// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_HYDROGEN_INSTRUCTIONS_H_
#define V8_HYDROGEN_INSTRUCTIONS_H_
#include "v8.h"
#include "allocation.h"
#include "code-stubs.h"
#include "data-flow.h"
#include "small-pointer-list.h"
#include "string-stream.h"
#include "v8conversions.h"
#include "v8utils.h"
#include "zone.h"
namespace v8 {
namespace internal {
// Forward declarations.
class HBasicBlock;
class HEnvironment;
class HInstruction;
class HLoopInformation;
class HValue;
class LInstruction;
class LChunkBuilder;
#define HYDROGEN_ABSTRACT_INSTRUCTION_LIST(V) \
V(BitwiseBinaryOperation) \
V(ControlInstruction) \
V(Instruction) \
#define HYDROGEN_CONCRETE_INSTRUCTION_LIST(V) \
V(AbnormalExit) \
V(AccessArgumentsAt) \
V(Add) \
V(AllocateObject) \
V(ApplyArguments) \
V(ArgumentsElements) \
V(ArgumentsLength) \
V(ArgumentsObject) \
V(ArrayLiteral) \
V(Bitwise) \
V(BitNot) \
V(BlockEntry) \
V(BoundsCheck) \
V(Branch) \
V(CallConstantFunction) \
V(CallFunction) \
V(CallGlobal) \
V(CallKeyed) \
V(CallKnownGlobal) \
V(CallNamed) \
V(CallNew) \
V(CallRuntime) \
V(CallStub) \
V(Change) \
V(CheckFunction) \
V(CheckInstanceType) \
V(CheckMap) \
V(CheckNonSmi) \
V(CheckPrototypeMaps) \
V(CheckSmi) \
V(ClampToUint8) \
V(ClassOfTestAndBranch) \
V(CompareIDAndBranch) \
V(CompareGeneric) \
V(CompareObjectEqAndBranch) \
V(CompareMap) \
V(CompareConstantEqAndBranch) \
V(Constant) \
V(Context) \
V(DeclareGlobals) \
V(DeleteProperty) \
V(Deoptimize) \
V(Div) \
V(ElementsKind) \
V(EnterInlined) \
V(FastLiteral) \
V(FixedArrayBaseLength) \
V(ForceRepresentation) \
V(FunctionLiteral) \
V(GetCachedArrayIndex) \
V(GlobalObject) \
V(GlobalReceiver) \
V(Goto) \
V(HasCachedArrayIndexAndBranch) \
V(HasInstanceTypeAndBranch) \
V(In) \
V(InstanceOf) \
V(InstanceOfKnownGlobal) \
V(InvokeFunction) \
V(IsConstructCallAndBranch) \
V(IsNilAndBranch) \
V(IsObjectAndBranch) \
V(IsStringAndBranch) \
V(IsSmiAndBranch) \
V(IsUndetectableAndBranch) \
V(StringCompareAndBranch) \
V(JSArrayLength) \
V(LeaveInlined) \
V(LoadContextSlot) \
V(LoadElements) \
V(LoadExternalArrayPointer) \
V(LoadFunctionPrototype) \
V(LoadGlobalCell) \
V(LoadGlobalGeneric) \
V(LoadKeyedFastDoubleElement) \
V(LoadKeyedFastElement) \
V(LoadKeyedGeneric) \
V(LoadKeyedSpecializedArrayElement) \
V(LoadNamedField) \
V(LoadNamedFieldPolymorphic) \
V(LoadNamedGeneric) \
V(Mod) \
V(Mul) \
V(ObjectLiteral) \
V(OsrEntry) \
V(OuterContext) \
V(Parameter) \
V(Power) \
V(PushArgument) \
V(Random) \
V(RegExpLiteral) \
V(Return) \
V(Sar) \
V(Shl) \
V(Shr) \
V(Simulate) \
V(SoftDeoptimize) \
V(StackCheck) \
V(StoreContextSlot) \
V(StoreGlobalCell) \
V(StoreGlobalGeneric) \
V(StoreKeyedFastDoubleElement) \
V(StoreKeyedFastElement) \
V(StoreKeyedGeneric) \
V(StoreKeyedSpecializedArrayElement) \
V(StoreNamedField) \
V(StoreNamedGeneric) \
V(StringAdd) \
V(StringCharCodeAt) \
V(StringCharFromCode) \
V(StringLength) \
V(Sub) \
V(ThisFunction) \
V(Throw) \
V(ToFastProperties) \
V(TransitionElementsKind) \
V(Typeof) \
V(TypeofIsAndBranch) \
V(UnaryMathOperation) \
V(UnknownOSRValue) \
V(UseConst) \
V(ValueOf) \
V(ForInPrepareMap) \
V(ForInCacheArray) \
V(CheckMapValue) \
V(LoadFieldByIndex) \
V(DateField) \
V(WrapReceiver)
#define GVN_FLAG_LIST(V) \
V(Calls) \
V(InobjectFields) \
V(BackingStoreFields) \
V(ElementsKind) \
V(ElementsPointer) \
V(ArrayElements) \
V(DoubleArrayElements) \
V(SpecializedArrayElements) \
V(GlobalVars) \
V(Maps) \
V(ArrayLengths) \
V(ContextSlots) \
V(OsrEntries)
#define DECLARE_ABSTRACT_INSTRUCTION(type) \
virtual bool Is##type() const { return true; } \
static H##type* cast(HValue* value) { \
ASSERT(value->Is##type()); \
return reinterpret_cast<H##type*>(value); \
}
#define DECLARE_CONCRETE_INSTRUCTION(type) \
virtual LInstruction* CompileToLithium(LChunkBuilder* builder); \
static H##type* cast(HValue* value) { \
ASSERT(value->Is##type()); \
return reinterpret_cast<H##type*>(value); \
} \
virtual Opcode opcode() const { return HValue::k##type; }
class Range: public ZoneObject {
public:
Range()
: lower_(kMinInt),
upper_(kMaxInt),
next_(NULL),
can_be_minus_zero_(false) { }
Range(int32_t lower, int32_t upper)
: lower_(lower),
upper_(upper),
next_(NULL),
can_be_minus_zero_(false) { }
int32_t upper() const { return upper_; }
int32_t lower() const { return lower_; }
Range* next() const { return next_; }
Range* CopyClearLower(Zone* zone) const {
return new(zone) Range(kMinInt, upper_);
}
Range* CopyClearUpper(Zone* zone) const {
return new(zone) Range(lower_, kMaxInt);
}
Range* Copy(Zone* zone) const {
Range* result = new(zone) Range(lower_, upper_);
result->set_can_be_minus_zero(CanBeMinusZero());
return result;
}
int32_t Mask() const;
void set_can_be_minus_zero(bool b) { can_be_minus_zero_ = b; }
bool CanBeMinusZero() const { return CanBeZero() && can_be_minus_zero_; }
bool CanBeZero() const { return upper_ >= 0 && lower_ <= 0; }
bool CanBeNegative() const { return lower_ < 0; }
bool Includes(int value) const { return lower_ <= value && upper_ >= value; }
bool IsMostGeneric() const {
return lower_ == kMinInt && upper_ == kMaxInt && CanBeMinusZero();
}
bool IsInSmiRange() const {
return lower_ >= Smi::kMinValue && upper_ <= Smi::kMaxValue;
}
void KeepOrder();
#ifdef DEBUG
void Verify() const;
#endif
void StackUpon(Range* other) {
Intersect(other);
next_ = other;
}
void Intersect(Range* other);
void Union(Range* other);
void AddConstant(int32_t value);
void Sar(int32_t value);
void Shl(int32_t value);
bool AddAndCheckOverflow(Range* other);
bool SubAndCheckOverflow(Range* other);
bool MulAndCheckOverflow(Range* other);
private:
int32_t lower_;
int32_t upper_;
Range* next_;
bool can_be_minus_zero_;
};
class Representation {
public:
enum Kind {
kNone,
kTagged,
kDouble,
kInteger32,
kExternal,
kNumRepresentations
};
Representation() : kind_(kNone) { }
static Representation None() { return Representation(kNone); }
static Representation Tagged() { return Representation(kTagged); }
static Representation Integer32() { return Representation(kInteger32); }
static Representation Double() { return Representation(kDouble); }
static Representation External() { return Representation(kExternal); }
bool Equals(const Representation& other) {
return kind_ == other.kind_;
}
Kind kind() const { return static_cast<Kind>(kind_); }
bool IsNone() const { return kind_ == kNone; }
bool IsTagged() const { return kind_ == kTagged; }
bool IsInteger32() const { return kind_ == kInteger32; }
bool IsDouble() const { return kind_ == kDouble; }
bool IsExternal() const { return kind_ == kExternal; }
bool IsSpecialization() const {
return kind_ == kInteger32 || kind_ == kDouble;
}
const char* Mnemonic() const;
private:
explicit Representation(Kind k) : kind_(k) { }
// Make sure kind fits in int8.
STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte));
int8_t kind_;
};
class HType {
public:
HType() : type_(kUninitialized) { }
static HType Tagged() { return HType(kTagged); }
static HType TaggedPrimitive() { return HType(kTaggedPrimitive); }
static HType TaggedNumber() { return HType(kTaggedNumber); }
static HType Smi() { return HType(kSmi); }
static HType HeapNumber() { return HType(kHeapNumber); }
static HType String() { return HType(kString); }
static HType Boolean() { return HType(kBoolean); }
static HType NonPrimitive() { return HType(kNonPrimitive); }
static HType JSArray() { return HType(kJSArray); }
static HType JSObject() { return HType(kJSObject); }
static HType Uninitialized() { return HType(kUninitialized); }
// Return the weakest (least precise) common type.
HType Combine(HType other) {
return HType(static_cast<Type>(type_ & other.type_));
}
bool Equals(const HType& other) {
return type_ == other.type_;
}
bool IsSubtypeOf(const HType& other) {
return Combine(other).Equals(other);
}
bool IsTagged() {
ASSERT(type_ != kUninitialized);
return ((type_ & kTagged) == kTagged);
}
bool IsTaggedPrimitive() {
ASSERT(type_ != kUninitialized);
return ((type_ & kTaggedPrimitive) == kTaggedPrimitive);
}
bool IsTaggedNumber() {
ASSERT(type_ != kUninitialized);
return ((type_ & kTaggedNumber) == kTaggedNumber);
}
bool IsSmi() {
ASSERT(type_ != kUninitialized);
return ((type_ & kSmi) == kSmi);
}
bool IsHeapNumber() {
ASSERT(type_ != kUninitialized);
return ((type_ & kHeapNumber) == kHeapNumber);
}
bool IsString() {
ASSERT(type_ != kUninitialized);
return ((type_ & kString) == kString);
}
bool IsBoolean() {
ASSERT(type_ != kUninitialized);
return ((type_ & kBoolean) == kBoolean);
}
bool IsNonPrimitive() {
ASSERT(type_ != kUninitialized);
return ((type_ & kNonPrimitive) == kNonPrimitive);
}
bool IsJSArray() {
ASSERT(type_ != kUninitialized);
return ((type_ & kJSArray) == kJSArray);
}
bool IsJSObject() {
ASSERT(type_ != kUninitialized);
return ((type_ & kJSObject) == kJSObject);
}
bool IsUninitialized() {
return type_ == kUninitialized;
}
bool IsHeapObject() {
ASSERT(type_ != kUninitialized);
return IsHeapNumber() || IsString() || IsNonPrimitive();
}
static HType TypeFromValue(Handle<Object> value);
const char* ToString();
private:
enum Type {
kTagged = 0x1, // 0000 0000 0000 0001
kTaggedPrimitive = 0x5, // 0000 0000 0000 0101
kTaggedNumber = 0xd, // 0000 0000 0000 1101
kSmi = 0x1d, // 0000 0000 0001 1101
kHeapNumber = 0x2d, // 0000 0000 0010 1101
kString = 0x45, // 0000 0000 0100 0101
kBoolean = 0x85, // 0000 0000 1000 0101
kNonPrimitive = 0x101, // 0000 0001 0000 0001
kJSObject = 0x301, // 0000 0011 0000 0001
kJSArray = 0x701, // 0000 0111 0000 0001
kUninitialized = 0x1fff // 0001 1111 1111 1111
};
// Make sure type fits in int16.
