/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrGpuGL.h"
#include "GrGLStencilBuffer.h"
#include "GrGLPath.h"
#include "GrGLShaderBuilder.h"
#include "GrTemplates.h"
#include "GrTypes.h"
#include "SkStrokeRec.h"
#include "SkTemplates.h"
#define GL_CALL(X) GR_GL_CALL(this->glInterface(), X)
#define GL_CALL_RET(RET, X) GR_GL_CALL_RET(this->glInterface(), RET, X)
#define SKIP_CACHE_CHECK true
#if GR_GL_CHECK_ALLOC_WITH_GET_ERROR
#define CLEAR_ERROR_BEFORE_ALLOC(iface) GrGLClearErr(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL_NOERRCHECK(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_GET_ERROR(iface)
#else
#define CLEAR_ERROR_BEFORE_ALLOC(iface)
#define GL_ALLOC_CALL(iface, call) GR_GL_CALL(iface, call)
#define CHECK_ALLOC_ERROR(iface) GR_GL_NO_ERROR
#endif
///////////////////////////////////////////////////////////////////////////////
static const GrGLenum gXfermodeCoeff2Blend[] = {
GR_GL_ZERO,
GR_GL_ONE,
GR_GL_SRC_COLOR,
GR_GL_ONE_MINUS_SRC_COLOR,
GR_GL_DST_COLOR,
GR_GL_ONE_MINUS_DST_COLOR,
GR_GL_SRC_ALPHA,
GR_GL_ONE_MINUS_SRC_ALPHA,
GR_GL_DST_ALPHA,
GR_GL_ONE_MINUS_DST_ALPHA,
GR_GL_CONSTANT_COLOR,
GR_GL_ONE_MINUS_CONSTANT_COLOR,
GR_GL_CONSTANT_ALPHA,
GR_GL_ONE_MINUS_CONSTANT_ALPHA,
// extended blend coeffs
GR_GL_SRC1_COLOR,
GR_GL_ONE_MINUS_SRC1_COLOR,
GR_GL_SRC1_ALPHA,
GR_GL_ONE_MINUS_SRC1_ALPHA,
};
bool GrGpuGL::BlendCoeffReferencesConstant(GrBlendCoeff coeff) {
static const bool gCoeffReferencesBlendConst[] = {
false,
false,
false,
false,
false,
false,
false,
false,
false,
false,
true,
true,
true,
true,
// extended blend coeffs
false,
false,
false,
false,
};
return gCoeffReferencesBlendConst[coeff];
GR_STATIC_ASSERT(kTotalGrBlendCoeffCount ==
GR_ARRAY_COUNT(gCoeffReferencesBlendConst));
GR_STATIC_ASSERT(0 == kZero_GrBlendCoeff);
GR_STATIC_ASSERT(1 == kOne_GrBlendCoeff);
GR_STATIC_ASSERT(2 == kSC_GrBlendCoeff);
GR_STATIC_ASSERT(3 == kISC_GrBlendCoeff);
GR_STATIC_ASSERT(4 == kDC_GrBlendCoeff);
GR_STATIC_ASSERT(5 == kIDC_GrBlendCoeff);
GR_STATIC_ASSERT(6 == kSA_GrBlendCoeff);
GR_STATIC_ASSERT(7 == kISA_GrBlendCoeff);
GR_STATIC_ASSERT(8 == kDA_GrBlendCoeff);
GR_STATIC_ASSERT(9 == kIDA_GrBlendCoeff);
GR_STATIC_ASSERT(10 == kConstC_GrBlendCoeff);
GR_STATIC_ASSERT(11 == kIConstC_GrBlendCoeff);
GR_STATIC_ASSERT(12 == kConstA_GrBlendCoeff);
GR_STATIC_ASSERT(13 == kIConstA_GrBlendCoeff);
GR_STATIC_ASSERT(14 == kS2C_GrBlendCoeff);
GR_STATIC_ASSERT(15 == kIS2C_GrBlendCoeff);
GR_STATIC_ASSERT(16 == kS2A_GrBlendCoeff);
GR_STATIC_ASSERT(17 == kIS2A_GrBlendCoeff);
// assertion for gXfermodeCoeff2Blend have to be in GrGpu scope
GR_STATIC_ASSERT(kTotalGrBlendCoeffCount ==
GR_ARRAY_COUNT(gXfermodeCoeff2Blend));
}
///////////////////////////////////////////////////////////////////////////////
static bool gPrintStartupSpew;
GrGpuGL::GrGpuGL(const GrGLContext& ctx, GrContext* context)
: GrGpu(context)
, fGLContext(ctx) {
SkASSERT(ctx.isInitialized());
fCaps.reset(SkRef(ctx.info().caps()));
fHWBoundTextures.reset(ctx.info().caps()->maxFragmentTextureUnits());
fHWTexGenSettings.reset(ctx.info().caps()->maxFixedFunctionTextureCoords());
