWeakRoots(&lol_visitor, VISIT_ALL);
if (!AddRootRetainerIfFound(lol_visitor,
filter,
summary,
SetFoundWeakRoot,
start,
dump_limit,
total_count,
retainers_arr,
&count,
&index,
"<weak root>",
id_sym,
desc_sym,
size_sym,
error)) {
return -1;
}
// Iterate the live object lists.
LolIterator it(NULL, last());
for (it.Init(); !it.Done() && (index < dump_limit); it.Next()) {
HeapObject* heap_obj = it.Obj();
// Only look at all JSObjects.
if (heap_obj->IsJSObject()) {
// Skip context extension objects and argument arrays as these are
// checked in the context of functions using them.
JSObject* obj = JSObject::cast(heap_obj);
if (obj->IsJSContextExtensionObject() ||
obj->map()->constructor() == arguments_function) {
continue;
}
// Check if the JS object has a reference to the object looked for.
if (obj->ReferencesObject(*target)) {
// Check instance filter if supplied. This is normally used to avoid
// references from mirror objects (see Runtime_IsInPrototypeChain).
if (!instance_filter->IsUndefined()) {
Object* V = obj;
while (true) {
Object* prototype = V->GetPrototype();
if (prototype->IsNull()) {
break;
}
if (*instance_filter == prototype) {
obj = NULL; // Don't add this object.
break;
}
V = prototype;
}
}
if (obj != NULL) {
// Skip objects that have been filtered out.
if (filter->Matches(heap_obj)) {
continue;
}
// Valid reference found add to instance array if supplied an update
// count.
last_obj = Handle<JSObject>(obj);
(*total_count)++;
if (summary != NULL) {
summary->Add(heap_obj);
} else if ((*total_count > start) && (index < dump_limit)) {
count++;
if (!retainers_arr.is_null()) {
retainer = Handle<HeapObject>(heap_obj);
bool success = AddObjDetail(retainers_arr,
index++,
it.Id(),
retainer,
NULL,
id_sym,
desc_sym,
size_sym,
detail,
desc,
error);
if (!success) return -1;
}
}
}
}
}
}
// Check for circular reference only. This can happen when the object is only
// referenced from mirrors and has a circular reference in which case the
// object is not really alive and would have been garbage collected if not
// referenced from the mirror.
if (*total_count == 1 && !last_obj.is_null() && *last_obj == *target) {
count = 0;
*total_count = 0;
}
return count;
}
MaybeObject* LiveObjectList::GetObjRetainers(int obj_id,
Handle<JSObject> instance_filter,
bool verbose,
int start,
int dump_limit,
Handle<JSObject> filter_obj) {
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
HandleScope scope(isolate);
// Get the target object.
HeapObject* heap_obj = HeapObject::cast(GetObj(obj_id));
if (heap_obj == heap->undefined_value()) {
return heap_obj;
}
Handle<HeapObject> target = Handle<HeapObject>(heap_obj);
// Get the constructor function for context extension and arguments array.
JSObject* arguments_boilerplate =
isolate->context()->global_context()->arguments_boilerplate();
JSFunction* arguments_function =
JSFunction::cast(arguments_boilerplate->map()->constructor());
Handle<JSFunction> args_function = Handle<JSFunction>(arguments_function);
LolFilter filter(filter_obj);
if (!verbose) {
RetainersSummaryWriter writer(target, instance_filter, args_function);
return SummarizePrivate(&writer, &filter, true);
} else {
RetainersDumpWriter writer(target, instance_filter, args_function);
Object* body_obj;
MaybeObject* maybe_result =
DumpPrivate(&writer, start, dump_limit, &filter);
if (!maybe_result->ToObject(&body_obj)) {
return maybe_result;
}
// Set body.id.