STATIC_ASSERT(kUninitialized < (1 << (2 * kBitsPerByte)));
explicit HType(Type t) : type_(t) { }
int16_t type_;
};
class HUseListNode: public ZoneObject {
public:
HUseListNode(HValue* value, int index, HUseListNode* tail)
: tail_(tail), value_(value), index_(index) {
}
HUseListNode* tail();
HValue* value() const { return value_; }
int index() const { return index_; }
void set_tail(HUseListNode* list) { tail_ = list; }
#ifdef DEBUG
void Zap() {
tail_ = reinterpret_cast<HUseListNode*>(1);
value_ = NULL;
index_ = -1;
}
#endif
private:
HUseListNode* tail_;
HValue* value_;
int index_;
};
// We reuse use list nodes behind the scenes as uses are added and deleted.
// This class is the safe way to iterate uses while deleting them.
class HUseIterator BASE_EMBEDDED {
public:
bool Done() { return current_ == NULL; }
void Advance();
HValue* value() {
ASSERT(!Done());
return value_;
}
int index() {
ASSERT(!Done());
return index_;
}
private:
explicit HUseIterator(HUseListNode* head);
HUseListNode* current_;
HUseListNode* next_;
HValue* value_;
int index_;
friend class HValue;
};
// There must be one corresponding kDepends flag for every kChanges flag and
// the order of the kChanges flags must be exactly the same as of the kDepends
// flags.
enum GVNFlag {
// Declare global value numbering flags.
#define DECLARE_FLAG(type) kChanges##type, kDependsOn##type,
GVN_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
kAfterLastFlag,
kLastFlag = kAfterLastFlag - 1
};
typedef EnumSet<GVNFlag> GVNFlagSet;
class HValue: public ZoneObject {
public:
static const int kNoNumber = -1;
enum Flag {
kFlexibleRepresentation,
// Participate in Global Value Numbering, i.e. elimination of
// unnecessary recomputations. If an instruction sets this flag, it must
// implement DataEquals(), which will be used to determine if other
// occurrences of the instruction are indeed the same.
kUseGVN,
kCanOverflow,
kBailoutOnMinusZero,
kCanBeDivByZero,
kDeoptimizeOnUndefined,
kIsArguments,
kTruncatingToInt32,
kIsDead,
kLastFlag = kIsDead
};
STATIC_ASSERT(kLastFlag < kBitsPerInt);
static const int kChangesToDependsFlagsLeftShift = 1;
static GVNFlagSet ConvertChangesToDependsFlags(GVNFlagSet flags) {
return GVNFlagSet(flags.ToIntegral() << kChangesToDependsFlagsLeftShift);
}
static HValue* cast(HValue* value) { return value; }
enum Opcode {
// Declare a unique enum value for each hydrogen instruction.
#define DECLARE_OPCODE(type) k##type,
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_OPCODE)
kPhi
#undef DECLARE_OPCODE
};
virtual Opcode opcode() const = 0;
// Declare a non-virtual predicates for each concrete HInstruction or HValue.
#define DECLARE_PREDICATE(type) \
bool Is##type() const { return opcode() == k##type; }
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DECLARE_PREDICATE)
#undef DECLARE_PREDICATE
bool IsPhi() const { return opcode() == kPhi; }
// Declare virtual predicates for abstract HInstruction or HValue
#define DECLARE_PREDICATE(type) \
virtual bool Is##type() const { return false; }
HYDROGEN_ABSTRACT_INSTRUCTION_LIST(DECLARE_PREDICATE)
#undef DECLARE_PREDICATE
HValue() : block_(NULL),
id_(kNoNumber),
type_(HType::Tagged()),
use_list_(NULL),
range_(NULL),
flags_(0) {}
virtual ~HValue() {}
HBasicBlock* block() const { return block_; }
void SetBlock(HBasicBlock* block);
int LoopWeight() const;
int id() const { return id_; }
void set_id(int id) { id_ = id; }
HUseIterator uses() const { return HUseIterator(use_list_); }
virtual bool EmitAtUses() { return false; }
Representation representation() const { return representation_; }
void ChangeRepresentation(Representation r) {
// Representation was already set and is allowed to be changed.
ASSERT(!r.IsNone());
ASSERT(CheckFlag(kFlexibleRepresentation));
RepresentationChanged(r);
representation_ = r;
}
void AssumeRepresentation(Representation r);
virtual bool IsConvertibleToInteger() const { return true; }
HType type() const { return type_; }
void set_type(HType new_type) {
ASSERT(new_type.IsSubtypeOf(type_));
type_ = new_type;
}
// An operation needs to override this function iff:
// 1) it can produce an int32 output.
// 2) the true value of its output can potentially be minus zero.
// The implementation must set a flag so that it bails out in the case where
// it would otherwise output what should be a minus zero as an int32 zero.
// If the operation also exists in a form that takes int32 and outputs int32
// then the operation should return its input value so that we can propagate
// back. There are three operations that need to propagate back to more than
// one input. They are phi and binary div and mul. They always return NULL
// and expect the caller to take care of things.
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited) {
visited->Add(id());
return NULL;
}
bool IsDefinedAfter(HBasicBlock* other) const;
// Operands.
virtual int OperandCount() = 0;
virtual HValue* OperandAt(int index) = 0;
void SetOperandAt(int index, HValue* value);
void DeleteAndReplaceWith(HValue* other);
void ReplaceAllUsesWith(HValue* other);
bool HasNoUses() const { return use_list_ == NULL; }
bool HasMultipleUses() const {
return use_list_ != NULL && use_list_->tail() != NULL;
}
int UseCount() const;
// Mark this HValue as dead and to be removed from other HValues' use lists.
void Kill();
int flags() const { return flags_; }
void SetFlag(Flag f) { flags_ |= (1 << f); }
void ClearFlag(Flag f) { flags_ &= ~(1 << f); }
bool CheckFlag(Flag f) const { return (flags_ & (1 << f)) != 0; }
// Returns true if the flag specified is set for all uses, false otherwise.
bool CheckUsesForFlag(Flag f);
GVNFlagSet gvn_flags() const { return gvn_flags_; }
void SetGVNFlag(GVNFlag f) { gvn_flags_.Add(f); }
void ClearGVNFlag(GVNFlag f) { gvn_flags_.Remove(f); }
bool CheckGVNFlag(GVNFlag f) const { return gvn_flags_.Contains(f); }
void SetAllSideEffects() { gvn_flags_.Add(AllSideEffectsFlagSet()); }
void ClearAllSideEffects() {
gvn_flags_.Remove(AllSideEffectsFlagSet());
}
bool HasSideEffects() const {
return gvn_flags_.ContainsAnyOf(AllSideEffectsFlagSet());
}
bool HasObservableSideEffects() const {
return gvn_flags_.ContainsAnyOf(AllObservableSideEffectsFlagSet());
}
GVNFlagSet DependsOnFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllDependsOnFlagSet());
return result;
}
GVNFlagSet SideEffectFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllSideEffectsFlagSet());
return result;
}
GVNFlagSet ChangesFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllChangesFlagSet());
return result;
}
GVNFlagSet ObservableChangesFlags() const {
GVNFlagSet result = gvn_flags_;
result.Intersect(AllChangesFlagSet());
result.Intersect(AllObservableSideEffectsFlagSet());
return result;
}
Range* range() const { return range_; }
bool HasRange() const { return range_ != NULL; }
void AddNewRange(Range* r, Zone* zone);
void RemoveLastAddedRange();
void ComputeInitialRange(Zone* zone);
// Representation helpers.
virtual Representation RequiredInputRepresentation(int index) = 0;
virtual Representation InferredRepresentation() {
return representation();
}
// This gives the instruction an opportunity to replace itself with an
// instruction that does the same in some better way. To replace an
// instruction with a new one, first add the new instruction to the graph,
// then return it. Return NULL to have the instruction deleted.
virtual HValue* Canonicalize() { return this; }
bool Equals(HValue* other);
virtual intptr_t Hashcode();
// Printing support.
virtual void PrintTo(StringStream* stream) = 0;
void PrintNameTo(StringStream* stream);
void PrintTypeTo(StringStream* stream);
void PrintRangeTo(StringStream* stream);
void PrintChangesTo(StringStream* stream);
const char* Mnemonic() const;
// Updated the inferred type of this instruction and returns true if
// it has changed.
bool UpdateInferredType();
virtual HType CalculateInferredType();
#ifdef DEBUG
virtual void Verify() = 0;
#endif
protected:
// This function must be overridden for instructions with flag kUseGVN, to
// compare the non-Operand parts of the instruction.
virtual bool DataEquals(HValue* other) {
UNREACHABLE();
return false;
}
virtual void RepresentationChanged(Representation to) { }
virtual Range* InferRange(Zone* zone);
virtual void DeleteFromGraph() = 0;
virtual void InternalSetOperandAt(int index, HValue* value) = 0;
void clear_block() {
ASSERT(block_ != NULL);
block_ = NULL;
}
void set_representation(Representation r) {
// Representation is set-once.
ASSERT(representation_.IsNone() && !r.IsNone());
representation_ = r;
}
static GVNFlagSet AllDependsOnFlagSet() {
GVNFlagSet result;
// Create changes mask.
#define ADD_FLAG(type) result.Add(kDependsOn##type);
GVN_FLAG_LIST(ADD_FLAG)
#undef ADD_FLAG
return result;
}
static GVNFlagSet AllChangesFlagSet() {
GVNFlagSet result;
// Create changes mask.
#define ADD_FLAG(type) result.Add(kChanges##type);
GVN_FLAG_LIST(ADD_FLAG)
#undef ADD_FLAG
return result;
}
// A flag mask to mark an instruction as having arbitrary side effects.
static GVNFlagSet AllSideEffectsFlagSet() {
GVNFlagSet result = AllChangesFlagSet();
result.Remove(kChangesOsrEntries);
return result;
}
// A flag mask of all side effects that can make observable changes in
// an executing program (i.e. are not safe to repeat, move or remove);
static GVNFlagSet AllObservableSideEffectsFlagSet() {
GVNFlagSet result = AllChangesFlagSet();
result.Remove(kChangesElementsKind);
result.Remove(kChangesElementsPointer);
result.Remove(kChangesMaps);
return result;
}
// Remove the matching use from the use list if present. Returns the
// removed list node or NULL.
HUseListNode* RemoveUse(HValue* value, int index);
void RegisterUse(int index, HValue* new_value);
HBasicBlock* block_;
// The id of this instruction in the hydrogen graph, assigned when first
// added to the graph. Reflects creation order.
int id_;
Representation representation_;
HType type_;
HUseListNode* use_list_;
Range* range_;
int flags_;
GVNFlagSet gvn_flags_;
private:
DISALLOW_COPY_AND_ASSIGN(HValue);
};
class HInstruction: public HValue {
public:
HInstruction* next() const { return next_; }
HInstruction* previous() const { return previous_; }
virtual void PrintTo(StringStream* stream);
virtual void PrintDataTo(StringStream* stream) { }
bool IsLinked() const { return block() != NULL; }
void Unlink();
void InsertBefore(HInstruction* next);
void InsertAfter(HInstruction* previous);
int position() const { return position_; }
bool has_position() const { return position_ != RelocInfo::kNoPosition; }
void set_position(int position) { position_ = position; }
bool CanTruncateToInt32() const { return CheckFlag(kTruncatingToInt32); }
virtual LInstruction* CompileToLithium(LChunkBuilder* builder) = 0;
#ifdef DEBUG
virtual void Verify();
#endif
virtual bool IsCall() { return false; }
DECLARE_ABSTRACT_INSTRUCTION(Instruction)
protected:
HInstruction()
: next_(NULL),
previous_(NULL),
position_(RelocInfo::kNoPosition) {
SetGVNFlag(kDependsOnOsrEntries);
}
virtual void DeleteFromGraph() { Unlink(); }
private:
void InitializeAsFirst(HBasicBlock* block) {
ASSERT(!IsLinked());
SetBlock(block);
}
void PrintMnemonicTo(StringStream* stream);
HInstruction* next_;
HInstruction* previous_;
int position_;
friend class HBasicBlock;
};
template<int V>
class HTemplateInstruction : public HInstruction {
public:
int OperandCount() { return V; }
HValue* OperandAt(int i) { return inputs_[i]; }
protected:
void InternalSetOperandAt(int i, HValue* value) { inputs_[i] = value; }
private:
EmbeddedContainer<HValue*, V> inputs_;
};
class HControlInstruction: public HInstruction {
public:
virtual HBasicBlock* SuccessorAt(int i) = 0;
virtual int SuccessorCount() = 0;
virtual void SetSuccessorAt(int i, HBasicBlock* block) = 0;
virtual void PrintDataTo(StringStream* stream);
HBasicBlock* FirstSuccessor() {
return SuccessorCount() > 0 ? SuccessorAt(0) : NULL;
}
HBasicBlock* SecondSuccessor() {
return SuccessorCount() > 1 ? SuccessorAt(1) : NULL;
}
DECLARE_ABSTRACT_INSTRUCTION(ControlInstruction)
};
class HSuccessorIterator BASE_EMBEDDED {
public:
explicit HSuccessorIterator(HControlInstruction* instr)
: instr_(instr), current_(0) { }
bool Done() { return current_ >= instr_->SuccessorCount(); }
HBasicBlock* Current() { return instr_->SuccessorAt(current_); }
void Advance() { current_++; }
private:
HControlInstruction* instr_;
int current_;
};
template<int S, int V>
class HTemplateControlInstruction: public HControlInstruction {
public:
int SuccessorCount() { return S; }
HBasicBlock* SuccessorAt(int i) { return successors_[i]; }
void SetSuccessorAt(int i, HBasicBlock* block) { successors_[i] = block; }
int OperandCount() { return V; }
HValue* OperandAt(int i) { return inputs_[i]; }
protected:
void InternalSetOperandAt(int i, HValue* value) { inputs_[i] = value; }
private:
EmbeddedContainer<HBasicBlock*, S> successors_;
EmbeddedContainer<HValue*, V> inputs_;
};
class HBlockEntry: public HTemplateInstruction<0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(BlockEntry)
};
// We insert soft-deoptimize when we hit code with unknown typefeedback,
// so that we get a chance of re-optimizing with useful typefeedback.