GrGLClearErr(fGLContext.interface());
if (gPrintStartupSpew) {
const GrGLubyte* vendor;
const GrGLubyte* renderer;
const GrGLubyte* version;
GL_CALL_RET(vendor, GetString(GR_GL_VENDOR));
GL_CALL_RET(renderer, GetString(GR_GL_RENDERER));
GL_CALL_RET(version, GetString(GR_GL_VERSION));
GrPrintf("------------------------- create GrGpuGL %p --------------\n",
this);
GrPrintf("------ VENDOR %s\n", vendor);
GrPrintf("------ RENDERER %s\n", renderer);
GrPrintf("------ VERSION %s\n", version);
GrPrintf("------ EXTENSIONS\n");
ctx.info().extensions().print();
GrPrintf("\n");
GrPrintf(ctx.info().caps()->dump().c_str());
}
fProgramCache = SkNEW_ARGS(ProgramCache, (this));
SkASSERT(this->glCaps().maxVertexAttributes() >= GrDrawState::kMaxVertexAttribCnt);
fLastSuccessfulStencilFmtIdx = 0;
fHWProgramID = 0;
}
GrGpuGL::~GrGpuGL() {
if (0 != fHWProgramID) {
// detach the current program so there is no confusion on OpenGL's part
// that we want it to be deleted
SkASSERT(fHWProgramID == fCurrentProgram->programID());
GL_CALL(UseProgram(0));
}
delete fProgramCache;
// This must be called by before the GrDrawTarget destructor
this->releaseGeometry();
// This subclass must do this before the base class destructor runs
// since we will unref the GrGLInterface.
this->releaseResources();
}
///////////////////////////////////////////////////////////////////////////////
GrPixelConfig GrGpuGL::preferredReadPixelsConfig(GrPixelConfig readConfig,
GrPixelConfig surfaceConfig) const {
if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == readConfig) {
return kBGRA_8888_GrPixelConfig;
} else if (fGLContext.info().isMesa() &&
GrBytesPerPixel(readConfig) == 4 &&
GrPixelConfigSwapRAndB(readConfig) == surfaceConfig) {
// Mesa 3D takes a slow path on when reading back BGRA from an RGBA surface and vice-versa.
// Perhaps this should be guarded by some compiletime or runtime check.
return surfaceConfig;
} else if (readConfig == kBGRA_8888_GrPixelConfig &&
!this->glCaps().readPixelsSupported(this->glInterface(),
GR_GL_BGRA, GR_GL_UNSIGNED_BYTE)) {
return kRGBA_8888_GrPixelConfig;
} else {
return readConfig;
}
}
GrPixelConfig GrGpuGL::preferredWritePixelsConfig(GrPixelConfig writeConfig,
GrPixelConfig surfaceConfig) const {
if (GR_GL_RGBA_8888_PIXEL_OPS_SLOW && kRGBA_8888_GrPixelConfig == writeConfig) {
return kBGRA_8888_GrPixelConfig;
} else {
return writeConfig;
}
}
bool GrGpuGL::canWriteTexturePixels(const GrTexture* texture, GrPixelConfig srcConfig) const {
if (kIndex_8_GrPixelConfig == srcConfig || kIndex_8_GrPixelConfig == texture->config()) {
return false;
}
if (srcConfig != texture->config() && kES_GrGLBinding == this->glBinding()) {
// In general ES2 requires the internal format of the texture and the format of the src
// pixels to match. However, It may or may not be possible to upload BGRA data to a RGBA
// texture. It depends upon which extension added BGRA. The Apple extension allows it
// (BGRA's internal format is RGBA) while the EXT extension does not (BGRA is its own
// internal format).