Handle<JSObject> body = Handle<JSObject>(JSObject::cast(body_obj));
Handle<String> id_sym = factory->LookupAsciiSymbol("id");
maybe_result = body->SetProperty(*id_sym,
Smi::FromInt(obj_id),
NONE,
kNonStrictMode);
if (maybe_result->IsFailure()) return maybe_result;
return *body;
}
}
Object* LiveObjectList::PrintObj(int obj_id) {
Object* obj = GetObj(obj_id);
if (!obj) {
return HEAP->undefined_value();
}
EmbeddedVector<char, 128> temp_filename;
static int temp_count = 0;
const char* path_prefix = ".";
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
if (FLAG_lol_workdir) {
path_prefix = FLAG_lol_workdir;
}
OS::SNPrintF(temp_filename, "%s/lol-print-%d", path_prefix, ++temp_count);
FILE* f = OS::FOpen(temp_filename.start(), "w+");
PrintF(f, "@%d ", LiveObjectList::GetObjId(obj));
#ifdef OBJECT_PRINT
#ifdef INSPECTOR
Inspector::DumpObjectType(f, obj);
#endif // INSPECTOR
PrintF(f, "\n");
obj->Print(f);
#else // !OBJECT_PRINT
obj->ShortPrint(f);
#endif // !OBJECT_PRINT
PrintF(f, "\n");
Flush(f);
fclose(f);
// Create a string from the temp_file.
// Note: the mmapped resource will take care of closing the file.
MemoryMappedExternalResource* resource =
new MemoryMappedExternalResource(temp_filename.start(), true);
if (resource->exists() && !resource->is_empty()) {
ASSERT(resource->IsAscii());
Handle<String> dump_string =
factory->NewExternalStringFromAscii(resource);
heap->external_string_table()->AddString(*dump_string);
return *dump_string;
} else {
delete resource;
}
return HEAP->undefined_value();
}
class LolPathTracer: public PathTracer {
public:
LolPathTracer(FILE* out,
Object* search_target,
WhatToFind what_to_find)
: PathTracer(search_target, what_to_find, VISIT_ONLY_STRONG), out_(out) {}
private:
void ProcessResults();
FILE* out_;
};
void LolPathTracer::ProcessResults() {
if (found_target_) {
PrintF(out_, "=====================================\n");
PrintF(out_, "==== Path to object ====\n");
PrintF(out_, "=====================================\n\n");
ASSERT(!object_stack_.is_empty());
Object* prev = NULL;
for (int i = 0, index = 0; i < object_stack_.length(); i++) {
Object* obj = object_stack_[i];
// Skip this object if it is basically the internals of the
// previous object (which would have dumped its details already).
if (prev && prev->IsJSObject() &&
(obj != search_target_)) {
JSObject* jsobj = JSObject::cast(prev);
if (obj->IsFixedArray() &&
jsobj->properties() == FixedArray::cast(obj)) {
// Skip this one because it would have been printed as the
// properties of the last object already.
continue;
} else if (obj->IsHeapObject() &&
jsobj->elements() == HeapObject::cast(obj)) {
// Skip this one because it would have been printed as the
// elements of the last object already.
continue;
}
}
// Print a connecting arrow.
if (i > 0) PrintF(out_, "\n |\n |\n V\n\n");
// Print the object index.
PrintF(out_, "[%d] ", ++index);
// Print the LOL object ID:
int id = LiveObjectList::GetObjId(obj);
if (id > 0) PrintF(out_, "@%d ", id);
#ifdef OBJECT_PRINT
#ifdef INSPECTOR
Inspector::DumpObjectType(out_, obj);
#endif // INSPECTOR
PrintF(out_, "\n");
obj->Print(out_);
#else // !OBJECT_PRINT
obj->ShortPrint(out_);
PrintF(out_, "\n");
#endif // !OBJECT_PRINT
Flush(out_);
}
PrintF(out_, "\n");
PrintF(out_, "=====================================\n\n");
Flush(out_);
}
}
Object* LiveObjectList::GetPathPrivate(HeapObject* obj1, HeapObject* obj2) {
EmbeddedVector<char, 128> temp_filename;
static int temp_count = 0;
const char* path_prefix = ".";
if (FLAG_lol_workdir) {
path_prefix = FLAG_lol_workdir;
}
OS::SNPrintF(temp_filename, "%s/lol-getpath-%d", path_prefix, ++temp_count);
FILE* f = OS::FOpen(temp_filename.start(), "w+");
Isolate* isolate = Isolate::Current();
Factory* factory = isolate->factory();
Heap* heap = isolate->heap();
// Save the previous verbosity.
bool prev_verbosity = FLAG_use_verbose_printer;
FLAG_use_verbose_printer = false;
// Dump the paths.
