// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This file is an internal atomic implementation, use atomicops.h instead.
#ifndef V8_ATOMICOPS_INTERNALS_X86_GCC_H_
#define V8_ATOMICOPS_INTERNALS_X86_GCC_H_
namespace v8 {
namespace internal {
// This struct is not part of the public API of this module; clients may not
// use it.
// Features of this x86. Values may not be correct before main() is run,
// but are set conservatively.
struct AtomicOps_x86CPUFeatureStruct {
bool has_amd_lock_mb_bug; // Processor has AMD memory-barrier bug; do lfence
// after acquire compare-and-swap.
bool has_sse2; // Processor has SSE2.
};
extern struct AtomicOps_x86CPUFeatureStruct AtomicOps_Internalx86CPUFeatures;
#define ATOMICOPS_COMPILER_BARRIER() __asm__ __volatile__("" : : : "memory")
// 32-bit low-level operations on any platform.
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
Atomic32 prev;
__asm__ __volatile__("lock; cmpxchgl %1,%2"
: "=a" (prev)
: "q" (new_value), "m" (*ptr), "0" (old_value)
: "memory");
return prev;
}
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
Atomic32 new_value) {
__asm__ __volatile__("xchgl %1,%0" // The lock prefix is implicit for xchg.
: "=r" (new_value)
: "m" (*ptr), "0" (new_value)
: "memory");
return new_value; // Now it's the previous value.
}
inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
Atomic32 increment) {
Atomic32 temp = increment;
__asm__ __volatile__("lock; xaddl %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now holds the old value of *ptr
return temp + increment;
}
inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
Atomic32 increment) {
Atomic32 temp = increment;
__asm__ __volatile__("lock; xaddl %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now holds the old value of *ptr
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return temp + increment;
}
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
Atomic32 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return x;
}
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
Atomic32 old_value,
Atomic32 new_value) {
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
}
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
*ptr = value;
}
#if defined(__x86_64__)
// 64-bit implementations of memory barrier can be simpler, because it
// "mfence" is guaranteed to exist.
inline void MemoryBarrier() {
__asm__ __volatile__("mfence" : : : "memory");
}
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
*ptr = value;
MemoryBarrier();
}
#else
inline void MemoryBarrier() {
if (AtomicOps_Internalx86CPUFeatures.has_sse2) {
__asm__ __volatile__("mfence" : : : "memory");
} else { // mfence is faster but not present on PIII
Atomic32 x = 0;
NoBarrier_AtomicExchange(&x, 0); // acts as a barrier on PIII
}
}
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
if (AtomicOps_Internalx86CPUFeatures.has_sse2) {
*ptr = value;
__asm__ __volatile__("mfence" : : : "memory");
} else {
NoBarrier_AtomicExchange(ptr, value);
// acts as a barrier on PIII
}
}
#endif
inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
ATOMICOPS_COMPILER_BARRIER();
*ptr = value; // An x86 store acts as a release barrier.
// See comments in Atomic64 version of Release_Store(), below.
}
inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
return *ptr;
}
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
Atomic32 value = *ptr; // An x86 load acts as a acquire barrier.
// See comments in Atomic64 version of Release_Store(), below.
ATOMICOPS_COMPILER_BARRIER();
return value;
}
inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
MemoryBarrier();
return *ptr;
}
#if defined(__x86_64__)
// 64-bit low-level operations on 64-bit platform.
inline Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
Atomic64 prev;
__asm__ __volatile__("lock; cmpxchgq %1,%2"
: "=a" (prev)
: "q" (new_value), "m" (*ptr), "0" (old_value)
: "memory");
return prev;
}
inline Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr,
Atomic64 new_value) {
__asm__ __volatile__("xchgq %1,%0" // The lock prefix is implicit for xchg.
: "=r" (new_value)
: "m" (*ptr), "0" (new_value)
: "memory");
return new_value; // Now it's the previous value.
}
inline Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
Atomic64 temp = increment;
__asm__ __volatile__("lock; xaddq %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now contains the previous value of *ptr
return temp + increment;
}
inline Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr,
Atomic64 increment) {
Atomic64 temp = increment;
__asm__ __volatile__("lock; xaddq %0,%1"
: "+r" (temp), "+m" (*ptr)
: : "memory");
// temp now contains the previous value of *ptr
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return temp + increment;
}
inline void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value) {
*ptr = value;
}
inline void Acquire_Store(volatile Atomic64* ptr, Atomic64 value) {
*ptr = value;
MemoryBarrier();
}
inline void Release_Store(volatile Atomic64* ptr, Atomic64 value) {
ATOMICOPS_COMPILER_BARRIER();
*ptr = value; // An x86 store acts as a release barrier
// for current AMD/Intel chips as of Jan 2008.
// See also Acquire_Load(), below.
// When new chips come out, check:
// IA-32 Intel Architecture Software Developer's Manual, Volume 3:
// System Programming Guide, Chatper 7: Multiple-processor management,
// Section 7.2, Memory Ordering.
// Last seen at:
// http://developer.intel.com/design/pentium4/manuals/index_new.htm
//
// x86 stores/loads fail to act as barriers for a few instructions (clflush
// maskmovdqu maskmovq movntdq movnti movntpd movntps movntq) but these are
// not generated by the compiler, and are rare. Users of these instructions
// need to know about cache behaviour in any case since all of these involve
// either flushing cache lines or non-temporal cache hints.
}
inline Atomic64 NoBarrier_Load(volatile const Atomic64* ptr) {
return *ptr;
}
inline Atomic64 Acquire_Load(volatile const Atomic64* ptr) {
Atomic64 value = *ptr; // An x86 load acts as a acquire barrier,
// for current AMD/Intel chips as of Jan 2008.
// See also Release_Store(), above.
ATOMICOPS_COMPILER_BARRIER();
return value;
}
inline Atomic64 Release_Load(volatile const Atomic64* ptr) {
MemoryBarrier();
return *ptr;
}
inline Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
Atomic64 x = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
if (AtomicOps_Internalx86CPUFeatures.has_amd_lock_mb_bug) {
__asm__ __volatile__("lfence" : : : "memory");
}
return x;
}
inline Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr,
Atomic64 old_value,
Atomic64 new_value) {
return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
}
#endif // defined(__x86_64__)
} } // namespace v8::internal
#undef ATOMICOPS_COMPILER_BARRIER
#endif // V8_ATOMICOPS_INTERNALS_X86_GCC_H_