if (this->glCaps().bgraFormatSupport() &&
!this->glCaps().bgraIsInternalFormat() &&
kBGRA_8888_GrPixelConfig == srcConfig &&
kRGBA_8888_GrPixelConfig == texture->config()) {
return true;
} else {
return false;
}
} else {
return true;
}
}
bool GrGpuGL::fullReadPixelsIsFasterThanPartial() const {
return SkToBool(GR_GL_FULL_READPIXELS_FASTER_THAN_PARTIAL);
}
void GrGpuGL::onResetContext(uint32_t resetBits) {
// we don't use the zb at all
if (resetBits & kMisc_GrGLBackendState) {
GL_CALL(Disable(GR_GL_DEPTH_TEST));
GL_CALL(DepthMask(GR_GL_FALSE));
fHWDrawFace = GrDrawState::kInvalid_DrawFace;
fHWDitherEnabled = kUnknown_TriState;
if (kDesktop_GrGLBinding == this->glBinding()) {
// Desktop-only state that we never change
if (!this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_POINT_SMOOTH));
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_SMOOTH));
GL_CALL(Disable(GR_GL_POLYGON_STIPPLE));
GL_CALL(Disable(GR_GL_COLOR_LOGIC_OP));
GL_CALL(Disable(GR_GL_INDEX_LOGIC_OP));
}
// The windows NVIDIA driver has GL_ARB_imaging in the extension string when using a
// core profile. This seems like a bug since the core spec removes any mention of
// GL_ARB_imaging.
if (this->glCaps().imagingSupport() && !this->glCaps().isCoreProfile()) {
GL_CALL(Disable(GR_GL_COLOR_TABLE));
}
GL_CALL(Disable(GR_GL_POLYGON_OFFSET_FILL));
// Since ES doesn't support glPointSize at all we always use the VS to
// set the point size
GL_CALL(Enable(GR_GL_VERTEX_PROGRAM_POINT_SIZE));
// We should set glPolygonMode(FRONT_AND_BACK,FILL) here, too. It isn't
// currently part of our gl interface. There are probably others as
// well.
}
fHWWriteToColor = kUnknown_TriState;
// we only ever use lines in hairline mode
GL_CALL(LineWidth(1));
}
if (resetBits & kAA_GrGLBackendState) {
fHWAAState.invalidate();
}
fHWActiveTextureUnitIdx = -1; // invalid
if (resetBits & kTextureBinding_GrGLBackendState) {
for (int s = 0; s < fHWBoundTextures.count(); ++s) {
fHWBoundTextures[s] = NULL;
}
}
if (resetBits & kBlend_GrGLBackendState) {
fHWBlendState.invalidate();
}
if (resetBits & kView_GrGLBackendState) {
fHWScissorSettings.invalidate();
fHWViewport.invalidate();
}
if (resetBits & kStencil_GrGLBackendState) {
fHWStencilSettings.invalidate();
fHWStencilTestEnabled = kUnknown_TriState;
}
// Vertex
if (resetBits & kVertex_GrGLBackendState) {
fHWGeometryState.invalidate();
}
if (resetBits & kRenderTarget_GrGLBackendState) {
fHWBoundRenderTarget = NULL;
}
if (resetBits & (kFixedFunction_GrGLBackendState | kPathRendering_GrGLBackendState)) {
if (this->glCaps().fixedFunctionSupport()) {
fHWProjectionMatrixState.invalidate();
// we don't use the model view matrix.
GL_CALL(MatrixMode(GR_GL_MODELVIEW));
GL_CALL(LoadIdentity());
for (int i = 0; i < this->glCaps().maxFixedFunctionTextureCoords(); ++i) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + i));
GL_CALL(Disable(GR_GL_TEXTURE_GEN_S));
GL_CALL(Disable(GR_GL_TEXTURE_GEN_T));
GL_CALL(Disable(GR_GL_TEXTURE_GEN_Q));
GL_CALL(Disable(GR_GL_TEXTURE_GEN_R));
if (this->caps()->pathRenderingSupport()) {
GL_CALL(PathTexGen(GR_GL_TEXTURE0 + i, GR_GL_NONE, 0, NULL));
}
fHWTexGenSettings[i].fMode = GR_GL_NONE;
fHWTexGenSettings[i].fNumComponents = 0;
}
fHWActiveTexGenSets = 0;
}
if (this->caps()->pathRenderingSupport()) {
fHWPathStencilSettings.invalidate();
}
}
// we assume these values
if (resetBits & kPixelStore_GrGLBackendState) {
if (this->glCaps().unpackRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (this->glCaps().packRowLengthSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (this->glCaps().unpackFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
if (this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, GR_GL_FALSE));
}
}
if (resetBits & kProgram_GrGLBackendState) {
fHWProgramID = 0;
fSharedGLProgramState.invalidate();
}
}
namespace {
GrSurfaceOrigin resolve_origin(GrSurfaceOrigin origin, bool renderTarget) {
// By default, GrRenderTargets are GL's normal orientation so that they
// can be drawn to by the outside world without the client having
// to render upside down.