{
// The tracer needs to be scoped because its usage asserts no allocation,
// and we need to allocate the result string below.
LolPathTracer tracer(f, obj2, LolPathTracer::FIND_FIRST);
bool found = false;
if (obj1 == NULL) {
// Check for ObjectGroups that references this object.
// TODO(mlam): refactor this to be more modular.
{
List<ObjectGroup*>* groups = isolate->global_handles()->object_groups();
for (int i = 0; i < groups->length(); i++) {
ObjectGroup* group = groups->at(i);
if (group == NULL) continue;
bool found_group = false;
for (size_t j = 0; j < group->length_; j++) {
Object* object = *(group->objects_[j]);
HeapObject* hobj = HeapObject::cast(object);
if (obj2 == hobj) {
found_group = true;
break;
}
}
if (found_group) {
PrintF(f,
"obj %p is a member of object group %p {\n",
reinterpret_cast<void*>(obj2),
reinterpret_cast<void*>(group));
for (size_t j = 0; j < group->length_; j++) {
Object* object = *(group->objects_[j]);
if (!object->IsHeapObject()) continue;
HeapObject* hobj = HeapObject::cast(object);
int id = GetObjId(hobj);
if (id != 0) {
PrintF(f, " @%d:", id);
} else {
PrintF(f, " <no id>:");
}
char buffer[512];
GenerateObjectDesc(hobj, buffer, sizeof(buffer));
PrintF(f, " %s", buffer);
if (hobj == obj2) {
PrintF(f, " <===");
}
PrintF(f, "\n");
}
PrintF(f, "}\n");
}
}
}
PrintF(f, "path from roots to obj %p\n", reinterpret_cast<void*>(obj2));
heap->IterateRoots(&tracer, VISIT_ONLY_STRONG);
found = tracer.found();
if (!found) {
PrintF(f, " No paths found. Checking symbol tables ...\n");
SymbolTable* symbol_table = HEAP->raw_unchecked_symbol_table();
tracer.VisitPointers(reinterpret_cast<Object**>(&symbol_table),
reinterpret_cast<Object**>(&symbol_table)+1);
found = tracer.found();
if (!found) {
symbol_table->IteratePrefix(&tracer);
found = tracer.found();
}
}
if (!found) {
PrintF(f, " No paths found. Checking weak roots ...\n");
// Check weak refs next.
isolate->global_handles()->IterateWeakRoots(&tracer);
found = tracer.found();
}
} else {
PrintF(f, "path from obj %p to obj %p:\n",
reinterpret_cast<void*>(obj1), reinterpret_cast<void*>(obj2));
tracer.TracePathFrom(reinterpret_cast<Object**>(&obj1));
found = tracer.found();
}
if (!found) {
PrintF(f, " No paths found\n\n");
}
}
// Flush and clean up the dumped file.
Flush(f);
fclose(f);
// Restore the previous verbosity.
FLAG_use_verbose_printer = prev_verbosity;
// Create a string from the temp_file.
// Note: the mmapped resource will take care of closing the file.
MemoryMappedExternalResource* resource =
new MemoryMappedExternalResource(temp_filename.start(), true);
if (resource->exists() && !resource->is_empty()) {
ASSERT(resource->IsAscii());
Handle<String> path_string =
factory->NewExternalStringFromAscii(resource);
heap->external_string_table()->AddString(*path_string);
return *path_string;
} else {
delete resource;
}
return heap->undefined_value();
}
Object* LiveObjectList::GetPath(int obj_id1,
int obj_id2,
Handle<JSObject> instance_filter) {
HandleScope scope;
// Get the target object.