// HSoftDeoptimize does not end a basic block as opposed to HDeoptimize.
class HSoftDeoptimize: public HTemplateInstruction<0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(SoftDeoptimize)
};
class HDeoptimize: public HControlInstruction {
public:
explicit HDeoptimize(int environment_length) : values_(environment_length) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual int OperandCount() { return values_.length(); }
virtual HValue* OperandAt(int index) { return values_[index]; }
virtual void PrintDataTo(StringStream* stream);
virtual int SuccessorCount() { return 0; }
virtual HBasicBlock* SuccessorAt(int i) {
UNREACHABLE();
return NULL;
}
virtual void SetSuccessorAt(int i, HBasicBlock* block) {
UNREACHABLE();
}
void AddEnvironmentValue(HValue* value) {
values_.Add(NULL);
SetOperandAt(values_.length() - 1, value);
}
DECLARE_CONCRETE_INSTRUCTION(Deoptimize)
enum UseEnvironment {
kNoUses,
kUseAll
};
protected:
virtual void InternalSetOperandAt(int index, HValue* value) {
values_[index] = value;
}
private:
ZoneList<HValue*> values_;
};
class HGoto: public HTemplateControlInstruction<1, 0> {
public:
explicit HGoto(HBasicBlock* target) {
SetSuccessorAt(0, target);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(Goto)
};
class HUnaryControlInstruction: public HTemplateControlInstruction<2, 1> {
public:
HUnaryControlInstruction(HValue* value,
HBasicBlock* true_target,
HBasicBlock* false_target) {
SetOperandAt(0, value);
SetSuccessorAt(0, true_target);
SetSuccessorAt(1, false_target);
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
};
class HBranch: public HUnaryControlInstruction {
public:
HBranch(HValue* value,
HBasicBlock* true_target,
HBasicBlock* false_target,
ToBooleanStub::Types expected_input_types = ToBooleanStub::no_types())
: HUnaryControlInstruction(value, true_target, false_target),
expected_input_types_(expected_input_types) {
ASSERT(true_target != NULL && false_target != NULL);
}
explicit HBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
ToBooleanStub::Types expected_input_types() const {
return expected_input_types_;
}
DECLARE_CONCRETE_INSTRUCTION(Branch)
private:
ToBooleanStub::Types expected_input_types_;
};
class HCompareMap: public HUnaryControlInstruction {
public:
HCompareMap(HValue* value,
Handle<Map> map,
HBasicBlock* true_target,
HBasicBlock* false_target)
: HUnaryControlInstruction(value, true_target, false_target),
map_(map) {
ASSERT(true_target != NULL);
ASSERT(false_target != NULL);
ASSERT(!map.is_null());
}
virtual void PrintDataTo(StringStream* stream);
Handle<Map> map() const { return map_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CompareMap)
private:
Handle<Map> map_;
};
class HReturn: public HTemplateControlInstruction<0, 1> {
public:
explicit HReturn(HValue* value) {
SetOperandAt(0, value);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
DECLARE_CONCRETE_INSTRUCTION(Return)
};
class HAbnormalExit: public HTemplateControlInstruction<0, 0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(AbnormalExit)
};
class HUnaryOperation: public HTemplateInstruction<1> {
public:
explicit HUnaryOperation(HValue* value) {
SetOperandAt(0, value);
}
static HUnaryOperation* cast(HValue* value) {
return reinterpret_cast<HUnaryOperation*>(value);
}
HValue* value() { return OperandAt(0); }
virtual void PrintDataTo(StringStream* stream);
};
class HThrow: public HTemplateInstruction<2> {
public:
HThrow(HValue* context, HValue* value) {
SetOperandAt(0, context);
SetOperandAt(1, value);
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(Throw)
};
class HUseConst: public HUnaryOperation {
public:
explicit HUseConst(HValue* old_value) : HUnaryOperation(old_value) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(UseConst)
};
class HForceRepresentation: public HTemplateInstruction<1> {
public:
HForceRepresentation(HValue* value, Representation required_representation) {
SetOperandAt(0, value);
set_representation(required_representation);
}
HValue* value() { return OperandAt(0); }
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual Representation RequiredInputRepresentation(int index) {
return representation(); // Same as the output representation.
}
DECLARE_CONCRETE_INSTRUCTION(ForceRepresentation)
};
class HChange: public HUnaryOperation {
public:
HChange(HValue* value,
Representation to,
bool is_truncating,
bool deoptimize_on_undefined)
: HUnaryOperation(value) {
ASSERT(!value->representation().IsNone() && !to.IsNone());
ASSERT(!value->representation().Equals(to));
set_representation(to);
set_type(HType::TaggedNumber());
SetFlag(kUseGVN);
if (deoptimize_on_undefined) SetFlag(kDeoptimizeOnUndefined);
if (is_truncating) SetFlag(kTruncatingToInt32);
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual HType CalculateInferredType();
virtual HValue* Canonicalize();
Representation from() { return value()->representation(); }
Representation to() { return representation(); }
bool deoptimize_on_undefined() const {
return CheckFlag(kDeoptimizeOnUndefined);
}
bool deoptimize_on_minus_zero() const {
return CheckFlag(kBailoutOnMinusZero);
}
virtual Representation RequiredInputRepresentation(int index) {
return from();
}
virtual Range* InferRange(Zone* zone);
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(Change)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HClampToUint8: public HUnaryOperation {
public:
explicit HClampToUint8(HValue* value)
: HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(ClampToUint8)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HSimulate: public HInstruction {
public:
HSimulate(int ast_id, int pop_count)
: ast_id_(ast_id),
pop_count_(pop_count),
values_(2),
assigned_indexes_(2) {}
virtual ~HSimulate() {}
virtual void PrintDataTo(StringStream* stream);
bool HasAstId() const { return ast_id_ != AstNode::kNoNumber; }
int ast_id() const { return ast_id_; }
void set_ast_id(int id) {
ASSERT(!HasAstId());
ast_id_ = id;
}
int pop_count() const { return pop_count_; }
const ZoneList<HValue*>* values() const { return &values_; }
int GetAssignedIndexAt(int index) const {
ASSERT(HasAssignedIndexAt(index));
return assigned_indexes_[index];
}
bool HasAssignedIndexAt(int index) const {
return assigned_indexes_[index] != kNoIndex;
}
void AddAssignedValue(int index, HValue* value) {
AddValue(index, value);
}
void AddPushedValue(HValue* value) {
AddValue(kNoIndex, value);
}
virtual int OperandCount() { return values_.length(); }
virtual HValue* OperandAt(int index) { return values_[index]; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(Simulate)
#ifdef DEBUG
virtual void Verify();
#endif
protected:
virtual void InternalSetOperandAt(int index, HValue* value) {
values_[index] = value;
}
private:
static const int kNoIndex = -1;
void AddValue(int index, HValue* value) {
assigned_indexes_.Add(index);
// Resize the list of pushed values.
values_.Add(NULL);
// Set the operand through the base method in HValue to make sure that the
// use lists are correctly updated.
SetOperandAt(values_.length() - 1, value);
}
int ast_id_;
int pop_count_;
ZoneList<HValue*> values_;
ZoneList<int> assigned_indexes_;
};
class HStackCheck: public HTemplateInstruction<1> {
public:
enum Type {
kFunctionEntry,
kBackwardsBranch
};
HStackCheck(HValue* context, Type type) : type_(type) {
SetOperandAt(0, context);
}
HValue* context() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
void Eliminate() {
// The stack check eliminator might try to eliminate the same stack
// check instruction multiple times.
if (IsLinked()) {
DeleteFromGraph();
}
}
bool is_function_entry() { return type_ == kFunctionEntry; }
bool is_backwards_branch() { return type_ == kBackwardsBranch; }
DECLARE_CONCRETE_INSTRUCTION(StackCheck)
private:
Type type_;
};
class HEnterInlined: public HTemplateInstruction<0> {
public:
HEnterInlined(Handle<JSFunction> closure,
int arguments_count,
FunctionLiteral* function,
CallKind call_kind,
bool is_construct,
Variable* arguments)
: closure_(closure),
arguments_count_(arguments_count),
function_(function),
call_kind_(call_kind),
is_construct_(is_construct),
arguments_(arguments) {
}
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> closure() const { return closure_; }
int arguments_count() const { return arguments_count_; }
FunctionLiteral* function() const { return function_; }
CallKind call_kind() const { return call_kind_; }
bool is_construct() const { return is_construct_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
Variable* arguments() { return arguments_; }
DECLARE_CONCRETE_INSTRUCTION(EnterInlined)
private:
Handle<JSFunction> closure_;
int arguments_count_;
FunctionLiteral* function_;
CallKind call_kind_;
bool is_construct_;
Variable* arguments_;
};
class HLeaveInlined: public HTemplateInstruction<0> {
public:
HLeaveInlined() {}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(LeaveInlined)
};
class HPushArgument: public HUnaryOperation {
public:
explicit HPushArgument(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* argument() { return OperandAt(0); }
DECLARE_CONCRETE_INSTRUCTION(PushArgument)
};
class HThisFunction: public HTemplateInstruction<0> {
public:
explicit HThisFunction(Handle<JSFunction> closure) : closure_(closure) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
Handle<JSFunction> closure() const { return closure_; }
DECLARE_CONCRETE_INSTRUCTION(ThisFunction)
protected:
virtual bool DataEquals(HValue* other) {
HThisFunction* b = HThisFunction::cast(other);
return *closure() == *b->closure();
}
private:
Handle<JSFunction> closure_;
};
class HContext: public HTemplateInstruction<0> {
public:
HContext() {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(Context)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HOuterContext: public HUnaryOperation {
public:
explicit HOuterContext(HValue* inner) : HUnaryOperation(inner) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(OuterContext);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HDeclareGlobals: public HUnaryOperation {
public:
HDeclareGlobals(HValue* context,
Handle<FixedArray> pairs,
int flags)
: HUnaryOperation(context),
pairs_(pairs),
flags_(flags) {
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
Handle<FixedArray> pairs() const { return pairs_; }
int flags() const { return flags_; }
DECLARE_CONCRETE_INSTRUCTION(DeclareGlobals)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
private:
Handle<FixedArray> pairs_;
int flags_;
};
class HGlobalObject: public HUnaryOperation {
public:
explicit HGlobalObject(HValue* context) : HUnaryOperation(context) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(GlobalObject)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HGlobalReceiver: public HUnaryOperation {
public:
explicit HGlobalReceiver(HValue* global_object)
: HUnaryOperation(global_object) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(GlobalReceiver)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
template <int V>
class HCall: public HTemplateInstruction<V> {
public:
// The argument count includes the receiver.
explicit HCall<V>(int argument_count) : argument_count_(argument_count) {
this->set_representation(Representation::Tagged());
this->SetAllSideEffects();
}
virtual HType CalculateInferredType() { return HType::Tagged(); }
virtual int argument_count() const { return argument_count_; }
virtual bool IsCall() { return true; }
private:
int argument_count_;
};
class HUnaryCall: public HCall<1> {
public:
HUnaryCall(HValue* value, int argument_count)
: HCall<1>(argument_count) {
SetOperandAt(0, value);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
};
class HBinaryCall: public HCall<2> {
public:
HBinaryCall(HValue* first, HValue* second, int argument_count)
: HCall<2>(argument_count) {
SetOperandAt(0, first);
SetOperandAt(1, second);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* first() { return OperandAt(0); }
HValue* second() { return OperandAt(1); }
};
class HInvokeFunction: public HBinaryCall {
public:
HInvokeFunction(HValue* context, HValue* function, int argument_count)
: HBinaryCall(context, function, argument_count) {
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return first(); }
HValue* function() { return second(); }
DECLARE_CONCRETE_INSTRUCTION(InvokeFunction)
};
class HCallConstantFunction: public HCall<0> {
public:
HCallConstantFunction(Handle<JSFunction> function, int argument_count)
: HCall<0>(argument_count), function_(function) { }
Handle<JSFunction> function() const { return function_; }
bool IsApplyFunction() const {
return function_->code() ==
Isolate::Current()->builtins()->builtin(Builtins::kFunctionApply);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(CallConstantFunction)
private:
Handle<JSFunction> function_;
};
class HCallKeyed: public HBinaryCall {
public:
HCallKeyed(HValue* context, HValue* key, int argument_count)
: HBinaryCall(context, key, argument_count) {
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return first(); }
HValue* key() { return second(); }
DECLARE_CONCRETE_INSTRUCTION(CallKeyed)
};
class HCallNamed: public HUnaryCall {
public:
HCallNamed(HValue* context, Handle<String> name, int argument_count)
: HUnaryCall(context, argument_count), name_(name) {
}
virtual void PrintDataTo(StringStream* stream);
HValue* context() { return value(); }
Handle<String> name() const { return name_; }
DECLARE_CONCRETE_INSTRUCTION(CallNamed)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
private:
Handle<String> name_;
};
class HCallFunction: public HBinaryCall {
public:
HCallFunction(HValue* context, HValue* function, int argument_count)
: HBinaryCall(context, function, argument_count) {
}
HValue* context() { return first(); }
HValue* function() { return second(); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallFunction)
};
class HCallGlobal: public HUnaryCall {
public:
HCallGlobal(HValue* context, Handle<String> name, int argument_count)
: HUnaryCall(context, argument_count), name_(name) {
}
virtual void PrintDataTo(StringStream* stream);
HValue* context() { return value(); }
Handle<String> name() const { return name_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallGlobal)
private:
Handle<String> name_;
};
class HCallKnownGlobal: public HCall<0> {
public:
HCallKnownGlobal(Handle<JSFunction> target, int argument_count)
: HCall<0>(argument_count), target_(target) { }
virtual void PrintDataTo(StringStream* stream);
Handle<JSFunction> target() const { return target_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(CallKnownGlobal)
private:
Handle<JSFunction> target_;
};
class HCallNew: public HBinaryCall {
public:
HCallNew(HValue* context, HValue* constructor, int argument_count)
: HBinaryCall(context, constructor, argument_count) {
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return first(); }
HValue* constructor() { return second(); }
DECLARE_CONCRETE_INSTRUCTION(CallNew)
};
class HCallRuntime: public HCall<1> {
public:
HCallRuntime(HValue* context,
Handle<String> name,
const Runtime::Function* c_function,
int argument_count)
: HCall<1>(argument_count), c_function_(c_function), name_(name) {
SetOperandAt(0, context);
}
virtual void PrintDataTo(StringStream* stream);
HValue* context() { return OperandAt(0); }
const Runtime::Function* function() const { return c_function_; }
Handle<String> name() const { return name_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallRuntime)
private:
const Runtime::Function* c_function_;
Handle<String> name_;
};
class HJSArrayLength: public HTemplateInstruction<2> {
public:
HJSArrayLength(HValue* value, HValue* typecheck) {
// The length of an array is stored as a tagged value in the array
// object. It is guaranteed to be 32 bit integer, but it can be
// represented as either a smi or heap number.
SetOperandAt(0, value);
SetOperandAt(1, typecheck);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnArrayLengths);
SetGVNFlag(kDependsOnMaps);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
HValue* value() { return OperandAt(0); }
HValue* typecheck() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(JSArrayLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HFixedArrayBaseLength: public HUnaryOperation {
public:
explicit HFixedArrayBaseLength(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnArrayLengths);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(FixedArrayBaseLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HElementsKind: public HUnaryOperation {
public:
explicit HElementsKind(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnElementsKind);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ElementsKind)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HBitNot: public HUnaryOperation {
public:
explicit HBitNot(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
SetFlag(kTruncatingToInt32);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Integer32();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(BitNot)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HUnaryMathOperation: public HTemplateInstruction<2> {
public:
HUnaryMathOperation(HValue* context, HValue* value, BuiltinFunctionId op)
: op_(op) {
SetOperandAt(0, context);
SetOperandAt(1, value);
switch (op) {
case kMathFloor:
case kMathRound:
case kMathCeil:
set_representation(Representation::Integer32());
break;
case kMathAbs:
set_representation(Representation::Tagged());
SetFlag(kFlexibleRepresentation);
break;
case kMathSqrt:
case kMathPowHalf:
case kMathLog:
case kMathSin:
case kMathCos:
case kMathTan:
set_representation(Representation::Double());
break;
default:
UNREACHABLE();
}
SetFlag(kUseGVN);
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual Representation RequiredInputRepresentation(int index) {
if (index == 0) {
return Representation::Tagged();
} else {
switch (op_) {
case kMathFloor:
case kMathRound:
case kMathCeil:
case kMathSqrt:
case kMathPowHalf:
case kMathLog:
case kMathSin:
case kMathCos:
case kMathTan:
return Representation::Double();
case kMathAbs:
return representation();
default:
UNREACHABLE();
return Representation::None();
}
}
}
virtual HValue* Canonicalize() {
// If the input is integer32 then we replace the floor instruction
// with its inputs. This happens before the representation changes are
// introduced.
if (op() == kMathFloor) {
if (value()->representation().IsInteger32()) return value();
}
return this;
}
BuiltinFunctionId op() const { return op_; }
const char* OpName() const;
DECLARE_CONCRETE_INSTRUCTION(UnaryMathOperation)
protected:
virtual bool DataEquals(HValue* other) {
HUnaryMathOperation* b = HUnaryMathOperation::cast(other);
return op_ == b->op();
}
private:
BuiltinFunctionId op_;
};
class HLoadElements: public HUnaryOperation {
public:
explicit HLoadElements(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnElementsPointer);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadElements)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HLoadExternalArrayPointer: public HUnaryOperation {
public:
explicit HLoadExternalArrayPointer(HValue* value)
: HUnaryOperation(value) {
set_representation(Representation::External());
// The result of this instruction is idempotent as long as its inputs don't
// change. The external array of a specialized array elements object cannot
// change once set, so it's no necessary to introduce any additional
// dependencies on top of the inputs.
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadExternalArrayPointer)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HCheckMap: public HTemplateInstruction<2> {
public:
HCheckMap(HValue* value,
Handle<Map> map,
HValue* typecheck = NULL,
CompareMapMode mode = REQUIRE_EXACT_MAP)
: map_(map),
mode_(mode) {
SetOperandAt(0, value);
// If callers don't depend on a typecheck, they can pass in NULL. In that
// case we use a copy of the |value| argument as a dummy value.
SetOperandAt(1, typecheck != NULL ? typecheck : value);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
// If the map to check doesn't have the untransitioned elements, it must not
// be hoisted above TransitionElements instructions.
if (mode == REQUIRE_EXACT_MAP || !map->has_fast_smi_only_elements()) {
SetGVNFlag(kDependsOnElementsKind);
}
has_element_transitions_ =
map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL) != NULL ||
map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL) != NULL;
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
HValue* value() { return OperandAt(0); }
Handle<Map> map() const { return map_; }
CompareMapMode mode() const { return mode_; }
DECLARE_CONCRETE_INSTRUCTION(CheckMap)
protected:
virtual bool DataEquals(HValue* other) {
HCheckMap* b = HCheckMap::cast(other);
// Two CheckMaps instructions are DataEqual if their maps are identical and
// they have the same mode. The mode comparison can be ignored if the map
// has no elements transitions.
return map_.is_identical_to(b->map()) &&
(b->mode() == mode() || !has_element_transitions_);
}
private:
bool has_element_transitions_;
Handle<Map> map_;
CompareMapMode mode_;
};
class HCheckFunction: public HUnaryOperation {
public:
HCheckFunction(HValue* value, Handle<JSFunction> function)
: HUnaryOperation(value), target_(function) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
#ifdef DEBUG
virtual void Verify();
#endif
Handle<JSFunction> target() const { return target_; }
DECLARE_CONCRETE_INSTRUCTION(CheckFunction)
protected:
virtual bool DataEquals(HValue* other) {
HCheckFunction* b = HCheckFunction::cast(other);
return target_.is_identical_to(b->target());
}
private:
Handle<JSFunction> target_;
};
class HCheckInstanceType: public HUnaryOperation {
public:
static HCheckInstanceType* NewIsSpecObject(HValue* value) {
return new HCheckInstanceType(value, IS_SPEC_OBJECT);
}
static HCheckInstanceType* NewIsJSArray(HValue* value) {
return new HCheckInstanceType(value, IS_JS_ARRAY);
}
static HCheckInstanceType* NewIsString(HValue* value) {
return new HCheckInstanceType(value, IS_STRING);
}
static HCheckInstanceType* NewIsSymbol(HValue* value) {
return new HCheckInstanceType(value, IS_SYMBOL);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HValue* Canonicalize();
bool is_interval_check() const { return check_ <= LAST_INTERVAL_CHECK; }
void GetCheckInterval(InstanceType* first, InstanceType* last);
void GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag);
DECLARE_CONCRETE_INSTRUCTION(CheckInstanceType)
protected:
// TODO(ager): It could be nice to allow the ommision of instance
// type checks if we have already performed an instance type check
// with a larger range.