HeapObject* obj1 = NULL;
if (obj_id1 != 0) {
obj1 = HeapObject::cast(GetObj(obj_id1));
if (obj1 == HEAP->undefined_value()) {
return obj1;
}
}
HeapObject* obj2 = HeapObject::cast(GetObj(obj_id2));
if (obj2 == HEAP->undefined_value()) {
return obj2;
}
return GetPathPrivate(obj1, obj2);
}
void LiveObjectList::DoProcessNonLive(HeapObject* obj) {
// We should only be called if we have at least one lol to search.
ASSERT(last() != NULL);
Element* element = last()->Find(obj);
if (element != NULL) {
NullifyNonLivePointer(&element->obj_);
}
}
void LiveObjectList::IterateElementsPrivate(ObjectVisitor* v) {
LiveObjectList* lol = last();
while (lol != NULL) {
Element* elements = lol->elements_;
int count = lol->obj_count_;
for (int i = 0; i < count; i++) {
HeapObject** p = &elements[i].obj_;
v->VisitPointer(reinterpret_cast<Object** >(p));
}
lol = lol->prev_;
}
}
// Purpose: Called by GCEpilogue to purge duplicates. Not to be called by
// anyone else.
void LiveObjectList::PurgeDuplicates() {
bool is_sorted = false;
LiveObjectList* lol = last();
if (!lol) {
return; // Nothing to purge.
}
int total_count = lol->TotalObjCount();
if (!total_count) {
return; // Nothing to purge.
}
Element* elements = NewArray<Element>(total_count);
int count = 0;
// Copy all the object elements into a consecutive array.
while (lol) {
memcpy(&elements[count], lol->elements_, lol->obj_count_ * sizeof(Element));
count += lol->obj_count_;
lol = lol->prev_;
}
qsort(elements, total_count, sizeof(Element),
reinterpret_cast<RawComparer>(CompareElement));
ASSERT(count == total_count);
// Iterate over all objects in the consolidated list and check for dups.
total_count--;
for (int i = 0; i < total_count; ) {
Element* curr = &elements[i];
HeapObject* curr_obj = curr->obj_;
int j = i+1;
bool done = false;
while (!done && (j < total_count)) {
// Process if the element's object is still live after the current GC.
// Non-live objects will be converted to SMIs i.e. not HeapObjects.
if (curr_obj->IsHeapObject()) {
Element* next = &elements[j];
HeapObject* next_obj = next->obj_;
if (next_obj->IsHeapObject()) {
if (curr_obj != next_obj) {
done = true;
continue; // Live object but no match. Move on.
}
// NOTE: we've just GCed the LOLs. Hence, they are no longer sorted.
// Since we detected at least one need to search for entries, we'll
// sort it to enable the use of NullifyMostRecent() below. We only
// need to sort it once (except for one exception ... see below).
if (!is_sorted) {
SortAll();
is_sorted = true;
}
// We have a match. Need to nullify the most recent ref to this
// object. We'll keep the oldest ref:
// Note: we will nullify the element record in the LOL
// database, not in the local sorted copy of the elements.
NullifyMostRecent(curr_obj);
}
}
// Either the object was already marked for purging, or we just marked
// it. Either way, if there's more than one dup, then we need to check
// the next element for another possible dup against the current as well
// before we move on. So, here we go.
j++;
}
// We can move on to checking the match on the next element.
i = j;
}
DeleteArray<Element>(elements);
}
// Purpose: Purges dead objects and resorts the LOLs.
void LiveObjectList::GCEpiloguePrivate() {
// Note: During the GC, ConsStrings may be collected and pointers may be
// forwarded to its constituent string. As a result, we may find dupes of
// objects references in the LOL list.
// Another common way we get dups is that free chunks that have been swept
// in the oldGen heap may be kept as ByteArray objects in a free list.