virtual bool DataEquals(HValue* other) {
HCheckInstanceType* b = HCheckInstanceType::cast(other);
return check_ == b->check_;
}
private:
enum Check {
IS_SPEC_OBJECT,
IS_JS_ARRAY,
IS_STRING,
IS_SYMBOL,
LAST_INTERVAL_CHECK = IS_JS_ARRAY
};
const char* GetCheckName();
HCheckInstanceType(HValue* value, Check check)
: HUnaryOperation(value), check_(check) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
const Check check_;
};
class HCheckNonSmi: public HUnaryOperation {
public:
explicit HCheckNonSmi(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
#ifdef DEBUG
virtual void Verify();
#endif
virtual HValue* Canonicalize() {
HType value_type = value()->type();
if (!value_type.IsUninitialized() &&
(value_type.IsHeapNumber() ||
value_type.IsString() ||
value_type.IsBoolean() ||
value_type.IsNonPrimitive())) {
return NULL;
}
return this;
}
DECLARE_CONCRETE_INSTRUCTION(CheckNonSmi)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HCheckPrototypeMaps: public HTemplateInstruction<0> {
public:
HCheckPrototypeMaps(Handle<JSObject> prototype, Handle<JSObject> holder)
: prototype_(prototype), holder_(holder) {
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
}
#ifdef DEBUG
virtual void Verify();
#endif
Handle<JSObject> prototype() const { return prototype_; }
Handle<JSObject> holder() const { return holder_; }
DECLARE_CONCRETE_INSTRUCTION(CheckPrototypeMaps)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual intptr_t Hashcode() {
ASSERT(!HEAP->IsAllocationAllowed());
intptr_t hash = reinterpret_cast<intptr_t>(*prototype());
hash = 17 * hash + reinterpret_cast<intptr_t>(*holder());
return hash;
}
protected:
virtual bool DataEquals(HValue* other) {
HCheckPrototypeMaps* b = HCheckPrototypeMaps::cast(other);
return prototype_.is_identical_to(b->prototype()) &&
holder_.is_identical_to(b->holder());
}
private:
Handle<JSObject> prototype_;
Handle<JSObject> holder_;
};
class HCheckSmi: public HUnaryOperation {
public:
explicit HCheckSmi(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
#ifdef DEBUG
virtual void Verify();
#endif
DECLARE_CONCRETE_INSTRUCTION(CheckSmi)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HPhi: public HValue {
public:
explicit HPhi(int merged_index)
: inputs_(2),
merged_index_(merged_index),
phi_id_(-1),
is_live_(false),
is_convertible_to_integer_(true) {
for (int i = 0; i < Representation::kNumRepresentations; i++) {
non_phi_uses_[i] = 0;
indirect_uses_[i] = 0;
}
ASSERT(merged_index >= 0);
set_representation(Representation::Tagged());
SetFlag(kFlexibleRepresentation);
}
virtual Representation InferredRepresentation();
virtual Range* InferRange(Zone* zone);
virtual Representation RequiredInputRepresentation(int index) {
return representation();
}
virtual HType CalculateInferredType();
virtual int OperandCount() { return inputs_.length(); }
virtual HValue* OperandAt(int index) { return inputs_[index]; }
HValue* GetRedundantReplacement();
void AddInput(HValue* value);
bool HasRealUses();
bool IsReceiver() { return merged_index_ == 0; }
int merged_index() const { return merged_index_; }
virtual void PrintTo(StringStream* stream);
#ifdef DEBUG
virtual void Verify();
#endif
void InitRealUses(int id);
void AddNonPhiUsesFrom(HPhi* other);
void AddIndirectUsesTo(int* use_count);
int tagged_non_phi_uses() const {
return non_phi_uses_[Representation::kTagged];
}
int int32_non_phi_uses() const {
return non_phi_uses_[Representation::kInteger32];
}
int double_non_phi_uses() const {
return non_phi_uses_[Representation::kDouble];
}
int tagged_indirect_uses() const {
return indirect_uses_[Representation::kTagged];
}
int int32_indirect_uses() const {
return indirect_uses_[Representation::kInteger32];
}
int double_indirect_uses() const {
return indirect_uses_[Representation::kDouble];
}
int phi_id() { return phi_id_; }
bool is_live() { return is_live_; }
void set_is_live(bool b) { is_live_ = b; }
static HPhi* cast(HValue* value) {
ASSERT(value->IsPhi());
return reinterpret_cast<HPhi*>(value);
}
virtual Opcode opcode() const { return HValue::kPhi; }
virtual bool IsConvertibleToInteger() const {
return is_convertible_to_integer_;
}
void set_is_convertible_to_integer(bool b) {
is_convertible_to_integer_ = b;
}
bool AllOperandsConvertibleToInteger() {
for (int i = 0; i < OperandCount(); ++i) {
if (!OperandAt(i)->IsConvertibleToInteger()) return false;
}
return true;
}
protected:
virtual void DeleteFromGraph();
virtual void InternalSetOperandAt(int index, HValue* value) {
inputs_[index] = value;
}
private:
ZoneList<HValue*> inputs_;
int merged_index_;
int non_phi_uses_[Representation::kNumRepresentations];
int indirect_uses_[Representation::kNumRepresentations];
int phi_id_;
bool is_live_;
bool is_convertible_to_integer_;
};
class HArgumentsObject: public HTemplateInstruction<0> {
public:
HArgumentsObject() {
set_representation(Representation::Tagged());
SetFlag(kIsArguments);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsObject)
};
class HConstant: public HTemplateInstruction<0> {
public:
HConstant(Handle<Object> handle, Representation r);
Handle<Object> handle() const { return handle_; }
bool InOldSpace() const { return !HEAP->InNewSpace(*handle_); }
bool ImmortalImmovable() const {
Heap* heap = HEAP;
if (*handle_ == heap->undefined_value()) return true;
if (*handle_ == heap->null_value()) return true;
if (*handle_ == heap->true_value()) return true;
if (*handle_ == heap->false_value()) return true;
if (*handle_ == heap->the_hole_value()) return true;
if (*handle_ == heap->minus_zero_value()) return true;
if (*handle_ == heap->nan_value()) return true;
if (*handle_ == heap->empty_string()) return true;
return false;
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
virtual bool IsConvertibleToInteger() const {
if (handle_->IsSmi()) return true;
if (handle_->IsHeapNumber() &&
(HeapNumber::cast(*handle_)->value() ==
static_cast<double>(NumberToInt32(*handle_)))) return true;
return false;
}
virtual bool EmitAtUses() { return !representation().IsDouble(); }
virtual HValue* Canonicalize();
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
bool IsInteger() const { return handle_->IsSmi(); }
HConstant* CopyToRepresentation(Representation r) const;
HConstant* CopyToTruncatedInt32() const;
bool HasInteger32Value() const { return has_int32_value_; }
int32_t Integer32Value() const {
ASSERT(HasInteger32Value());
return int32_value_;
}
bool HasDoubleValue() const { return has_double_value_; }
double DoubleValue() const {
ASSERT(HasDoubleValue());
return double_value_;
}
bool HasNumberValue() const { return has_int32_value_ || has_double_value_; }
int32_t NumberValueAsInteger32() const {
ASSERT(HasNumberValue());
if (has_int32_value_) return int32_value_;
return DoubleToInt32(double_value_);
}
bool HasStringValue() const { return handle_->IsString(); }
bool ToBoolean() const;
virtual intptr_t Hashcode() {
ASSERT(!HEAP->allow_allocation(false));
intptr_t hash = reinterpret_cast<intptr_t>(*handle());
// Prevent smis from having fewer hash values when truncated to
// the least significant bits.
const int kShiftSize = kSmiShiftSize + kSmiTagSize;
STATIC_ASSERT(kShiftSize != 0);
return hash ^ (hash >> kShiftSize);
}
#ifdef DEBUG
virtual void Verify() { }
#endif
DECLARE_CONCRETE_INSTRUCTION(Constant)
protected:
virtual Range* InferRange(Zone* zone);
virtual bool DataEquals(HValue* other) {
HConstant* other_constant = HConstant::cast(other);
return handle().is_identical_to(other_constant->handle());
}
private:
Handle<Object> handle_;
// The following two values represent the int32 and the double value of the
// given constant if there is a lossless conversion between the constant
// and the specific representation.
bool has_int32_value_ : 1;
bool has_double_value_ : 1;
int32_t int32_value_;
double double_value_;
};
class HBinaryOperation: public HTemplateInstruction<3> {
public:
HBinaryOperation(HValue* context, HValue* left, HValue* right) {
ASSERT(left != NULL && right != NULL);
SetOperandAt(0, context);
SetOperandAt(1, left);
SetOperandAt(2, right);
}
HValue* context() { return OperandAt(0); }
HValue* left() { return OperandAt(1); }
HValue* right() { return OperandAt(2); }
// TODO(kasperl): Move these helpers to the IA-32 Lithium
// instruction sequence builder.
HValue* LeastConstantOperand() {
if (IsCommutative() && left()->IsConstant()) return right();
return left();
}
HValue* MostConstantOperand() {
if (IsCommutative() && left()->IsConstant()) return left();
return right();
}
virtual bool IsCommutative() const { return false; }
virtual void PrintDataTo(StringStream* stream);
};
class HWrapReceiver: public HTemplateInstruction<2> {
public:
HWrapReceiver(HValue* receiver, HValue* function) {
set_representation(Representation::Tagged());
SetOperandAt(0, receiver);
SetOperandAt(1, function);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* receiver() { return OperandAt(0); }
HValue* function() { return OperandAt(1); }
virtual HValue* Canonicalize();
DECLARE_CONCRETE_INSTRUCTION(WrapReceiver)
};
class HApplyArguments: public HTemplateInstruction<4> {
public:
HApplyArguments(HValue* function,
HValue* receiver,
HValue* length,
HValue* elements) {
set_representation(Representation::Tagged());
SetOperandAt(0, function);
SetOperandAt(1, receiver);
SetOperandAt(2, length);
SetOperandAt(3, elements);
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
// The length is untagged, all other inputs are tagged.
return (index == 2)
? Representation::Integer32()
: Representation::Tagged();
}
HValue* function() { return OperandAt(0); }
HValue* receiver() { return OperandAt(1); }
HValue* length() { return OperandAt(2); }
HValue* elements() { return OperandAt(3); }
DECLARE_CONCRETE_INSTRUCTION(ApplyArguments)
};
class HArgumentsElements: public HTemplateInstruction<0> {
public:
HArgumentsElements() {
// The value produced by this instruction is a pointer into the stack
// that looks as if it was a smi because of alignment.
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsElements)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HArgumentsLength: public HUnaryOperation {
public:
explicit HArgumentsLength(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ArgumentsLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HAccessArgumentsAt: public HTemplateInstruction<3> {
public:
HAccessArgumentsAt(HValue* arguments, HValue* length, HValue* index) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetOperandAt(0, arguments);
SetOperandAt(1, length);
SetOperandAt(2, index);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
// The arguments elements is considered tagged.
return index == 0
? Representation::Tagged()
: Representation::Integer32();
}
HValue* arguments() { return OperandAt(0); }
HValue* length() { return OperandAt(1); }
HValue* index() { return OperandAt(2); }
DECLARE_CONCRETE_INSTRUCTION(AccessArgumentsAt)
virtual bool DataEquals(HValue* other) { return true; }
};
class HBoundsCheck: public HTemplateInstruction<2> {
public:
HBoundsCheck(HValue* index, HValue* length) {
SetOperandAt(0, index);
SetOperandAt(1, length);
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Integer32();
}
virtual void PrintDataTo(StringStream* stream);
HValue* index() { return OperandAt(0); }
HValue* length() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(BoundsCheck)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HBitwiseBinaryOperation: public HBinaryOperation {
public:
HBitwiseBinaryOperation(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
set_representation(Representation::Tagged());
SetFlag(kFlexibleRepresentation);
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Tagged()
: representation();
}
virtual void RepresentationChanged(Representation to) {
if (!to.IsTagged()) {
ASSERT(to.IsInteger32());
ClearAllSideEffects();
SetFlag(kTruncatingToInt32);
SetFlag(kUseGVN);
}
}
virtual HType CalculateInferredType();
DECLARE_ABSTRACT_INSTRUCTION(BitwiseBinaryOperation)
};
class HArithmeticBinaryOperation: public HBinaryOperation {
public:
HArithmeticBinaryOperation(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
set_representation(Representation::Tagged());
SetFlag(kFlexibleRepresentation);
SetAllSideEffects();
}
virtual void RepresentationChanged(Representation to) {
if (!to.IsTagged()) {
ClearAllSideEffects();
SetFlag(kUseGVN);
}
}
virtual HType CalculateInferredType();
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Tagged()
: representation();
}
virtual Representation InferredRepresentation() {
if (left()->representation().Equals(right()->representation())) {
return left()->representation();
}
return HValue::InferredRepresentation();
}
};
class HCompareGeneric: public HBinaryOperation {
public:
HCompareGeneric(HValue* context,
HValue* left,
HValue* right,
Token::Value token)
: HBinaryOperation(context, left, right), token_(token) {
ASSERT(Token::IsCompareOp(token));
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
Representation GetInputRepresentation() const {
return Representation::Tagged();
}
Token::Value token() const { return token_; }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(CompareGeneric)
private:
Token::Value token_;
};
class HCompareIDAndBranch: public HTemplateControlInstruction<2, 2> {
public:
HCompareIDAndBranch(HValue* left, HValue* right, Token::Value token)
: token_(token) {
ASSERT(Token::IsCompareOp(token));
SetOperandAt(0, left);
SetOperandAt(1, right);
}
HValue* left() { return OperandAt(0); }
HValue* right() { return OperandAt(1); }
Token::Value token() const { return token_; }
void SetInputRepresentation(Representation r);
Representation GetInputRepresentation() const {
return input_representation_;
}
virtual Representation RequiredInputRepresentation(int index) {
return input_representation_;
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(CompareIDAndBranch)
private:
Representation input_representation_;
Token::Value token_;
};
class HCompareObjectEqAndBranch: public HTemplateControlInstruction<2, 2> {
public:
HCompareObjectEqAndBranch(HValue* left, HValue* right) {
SetOperandAt(0, left);
SetOperandAt(1, right);
}
HValue* left() { return OperandAt(0); }
HValue* right() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CompareObjectEqAndBranch)
};
class HCompareConstantEqAndBranch: public HUnaryControlInstruction {
public:
HCompareConstantEqAndBranch(HValue* left, int right, Token::Value op)
: HUnaryControlInstruction(left, NULL, NULL), op_(op), right_(right) {
ASSERT(op == Token::EQ_STRICT);
}
Token::Value op() const { return op_; }
HValue* left() { return value(); }
int right() const { return right_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Integer32();
}
DECLARE_CONCRETE_INSTRUCTION(CompareConstantEqAndBranch);
private:
const Token::Value op_;
const int right_;
};
class HIsNilAndBranch: public HUnaryControlInstruction {
public:
HIsNilAndBranch(HValue* value, EqualityKind kind, NilValue nil)
: HUnaryControlInstruction(value, NULL, NULL), kind_(kind), nil_(nil) { }
EqualityKind kind() const { return kind_; }
NilValue nil() const { return nil_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsNilAndBranch)
private:
EqualityKind kind_;
NilValue nil_;
};
class HIsObjectAndBranch: public HUnaryControlInstruction {
public:
explicit HIsObjectAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsObjectAndBranch)
};
class HIsStringAndBranch: public HUnaryControlInstruction {
public:
explicit HIsStringAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsStringAndBranch)
};
class HIsSmiAndBranch: public HUnaryControlInstruction {
public:
explicit HIsSmiAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
DECLARE_CONCRETE_INSTRUCTION(IsSmiAndBranch)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HIsUndetectableAndBranch: public HUnaryControlInstruction {
public:
explicit HIsUndetectableAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(IsUndetectableAndBranch)
};
class HStringCompareAndBranch: public HTemplateControlInstruction<2, 3> {
public:
HStringCompareAndBranch(HValue* context,
HValue* left,
HValue* right,
Token::Value token)
: token_(token) {
ASSERT(Token::IsCompareOp(token));
SetOperandAt(0, context);
SetOperandAt(1, left);
SetOperandAt(2, right);
set_representation(Representation::Tagged());
}
HValue* context() { return OperandAt(0); }
HValue* left() { return OperandAt(1); }
HValue* right() { return OperandAt(2); }
Token::Value token() const { return token_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
Representation GetInputRepresentation() const {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(StringCompareAndBranch)
private:
Token::Value token_;
};
class HIsConstructCallAndBranch: public HTemplateControlInstruction<2, 0> {
public:
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(IsConstructCallAndBranch)
};
class HHasInstanceTypeAndBranch: public HUnaryControlInstruction {
public:
HHasInstanceTypeAndBranch(HValue* value, InstanceType type)
: HUnaryControlInstruction(value, NULL, NULL), from_(type), to_(type) { }
HHasInstanceTypeAndBranch(HValue* value, InstanceType from, InstanceType to)
: HUnaryControlInstruction(value, NULL, NULL), from_(from), to_(to) {
ASSERT(to == LAST_TYPE); // Others not implemented yet in backend.