//
// When we promote live objects from the youngGen, the object may be moved
// to the start of these free chunks. Since there is no free or move event
// for the free chunks, their addresses will show up 2 times: once for their
// original free ByteArray selves, and once for the newly promoted youngGen
// object. Hence, we can get a duplicate address in the LOL again.
//
// We need to eliminate these dups because the LOL implementation expects to
// only have at most one unique LOL reference to any object at any time.
PurgeDuplicates();
// After the GC, sweep away all free'd Elements and compact.
LiveObjectList* prev = NULL;
LiveObjectList* next = NULL;
// Iterating from the youngest lol to the oldest lol.
for (LiveObjectList* lol = last(); lol; lol = prev) {
Element* elements = lol->elements_;
prev = lol->prev(); // Save the prev.
// Remove any references to collected objects.
int i = 0;
while (i < lol->obj_count_) {
Element& element = elements[i];
if (!element.obj_->IsHeapObject()) {
// If the HeapObject address was converted into a SMI, then this
// is a dead object. Copy the last element over this one.
element = elements[lol->obj_count_ - 1];
lol->obj_count_--;
// We've just moved the last element into this index. We'll revisit
// this index again. Hence, no need to increment the iterator.
} else {
i++; // Look at the next element next.
}
}
int new_count = lol->obj_count_;
// Check if there are any more elements to keep after purging the dead ones.
if (new_count == 0) {
DeleteArray<Element>(elements);
lol->elements_ = NULL;
lol->capacity_ = 0;
ASSERT(lol->obj_count_ == 0);
// If the list is also invisible, the clean up the list as well.
if (lol->id_ == 0) {
// Point the next lol's prev to this lol's prev.
if (next) {
next->prev_ = lol->prev_;
} else {
last_ = lol->prev_;
}
// Delete this now empty and invisible lol.
delete lol;
// Don't point the next to this lol since it is now deleted.
// Leave the next pointer pointing to the current lol.
continue;
}
} else {
// If the obj_count_ is less than the capacity and the difference is
// greater than a specified threshold, then we should shrink the list.
int diff = lol->capacity_ - new_count;
const int kMaxUnusedSpace = 64;
if (diff > kMaxUnusedSpace) { // Threshold for shrinking.
// Shrink the list.
Element* new_elements = NewArray<Element>(new_count);
memcpy(new_elements, elements, new_count * sizeof(Element));
DeleteArray<Element>(elements);
lol->elements_ = new_elements;
lol->capacity_ = new_count;
}
ASSERT(lol->obj_count_ == new_count);
lol->Sort(); // We've moved objects. Re-sort in case.
}
// Save the next (for the previous link) in case we need it later.
next = lol;
}
#ifdef VERIFY_LOL
if (FLAG_verify_lol) {
Verify();
}
#endif
}
#ifdef VERIFY_LOL
void LiveObjectList::Verify(bool match_heap_exactly) {
OS::Print("Verifying the LiveObjectList database:\n");
LiveObjectList* lol = last();
if (lol == NULL) {
OS::Print(" No lol database to verify\n");
return;
}
OS::Print(" Preparing the lol database ...\n");
int total_count = lol->TotalObjCount();
Element* elements = NewArray<Element>(total_count);
int count = 0;
// Copy all the object elements into a consecutive array.
OS::Print(" Copying the lol database ...\n");
while (lol != NULL) {
memcpy(&elements[count], lol->elements_, lol->obj_count_ * sizeof(Element));
count += lol->obj_count_;
lol = lol->prev_;
}
qsort(elements, total_count, sizeof(Element),
reinterpret_cast<RawComparer>(CompareElement));
ASSERT(count == total_count);
// Iterate over all objects in the heap and check for:
// 1. object in LOL but not in heap i.e. error.
// 2. object in heap but not in LOL (possibly not an error). Usually
// just means that we don't have the a capture of the latest heap.
// That is unless we did this verify immediately after a capture,
// and specified match_heap_exactly = true.
int number_of_heap_objects = 0;
int number_of_matches = 0;
int number_not_in_heap = total_count;
int number_not_in_lol = 0;
OS::Print(" Start verify ...\n");
OS::Print(" Verifying ...");
Flush();
HeapIterator iterator;
HeapObject* heap_obj = NULL;
while ((heap_obj = iterator.next()) != NULL) {
number_of_heap_objects++;
// Check if the heap_obj is in the lol.
Element key;
key.obj_ = heap_obj;
Element* result = reinterpret_cast<Element*>(
bsearch(&key, elements, total_count, sizeof(Element),
reinterpret_cast<RawComparer>(CompareElement)));
if (result != NULL) {
number_of_matches++;
number_not_in_heap--;
// Mark it as found by changing it into a SMI (mask off low bit).
// Note: we cannot use HeapObject::cast() here because it asserts that
// the HeapObject bit is set on the address, but we're unsetting it on
// purpose here for our marking.
result->obj_ = reinterpret_cast<HeapObject*>(heap_obj->address());
} else {
number_not_in_lol++;
if (match_heap_exactly) {
OS::Print("heap object %p NOT in lol database\n", heap_obj);
}
}
// Show some sign of life.
if (number_of_heap_objects % 1000 == 0) {
OS::Print(".");
fflush(stdout);
}
}
OS::Print("\n");
// Reporting lol objects not found in the heap.
if (number_not_in_heap) {
int found = 0;
for (int i = 0; (i < total_count) && (found < number_not_in_heap); i++) {
Element& element = elements[i];
if (element.obj_->IsHeapObject()) {
OS::Print("lol database object [%d of %d] %p NOT in heap\n",
i, total_count, element.obj_);
found++;
}
}
}
DeleteArray<Element>(elements);
OS::Print("number of objects in lol database %d\n", total_count);
OS::Print("number of heap objects .......... %d\n", number_of_heap_objects);
OS::Print("number of matches ............... %d\n", number_of_matches);
OS::Print("number NOT in heap .............. %d\n", number_not_in_heap);
OS::Print("number NOT in lol database ...... %d\n", number_not_in_lol);
if (number_of_matches != total_count) {
OS::Print(" *** ERROR: "
"NOT all lol database objects match heap objects.\n");
}
if (number_not_in_heap != 0) {
OS::Print(" *** ERROR: %d lol database objects not found in heap.\n",
number_not_in_heap);
}
if (match_heap_exactly) {
if (!(number_not_in_lol == 0)) {
OS::Print(" *** ERROR: %d heap objects NOT found in lol database.\n",
number_not_in_lol);
}
}
ASSERT(number_of_matches == total_count);
ASSERT(number_not_in_heap == 0);
ASSERT(number_not_in_lol == (number_of_heap_objects - total_count));
if (match_heap_exactly) {
ASSERT(total_count == number_of_heap_objects);
ASSERT(number_not_in_lol == 0);
}
OS::Print(" Verify the lol database is sorted ...\n");
lol = last();
while (lol != NULL) {
Element* elements = lol->elements_;
for (int i = 0; i < lol->obj_count_ - 1; i++) {
if (elements[i].obj_ >= elements[i+1].obj_) {
OS::Print(" *** ERROR: lol %p obj[%d] %p > obj[%d] %p\n",
lol, i, elements[i].obj_, i+1, elements[i+1].obj_);
}
}
lol = lol->prev_;
}
OS::Print(" DONE verifying.\n\n\n");
}
void LiveObjectList::VerifyNotInFromSpace() {
OS::Print("VerifyNotInFromSpace() ...\n");
LolIterator it(NULL, last());
Heap* heap = ISOLATE->heap();
int i = 0;
for (it.Init(); !it.Done(); it.Next()) {
HeapObject* heap_obj = it.Obj();
if (heap->InFromSpace(heap_obj)) {
OS::Print(" ERROR: VerifyNotInFromSpace: [%d] obj %p in From space %p\n",
i++, heap_obj, Heap::new_space()->FromSpaceStart());
}
}
}
#endif // VERIFY_LOL
} } // namespace v8::internal
#endif // LIVE_OBJECT_LIST