}
InstanceType from() { return from_; }
InstanceType to() { return to_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(HasInstanceTypeAndBranch)
private:
InstanceType from_;
InstanceType to_; // Inclusive range, not all combinations work.
};
class HHasCachedArrayIndexAndBranch: public HUnaryControlInstruction {
public:
explicit HHasCachedArrayIndexAndBranch(HValue* value)
: HUnaryControlInstruction(value, NULL, NULL) { }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(HasCachedArrayIndexAndBranch)
};
class HGetCachedArrayIndex: public HUnaryOperation {
public:
explicit HGetCachedArrayIndex(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(GetCachedArrayIndex)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HClassOfTestAndBranch: public HUnaryControlInstruction {
public:
HClassOfTestAndBranch(HValue* value, Handle<String> class_name)
: HUnaryControlInstruction(value, NULL, NULL),
class_name_(class_name) { }
DECLARE_CONCRETE_INSTRUCTION(ClassOfTestAndBranch)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
Handle<String> class_name() const { return class_name_; }
private:
Handle<String> class_name_;
};
class HTypeofIsAndBranch: public HUnaryControlInstruction {
public:
HTypeofIsAndBranch(HValue* value, Handle<String> type_literal)
: HUnaryControlInstruction(value, NULL, NULL),
type_literal_(type_literal) { }
Handle<String> type_literal() { return type_literal_; }
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(TypeofIsAndBranch)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
private:
Handle<String> type_literal_;
};
class HInstanceOf: public HBinaryOperation {
public:
HInstanceOf(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(InstanceOf)
};
class HInstanceOfKnownGlobal: public HTemplateInstruction<2> {
public:
HInstanceOfKnownGlobal(HValue* context,
HValue* left,
Handle<JSFunction> right)
: function_(right) {
SetOperandAt(0, context);
SetOperandAt(1, left);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* left() { return OperandAt(1); }
Handle<JSFunction> function() { return function_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(InstanceOfKnownGlobal)
private:
Handle<JSFunction> function_;
};
class HPower: public HTemplateInstruction<2> {
public:
HPower(HValue* left, HValue* right) {
SetOperandAt(0, left);
SetOperandAt(1, right);
set_representation(Representation::Double());
SetFlag(kUseGVN);
}
HValue* left() { return OperandAt(0); }
HValue* right() { return OperandAt(1); }
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Double()
: Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(Power)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HRandom: public HTemplateInstruction<1> {
public:
explicit HRandom(HValue* global_object) {
SetOperandAt(0, global_object);
set_representation(Representation::Double());
}
HValue* global_object() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(Random)
};
class HAdd: public HArithmeticBinaryOperation {
public:
HAdd(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanOverflow);
}
// Add is only commutative if two integer values are added and not if two
// tagged values are added (because it might be a String concatenation).
virtual bool IsCommutative() const {
return !representation().IsTagged();
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
static HInstruction* NewHAdd(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
virtual HType CalculateInferredType();
virtual HValue* Canonicalize();
DECLARE_CONCRETE_INSTRUCTION(Add)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HSub: public HArithmeticBinaryOperation {
public:
HSub(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanOverflow);
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
virtual HValue* Canonicalize();
static HInstruction* NewHSub(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Sub)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HMul: public HArithmeticBinaryOperation {
public:
HMul(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanOverflow);
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
// Only commutative if it is certain that not two objects are multiplicated.
virtual bool IsCommutative() const {
return !representation().IsTagged();
}
static HInstruction* NewHMul(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Mul)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HMod: public HArithmeticBinaryOperation {
public:
HMod(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanBeDivByZero);
}
bool HasPowerOf2Divisor() {
if (right()->IsConstant() &&
HConstant::cast(right())->HasInteger32Value()) {
int32_t value = HConstant::cast(right())->Integer32Value();
return value != 0 && (IsPowerOf2(value) || IsPowerOf2(-value));
}
return false;
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
static HInstruction* NewHMod(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Mod)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HDiv: public HArithmeticBinaryOperation {
public:
HDiv(HValue* context, HValue* left, HValue* right)
: HArithmeticBinaryOperation(context, left, right) {
SetFlag(kCanBeDivByZero);
SetFlag(kCanOverflow);
}
virtual HValue* EnsureAndPropagateNotMinusZero(BitVector* visited);
static HInstruction* NewHDiv(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Div)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone);
};
class HBitwise: public HBitwiseBinaryOperation {
public:
HBitwise(Token::Value op, HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right), op_(op) {
ASSERT(op == Token::BIT_AND ||
op == Token::BIT_OR ||
op == Token::BIT_XOR);
}
Token::Value op() const { return op_; }
virtual bool IsCommutative() const { return true; }
virtual HValue* Canonicalize();
static HInstruction* NewHBitwise(Zone* zone,
Token::Value op,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Bitwise)
protected:
virtual bool DataEquals(HValue* other) {
return op() == HBitwise::cast(other)->op();
}
virtual Range* InferRange(Zone* zone);
private:
Token::Value op_;
};
class HShl: public HBitwiseBinaryOperation {
public:
HShl(HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right) { }
virtual Range* InferRange(Zone* zone);
static HInstruction* NewHShl(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Shl)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HShr: public HBitwiseBinaryOperation {
public:
HShr(HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right) { }
virtual Range* InferRange(Zone* zone);
static HInstruction* NewHShr(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Shr)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HSar: public HBitwiseBinaryOperation {
public:
HSar(HValue* context, HValue* left, HValue* right)
: HBitwiseBinaryOperation(context, left, right) { }
virtual Range* InferRange(Zone* zone);
static HInstruction* NewHSar(Zone* zone,
HValue* context,
HValue* left,
HValue* right);
DECLARE_CONCRETE_INSTRUCTION(Sar)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HOsrEntry: public HTemplateInstruction<0> {
public:
explicit HOsrEntry(int ast_id) : ast_id_(ast_id) {
SetGVNFlag(kChangesOsrEntries);
}
int ast_id() const { return ast_id_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(OsrEntry)
private:
int ast_id_;
};
class HParameter: public HTemplateInstruction<0> {
public:
explicit HParameter(unsigned index) : index_(index) {
set_representation(Representation::Tagged());
}
unsigned index() const { return index_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(Parameter)
private:
unsigned index_;
};
class HCallStub: public HUnaryCall {
public:
HCallStub(HValue* context, CodeStub::Major major_key, int argument_count)
: HUnaryCall(context, argument_count),
major_key_(major_key),
transcendental_type_(TranscendentalCache::kNumberOfCaches) {
}
CodeStub::Major major_key() { return major_key_; }
HValue* context() { return value(); }
void set_transcendental_type(TranscendentalCache::Type transcendental_type) {
transcendental_type_ = transcendental_type;
}
TranscendentalCache::Type transcendental_type() {
return transcendental_type_;
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(CallStub)
private:
CodeStub::Major major_key_;
TranscendentalCache::Type transcendental_type_;
};
class HUnknownOSRValue: public HTemplateInstruction<0> {
public:
HUnknownOSRValue()
: incoming_value_(NULL) {
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
void set_incoming_value(HPhi* value) {
incoming_value_ = value;
}
HPhi* incoming_value() {
return incoming_value_;
}
DECLARE_CONCRETE_INSTRUCTION(UnknownOSRValue)
private:
HPhi* incoming_value_;
};
class HLoadGlobalCell: public HTemplateInstruction<0> {
public:
HLoadGlobalCell(Handle<JSGlobalPropertyCell> cell, PropertyDetails details)
: cell_(cell), details_(details) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnGlobalVars);
}
Handle<JSGlobalPropertyCell> cell() const { return cell_; }
bool RequiresHoleCheck();
virtual void PrintDataTo(StringStream* stream);
virtual intptr_t Hashcode() {
ASSERT(!HEAP->allow_allocation(false));
return reinterpret_cast<intptr_t>(*cell_);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::None();
}
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalCell)
protected:
virtual bool DataEquals(HValue* other) {
HLoadGlobalCell* b = HLoadGlobalCell::cast(other);
return cell_.is_identical_to(b->cell());
}
private:
Handle<JSGlobalPropertyCell> cell_;
PropertyDetails details_;
};
class HLoadGlobalGeneric: public HTemplateInstruction<2> {
public:
HLoadGlobalGeneric(HValue* context,
HValue* global_object,
Handle<Object> name,
bool for_typeof)
: name_(name),
for_typeof_(for_typeof) {
SetOperandAt(0, context);
SetOperandAt(1, global_object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* global_object() { return OperandAt(1); }
Handle<Object> name() const { return name_; }
bool for_typeof() const { return for_typeof_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadGlobalGeneric)
private:
Handle<Object> name_;
bool for_typeof_;
};
inline bool StoringValueNeedsWriteBarrier(HValue* value) {
return !value->type().IsBoolean()
&& !value->type().IsSmi()
&& !(value->IsConstant() && HConstant::cast(value)->ImmortalImmovable());
}
class HStoreGlobalCell: public HUnaryOperation {
public:
HStoreGlobalCell(HValue* value,
Handle<JSGlobalPropertyCell> cell,
PropertyDetails details)
: HUnaryOperation(value),
cell_(cell),
details_(details) {
SetGVNFlag(kChangesGlobalVars);
}
Handle<JSGlobalPropertyCell> cell() const { return cell_; }
bool RequiresHoleCheck() {
return !details_.IsDontDelete() || details_.IsReadOnly();
}
bool NeedsWriteBarrier() {
return StoringValueNeedsWriteBarrier(value());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalCell)
private:
Handle<JSGlobalPropertyCell> cell_;
PropertyDetails details_;
};
class HStoreGlobalGeneric: public HTemplateInstruction<3> {
public:
HStoreGlobalGeneric(HValue* context,
HValue* global_object,
Handle<Object> name,
HValue* value,
StrictModeFlag strict_mode_flag)
: name_(name),
strict_mode_flag_(strict_mode_flag) {
SetOperandAt(0, context);
SetOperandAt(1, global_object);
SetOperandAt(2, value);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* global_object() { return OperandAt(1); }
Handle<Object> name() const { return name_; }
HValue* value() { return OperandAt(2); }
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(StoreGlobalGeneric)
private:
Handle<Object> name_;
StrictModeFlag strict_mode_flag_;
};
class HLoadContextSlot: public HUnaryOperation {
public:
enum Mode {
// Perform a normal load of the context slot without checking its value.
kNoCheck,
// Load and check the value of the context slot. Deoptimize if it's the
// hole value. This is used for checking for loading of uninitialized
// harmony bindings where we deoptimize into full-codegen generated code
// which will subsequently throw a reference error.
kCheckDeoptimize,
// Load and check the value of the context slot. Return undefined if it's
// the hole value. This is used for non-harmony const assignments
kCheckReturnUndefined
};
HLoadContextSlot(HValue* context, Variable* var)
: HUnaryOperation(context), slot_index_(var->index()) {
ASSERT(var->IsContextSlot());
switch (var->mode()) {
case LET:
case CONST_HARMONY:
mode_ = kCheckDeoptimize;
break;
case CONST:
mode_ = kCheckReturnUndefined;
break;
default:
mode_ = kNoCheck;
}
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnContextSlots);
}
int slot_index() const { return slot_index_; }
Mode mode() const { return mode_; }
bool DeoptimizesOnHole() {
return mode_ == kCheckDeoptimize;
}
bool RequiresHoleCheck() {
return mode_ != kNoCheck;
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadContextSlot)
protected:
virtual bool DataEquals(HValue* other) {
HLoadContextSlot* b = HLoadContextSlot::cast(other);
return (slot_index() == b->slot_index());
}
private:
int slot_index_;
Mode mode_;
};
class HStoreContextSlot: public HTemplateInstruction<2> {
public:
enum Mode {
// Perform a normal store to the context slot without checking its previous
// value.
kNoCheck,
// Check the previous value of the context slot and deoptimize if it's the
// hole value. This is used for checking for assignments to uninitialized
// harmony bindings where we deoptimize into full-codegen generated code
// which will subsequently throw a reference error.
kCheckDeoptimize,
// Check the previous value and ignore assignment if it isn't a hole value
kCheckIgnoreAssignment
};
HStoreContextSlot(HValue* context, int slot_index, Mode mode, HValue* value)
: slot_index_(slot_index), mode_(mode) {
SetOperandAt(0, context);
SetOperandAt(1, value);
SetGVNFlag(kChangesContextSlots);
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
int slot_index() const { return slot_index_; }
Mode mode() const { return mode_; }
bool NeedsWriteBarrier() {
return StoringValueNeedsWriteBarrier(value());
}
bool DeoptimizesOnHole() {
return mode_ == kCheckDeoptimize;
}
bool RequiresHoleCheck() {
return mode_ != kNoCheck;
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreContextSlot)
private:
int slot_index_;
Mode mode_;
};
class HLoadNamedField: public HUnaryOperation {
public:
HLoadNamedField(HValue* object, bool is_in_object, int offset)
: HUnaryOperation(object),
is_in_object_(is_in_object),
offset_(offset) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
if (is_in_object) {
SetGVNFlag(kDependsOnInobjectFields);
} else {
SetGVNFlag(kDependsOnBackingStoreFields);
}
}
HValue* object() { return OperandAt(0); }
bool is_in_object() const { return is_in_object_; }
int offset() const { return offset_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadNamedField)
protected:
virtual bool DataEquals(HValue* other) {
HLoadNamedField* b = HLoadNamedField::cast(other);
return is_in_object_ == b->is_in_object_ && offset_ == b->offset_;
}
private:
bool is_in_object_;
int offset_;
};
class HLoadNamedFieldPolymorphic: public HTemplateInstruction<2> {
public:
HLoadNamedFieldPolymorphic(HValue* context,
HValue* object,
SmallMapList* types,
Handle<String> name);
HValue* context() { return OperandAt(0); }
HValue* object() { return OperandAt(1); }
SmallMapList* types() { return &types_; }
Handle<String> name() { return name_; }
bool need_generic() { return need_generic_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadNamedFieldPolymorphic)
static const int kMaxLoadPolymorphism = 4;
protected:
virtual bool DataEquals(HValue* value);
private:
SmallMapList types_;
Handle<String> name_;
bool need_generic_;
};
class HLoadNamedGeneric: public HTemplateInstruction<2> {
public:
HLoadNamedGeneric(HValue* context, HValue* object, Handle<Object> name)
: name_(name) {
SetOperandAt(0, context);
SetOperandAt(1, object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* object() { return OperandAt(1); }
Handle<Object> name() const { return name_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadNamedGeneric)
private:
Handle<Object> name_;
};
class HLoadFunctionPrototype: public HUnaryOperation {
public:
explicit HLoadFunctionPrototype(HValue* function)
: HUnaryOperation(function) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnCalls);
}
HValue* function() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadFunctionPrototype)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HLoadKeyedFastElement: public HTemplateInstruction<2> {
public:
enum HoleCheckMode { PERFORM_HOLE_CHECK, OMIT_HOLE_CHECK };
HLoadKeyedFastElement(HValue* obj,
HValue* key,
HoleCheckMode hole_check_mode = PERFORM_HOLE_CHECK)
: hole_check_mode_(hole_check_mode) {
SetOperandAt(0, obj);
SetOperandAt(1, key);
set_representation(Representation::Tagged());
SetGVNFlag(kDependsOnArrayElements);
SetFlag(kUseGVN);
}
HValue* object() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
virtual Representation RequiredInputRepresentation(int index) {
// The key is supposed to be Integer32.
return index == 0
? Representation::Tagged()
: Representation::Integer32();
}
virtual void PrintDataTo(StringStream* stream);
bool RequiresHoleCheck();
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastElement)
protected:
virtual bool DataEquals(HValue* other) {
if (!other->IsLoadKeyedFastElement()) return false;
HLoadKeyedFastElement* other_load = HLoadKeyedFastElement::cast(other);
return hole_check_mode_ == other_load->hole_check_mode_;
}
private:
HoleCheckMode hole_check_mode_;
};
class HLoadKeyedFastDoubleElement: public HTemplateInstruction<2> {
public:
HLoadKeyedFastDoubleElement(HValue* elements, HValue* key) {
SetOperandAt(0, elements);
SetOperandAt(1, key);
set_representation(Representation::Double());
SetGVNFlag(kDependsOnDoubleArrayElements);
SetFlag(kUseGVN);
}
HValue* elements() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
virtual Representation RequiredInputRepresentation(int index) {
// The key is supposed to be Integer32.
return index == 0
? Representation::Tagged()
: Representation::Integer32();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedFastDoubleElement)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HLoadKeyedSpecializedArrayElement: public HTemplateInstruction<2> {
public:
HLoadKeyedSpecializedArrayElement(HValue* external_elements,
HValue* key,
ElementsKind elements_kind)
: elements_kind_(elements_kind) {
SetOperandAt(0, external_elements);
SetOperandAt(1, key);
if (elements_kind == EXTERNAL_FLOAT_ELEMENTS ||
elements_kind == EXTERNAL_DOUBLE_ELEMENTS) {
set_representation(Representation::Double());
} else {
set_representation(Representation::Integer32());
}
SetGVNFlag(kDependsOnSpecializedArrayElements);
// Native code could change the specialized array.
SetGVNFlag(kDependsOnCalls);
SetFlag(kUseGVN);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
// The key is supposed to be Integer32, but the base pointer
// for the element load is a naked pointer.
return index == 0
? Representation::External()
: Representation::Integer32();
}
HValue* external_pointer() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
ElementsKind elements_kind() const { return elements_kind_; }
virtual Range* InferRange(Zone* zone);
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedSpecializedArrayElement)
protected:
virtual bool DataEquals(HValue* other) {
if (!other->IsLoadKeyedSpecializedArrayElement()) return false;
HLoadKeyedSpecializedArrayElement* cast_other =
HLoadKeyedSpecializedArrayElement::cast(other);
return elements_kind_ == cast_other->elements_kind();
}
private:
ElementsKind elements_kind_;
};
class HLoadKeyedGeneric: public HTemplateInstruction<3> {
public:
HLoadKeyedGeneric(HValue* context, HValue* obj, HValue* key) {
set_representation(Representation::Tagged());
SetOperandAt(0, obj);
SetOperandAt(1, key);
SetOperandAt(2, context);
SetAllSideEffects();
}
HValue* object() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* context() { return OperandAt(2); }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HValue* Canonicalize();
DECLARE_CONCRETE_INSTRUCTION(LoadKeyedGeneric)
};
class HStoreNamedField: public HTemplateInstruction<2> {
public:
HStoreNamedField(HValue* obj,
Handle<String> name,
HValue* val,
bool in_object,
int offset)
: name_(name),
is_in_object_(in_object),
offset_(offset) {
SetOperandAt(0, obj);
SetOperandAt(1, val);
if (is_in_object_) {
SetGVNFlag(kChangesInobjectFields);
} else {
SetGVNFlag(kChangesBackingStoreFields);
}
}
DECLARE_CONCRETE_INSTRUCTION(StoreNamedField)
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
HValue* object() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
Handle<String> name() const { return name_; }
bool is_in_object() const { return is_in_object_; }
int offset() const { return offset_; }
Handle<Map> transition() const { return transition_; }
void set_transition(Handle<Map> map) { transition_ = map; }
bool NeedsWriteBarrier() {
return StoringValueNeedsWriteBarrier(value());
}
private:
Handle<String> name_;
bool is_in_object_;
int offset_;
Handle<Map> transition_;
};
class HStoreNamedGeneric: public HTemplateInstruction<3> {
public:
HStoreNamedGeneric(HValue* context,
HValue* object,
Handle<String> name,
HValue* value,
StrictModeFlag strict_mode_flag)
: name_(name),
strict_mode_flag_(strict_mode_flag) {
SetOperandAt(0, object);
SetOperandAt(1, value);
SetOperandAt(2, context);
SetAllSideEffects();
}
HValue* object() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
HValue* context() { return OperandAt(2); }
Handle<String> name() { return name_; }
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(StoreNamedGeneric)
private:
Handle<String> name_;
StrictModeFlag strict_mode_flag_;
};
class HStoreKeyedFastElement: public HTemplateInstruction<3> {
public:
HStoreKeyedFastElement(HValue* obj, HValue* key, HValue* val,
ElementsKind elements_kind = FAST_ELEMENTS)
: elements_kind_(elements_kind) {
SetOperandAt(0, obj);
SetOperandAt(1, key);
SetOperandAt(2, val);
SetGVNFlag(kChangesArrayElements);
}
virtual Representation RequiredInputRepresentation(int index) {
// The key is supposed to be Integer32.
return index == 1
? Representation::Integer32()
: Representation::Tagged();
}
HValue* object() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* value() { return OperandAt(2); }
bool value_is_smi() {
return elements_kind_ == FAST_SMI_ONLY_ELEMENTS;
}
bool NeedsWriteBarrier() {
if (value_is_smi()) {
return false;
} else {
return StoringValueNeedsWriteBarrier(value());
}
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFastElement)
private:
ElementsKind elements_kind_;
};
class HStoreKeyedFastDoubleElement: public HTemplateInstruction<3> {
public:
HStoreKeyedFastDoubleElement(HValue* elements,
HValue* key,
HValue* val) {
SetOperandAt(0, elements);
SetOperandAt(1, key);
SetOperandAt(2, val);
SetGVNFlag(kChangesDoubleArrayElements);
}
virtual Representation RequiredInputRepresentation(int index) {
if (index == 1) {
return Representation::Integer32();
} else if (index == 2) {
return Representation::Double();
} else {
return Representation::Tagged();
}
}
HValue* elements() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* value() { return OperandAt(2); }
bool NeedsWriteBarrier() {
return StoringValueNeedsWriteBarrier(value());
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedFastDoubleElement)
};
class HStoreKeyedSpecializedArrayElement: public HTemplateInstruction<3> {
public:
HStoreKeyedSpecializedArrayElement(HValue* external_elements,
HValue* key,
HValue* val,
ElementsKind elements_kind)
: elements_kind_(elements_kind) {
SetGVNFlag(kChangesSpecializedArrayElements);
SetOperandAt(0, external_elements);
SetOperandAt(1, key);
SetOperandAt(2, val);
}
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
if (index == 0) {
return Representation::External();
} else {
bool float_or_double_elements =
elements_kind() == EXTERNAL_FLOAT_ELEMENTS ||
elements_kind() == EXTERNAL_DOUBLE_ELEMENTS;
if (index == 2 && float_or_double_elements) {
return Representation::Double();
} else {
return Representation::Integer32();
}
}
}
HValue* external_pointer() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* value() { return OperandAt(2); }
ElementsKind elements_kind() const { return elements_kind_; }
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedSpecializedArrayElement)
private:
ElementsKind elements_kind_;
};
class HStoreKeyedGeneric: public HTemplateInstruction<4> {
public:
HStoreKeyedGeneric(HValue* context,
HValue* object,
HValue* key,
HValue* value,
StrictModeFlag strict_mode_flag)
: strict_mode_flag_(strict_mode_flag) {
SetOperandAt(0, object);
SetOperandAt(1, key);
SetOperandAt(2, value);
SetOperandAt(3, context);
SetAllSideEffects();
}
HValue* object() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* value() { return OperandAt(2); }
HValue* context() { return OperandAt(3); }
StrictModeFlag strict_mode_flag() { return strict_mode_flag_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(StoreKeyedGeneric)
private:
StrictModeFlag strict_mode_flag_;
};
class HTransitionElementsKind: public HTemplateInstruction<1> {
public:
HTransitionElementsKind(HValue* object,
Handle<Map> original_map,
Handle<Map> transitioned_map)
: original_map_(original_map),
transitioned_map_(transitioned_map) {
SetOperandAt(0, object);
SetFlag(kUseGVN);
SetGVNFlag(kChangesElementsKind);
SetGVNFlag(kChangesElementsPointer);
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* object() { return OperandAt(0); }
Handle<Map> original_map() { return original_map_; }
Handle<Map> transitioned_map() { return transitioned_map_; }
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(TransitionElementsKind)
protected:
virtual bool DataEquals(HValue* other) {
HTransitionElementsKind* instr = HTransitionElementsKind::cast(other);
return original_map_.is_identical_to(instr->original_map()) &&
transitioned_map_.is_identical_to(instr->transitioned_map());
}
private:
Handle<Map> original_map_;
Handle<Map> transitioned_map_;
};
class HStringAdd: public HBinaryOperation {
public:
HStringAdd(HValue* context, HValue* left, HValue* right)
: HBinaryOperation(context, left, right) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType() {
return HType::String();
}
DECLARE_CONCRETE_INSTRUCTION(StringAdd)
protected:
virtual bool DataEquals(HValue* other) { return true; }
};
class HStringCharCodeAt: public HTemplateInstruction<3> {
public:
HStringCharCodeAt(HValue* context, HValue* string, HValue* index) {
SetOperandAt(0, context);
SetOperandAt(1, string);
SetOperandAt(2, index);
set_representation(Representation::Integer32());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
}
virtual Representation RequiredInputRepresentation(int index) {
// The index is supposed to be Integer32.
return index == 2
? Representation::Integer32()
: Representation::Tagged();
}
HValue* context() { return OperandAt(0); }
HValue* string() { return OperandAt(1); }
HValue* index() { return OperandAt(2); }
DECLARE_CONCRETE_INSTRUCTION(StringCharCodeAt)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone) {
return new(zone) Range(0, String::kMaxUtf16CodeUnit);
}
};
class HStringCharFromCode: public HTemplateInstruction<2> {
public:
HStringCharFromCode(HValue* context, HValue* char_code) {
SetOperandAt(0, context);
SetOperandAt(1, char_code);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
}
virtual Representation RequiredInputRepresentation(int index) {
return index == 0
? Representation::Tagged()
: Representation::Integer32();
}
virtual HType CalculateInferredType();
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
virtual bool DataEquals(HValue* other) { return true; }
DECLARE_CONCRETE_INSTRUCTION(StringCharFromCode)
};
class HStringLength: public HUnaryOperation {
public:
explicit HStringLength(HValue* string) : HUnaryOperation(string) {
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType() {
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
return HType::Smi();
}
DECLARE_CONCRETE_INSTRUCTION(StringLength)
protected:
virtual bool DataEquals(HValue* other) { return true; }
virtual Range* InferRange(Zone* zone) {
return new(zone) Range(0, String::kMaxLength);
}
};
class HAllocateObject: public HTemplateInstruction<1> {
public:
HAllocateObject(HValue* context, Handle<JSFunction> constructor)
: constructor_(constructor) {
SetOperandAt(0, context);
set_representation(Representation::Tagged());
}
HValue* context() { return OperandAt(0); }
Handle<JSFunction> constructor() { return constructor_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(AllocateObject)
private:
Handle<JSFunction> constructor_;
};
template <int V>
class HMaterializedLiteral: public HTemplateInstruction<V> {
public:
HMaterializedLiteral<V>(int index, int depth)
: literal_index_(index), depth_(depth) {
this->set_representation(Representation::Tagged());
}
int literal_index() const { return literal_index_; }
int depth() const { return depth_; }
private:
int literal_index_;
int depth_;
};
class HFastLiteral: public HMaterializedLiteral<1> {
public:
HFastLiteral(HValue* context,
Handle<JSObject> boilerplate,
int total_size,
int literal_index,
int depth)
: HMaterializedLiteral<1>(literal_index, depth),
boilerplate_(boilerplate),
total_size_(total_size) {
SetOperandAt(0, context);
}
// Maximum depth and total number of elements and properties for literal
// graphs to be considered for fast deep-copying.
static const int kMaxLiteralDepth = 3;
static const int kMaxLiteralProperties = 8;
HValue* context() { return OperandAt(0); }
Handle<JSObject> boilerplate() const { return boilerplate_; }
int total_size() const { return total_size_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(FastLiteral)
private:
Handle<JSObject> boilerplate_;
int total_size_;
};
class HArrayLiteral: public HMaterializedLiteral<1> {
public:
HArrayLiteral(HValue* context,
Handle<HeapObject> boilerplate_object,
int length,
int literal_index,
int depth)
: HMaterializedLiteral<1>(literal_index, depth),
length_(length),
boilerplate_object_(boilerplate_object) {
SetOperandAt(0, context);
}
HValue* context() { return OperandAt(0); }
ElementsKind boilerplate_elements_kind() const {
if (!boilerplate_object_->IsJSObject()) {
return FAST_ELEMENTS;
}
return Handle<JSObject>::cast(boilerplate_object_)->GetElementsKind();
}
Handle<HeapObject> boilerplate_object() const { return boilerplate_object_; }
int length() const { return length_; }
bool IsCopyOnWrite() const;
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(ArrayLiteral)
private:
int length_;
Handle<HeapObject> boilerplate_object_;
};
class HObjectLiteral: public HMaterializedLiteral<1> {
public:
HObjectLiteral(HValue* context,
Handle<FixedArray> constant_properties,
bool fast_elements,
int literal_index,
int depth,
bool has_function)
: HMaterializedLiteral<1>(literal_index, depth),
constant_properties_(constant_properties),
fast_elements_(fast_elements),
has_function_(has_function) {
SetOperandAt(0, context);
}
HValue* context() { return OperandAt(0); }
Handle<FixedArray> constant_properties() const {
return constant_properties_;
}
bool fast_elements() const { return fast_elements_; }
bool has_function() const { return has_function_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(ObjectLiteral)
private:
Handle<FixedArray> constant_properties_;
bool fast_elements_;
bool has_function_;
};
class HRegExpLiteral: public HMaterializedLiteral<1> {
public:
HRegExpLiteral(HValue* context,
Handle<String> pattern,
Handle<String> flags,
int literal_index)
: HMaterializedLiteral<1>(literal_index, 0),
pattern_(pattern),
flags_(flags) {
SetOperandAt(0, context);
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
Handle<String> pattern() { return pattern_; }
Handle<String> flags() { return flags_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(RegExpLiteral)
private:
Handle<String> pattern_;
Handle<String> flags_;
};
class HFunctionLiteral: public HTemplateInstruction<1> {
public:
HFunctionLiteral(HValue* context,
Handle<SharedFunctionInfo> shared,
bool pretenure)
: shared_info_(shared), pretenure_(pretenure) {
SetOperandAt(0, context);
set_representation(Representation::Tagged());
}
HValue* context() { return OperandAt(0); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(FunctionLiteral)
Handle<SharedFunctionInfo> shared_info() const { return shared_info_; }
bool pretenure() const { return pretenure_; }
private:
Handle<SharedFunctionInfo> shared_info_;
bool pretenure_;
};
class HTypeof: public HTemplateInstruction<2> {
public:
explicit HTypeof(HValue* context, HValue* value) {
SetOperandAt(0, context);
SetOperandAt(1, value);
set_representation(Representation::Tagged());
}
HValue* context() { return OperandAt(0); }
HValue* value() { return OperandAt(1); }
virtual HValue* Canonicalize();
virtual void PrintDataTo(StringStream* stream);
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(Typeof)
};
class HToFastProperties: public HUnaryOperation {
public:
explicit HToFastProperties(HValue* value) : HUnaryOperation(value) {
// This instruction is not marked as having side effects, but
// changes the map of the input operand. Use it only when creating
// object literals.
ASSERT(value->IsObjectLiteral() || value->IsFastLiteral());
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ToFastProperties)
};
class HValueOf: public HUnaryOperation {
public:
explicit HValueOf(HValue* value) : HUnaryOperation(value) {
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ValueOf)
};
class HDateField: public HUnaryOperation {
public:
HDateField(HValue* date, Smi* index)
: HUnaryOperation(date), index_(index) {
set_representation(Representation::Tagged());
}
Smi* index() const { return index_; }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(DateField)
private:
Smi* index_;
};
class HDeleteProperty: public HBinaryOperation {
public:
HDeleteProperty(HValue* context, HValue* obj, HValue* key)
: HBinaryOperation(context, obj, key) {
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType();
DECLARE_CONCRETE_INSTRUCTION(DeleteProperty)
HValue* object() { return left(); }
HValue* key() { return right(); }
};
class HIn: public HTemplateInstruction<3> {
public:
HIn(HValue* context, HValue* key, HValue* object) {
SetOperandAt(0, context);
SetOperandAt(1, key);
SetOperandAt(2, object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
HValue* context() { return OperandAt(0); }
HValue* key() { return OperandAt(1); }
HValue* object() { return OperandAt(2); }
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual HType CalculateInferredType() {
return HType::Boolean();
}
virtual void PrintDataTo(StringStream* stream);
DECLARE_CONCRETE_INSTRUCTION(In)
};
class HCheckMapValue: public HTemplateInstruction<2> {
public:
HCheckMapValue(HValue* value,
HValue* map) {
SetOperandAt(0, value);
SetOperandAt(1, map);
set_representation(Representation::Tagged());
SetFlag(kUseGVN);
SetGVNFlag(kDependsOnMaps);
SetGVNFlag(kDependsOnElementsKind);
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
HValue* value() { return OperandAt(0); }
HValue* map() { return OperandAt(1); }
DECLARE_CONCRETE_INSTRUCTION(CheckMapValue)
protected:
virtual bool DataEquals(HValue* other) {
return true;
}
};
class HForInPrepareMap : public HTemplateInstruction<2> {
public:
HForInPrepareMap(HValue* context,
HValue* object) {
SetOperandAt(0, context);
SetOperandAt(1, object);
set_representation(Representation::Tagged());
SetAllSideEffects();
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* context() { return OperandAt(0); }
HValue* enumerable() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ForInPrepareMap);
};
class HForInCacheArray : public HTemplateInstruction<2> {
public:
HForInCacheArray(HValue* enumerable,
HValue* keys,
int idx) : idx_(idx) {
SetOperandAt(0, enumerable);
SetOperandAt(1, keys);
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* enumerable() { return OperandAt(0); }
HValue* map() { return OperandAt(1); }
int idx() { return idx_; }
HForInCacheArray* index_cache() {
return index_cache_;
}
void set_index_cache(HForInCacheArray* index_cache) {
index_cache_ = index_cache;
}
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(ForInCacheArray);
private:
int idx_;
HForInCacheArray* index_cache_;
};
class HLoadFieldByIndex : public HTemplateInstruction<2> {
public:
HLoadFieldByIndex(HValue* object,
HValue* index) {
SetOperandAt(0, object);
SetOperandAt(1, index);
set_representation(Representation::Tagged());
}
virtual Representation RequiredInputRepresentation(int index) {
return Representation::Tagged();
}
HValue* object() { return OperandAt(0); }
HValue* index() { return OperandAt(1); }
virtual void PrintDataTo(StringStream* stream);
virtual HType CalculateInferredType() {
return HType::Tagged();
}
DECLARE_CONCRETE_INSTRUCTION(LoadFieldByIndex);
};
#undef DECLARE_INSTRUCTION
#undef DECLARE_CONCRETE_INSTRUCTION
} } // namespace v8::internal
#endif // V8_HYDROGEN_INSTRUCTIONS_H_