if (kDefault_GrSurfaceOrigin == origin) {
return renderTarget ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin;
} else {
return origin;
}
}
}
GrTexture* GrGpuGL::onWrapBackendTexture(const GrBackendTextureDesc& desc) {
if (!this->configToGLFormats(desc.fConfig, false, NULL, NULL, NULL)) {
return NULL;
}
if (0 == desc.fTextureHandle) {
return NULL;
}
int maxSize = this->caps()->maxTextureSize();
if (desc.fWidth > maxSize || desc.fHeight > maxSize) {
return NULL;
}
GrGLTexture::Desc glTexDesc;
// next line relies on GrBackendTextureDesc's flags matching GrTexture's
glTexDesc.fFlags = (GrTextureFlags) desc.fFlags;
glTexDesc.fWidth = desc.fWidth;
glTexDesc.fHeight = desc.fHeight;
glTexDesc.fConfig = desc.fConfig;
glTexDesc.fSampleCnt = desc.fSampleCnt;
glTexDesc.fTextureID = static_cast<GrGLuint>(desc.fTextureHandle);
glTexDesc.fIsWrapped = true;
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrBackendTextureFlag);
// FIXME: this should be calling resolve_origin(), but Chrome code is currently
// assuming the old behaviour, which is that backend textures are always
// BottomLeft, even for non-RT's. Once Chrome is fixed, change this to:
// glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget);
if (kDefault_GrSurfaceOrigin == desc.fOrigin) {
glTexDesc.fOrigin = kBottomLeft_GrSurfaceOrigin;
} else {
glTexDesc.fOrigin = desc.fOrigin;
}
GrGLTexture* texture = NULL;
if (renderTarget) {
GrGLRenderTarget::Desc glRTDesc;
glRTDesc.fRTFBOID = 0;
glRTDesc.fTexFBOID = 0;
glRTDesc.fMSColorRenderbufferID = 0;
glRTDesc.fConfig = desc.fConfig;
glRTDesc.fSampleCnt = desc.fSampleCnt;
glRTDesc.fOrigin = glTexDesc.fOrigin;
glRTDesc.fCheckAllocation = false;
if (!this->createRenderTargetObjects(glTexDesc.fWidth,
glTexDesc.fHeight,
glTexDesc.fTextureID,
&glRTDesc)) {
return NULL;
}
texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc));
} else {
texture = SkNEW_ARGS(GrGLTexture, (this, glTexDesc));
}
if (NULL == texture) {
return NULL;
}
return texture;
}
GrRenderTarget* GrGpuGL::onWrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) {
GrGLRenderTarget::Desc glDesc;
glDesc.fConfig = desc.fConfig;
glDesc.fRTFBOID = static_cast<GrGLuint>(desc.fRenderTargetHandle);
glDesc.fMSColorRenderbufferID = 0;
glDesc.fTexFBOID = GrGLRenderTarget::kUnresolvableFBOID;
glDesc.fSampleCnt = desc.fSampleCnt;
glDesc.fIsWrapped = true;
glDesc.fCheckAllocation = false;
glDesc.fOrigin = resolve_origin(desc.fOrigin, true);
GrGLIRect viewport;
viewport.fLeft = 0;
viewport.fBottom = 0;
viewport.fWidth = desc.fWidth;
viewport.fHeight = desc.fHeight;
GrRenderTarget* tgt = SkNEW_ARGS(GrGLRenderTarget,
(this, glDesc, viewport));
if (desc.fStencilBits) {
GrGLStencilBuffer::Format format;
format.fInternalFormat = GrGLStencilBuffer::kUnknownInternalFormat;
format.fPacked = false;
format.fStencilBits = desc.fStencilBits;
format.fTotalBits = desc.fStencilBits;
static const bool kIsSBWrapped = false;
GrGLStencilBuffer* sb = SkNEW_ARGS(GrGLStencilBuffer,
(this,
kIsSBWrapped,
0,
desc.fWidth,
desc.fHeight,
desc.fSampleCnt,
format));
tgt->setStencilBuffer(sb);
sb->unref();
}
return tgt;
}
////////////////////////////////////////////////////////////////////////////////
bool GrGpuGL::onWriteTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer,
size_t rowBytes) {
if (NULL == buffer) {
return false;
}
GrGLTexture* glTex = static_cast<GrGLTexture*>(texture);
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTex->textureID()));
GrGLTexture::Desc desc;
desc.fFlags = glTex->desc().fFlags;
desc.fWidth = glTex->width();
desc.fHeight = glTex->height();
desc.fConfig = glTex->config();
desc.fSampleCnt = glTex->desc().fSampleCnt;
desc.fTextureID = glTex->textureID();
desc.fOrigin = glTex->origin();
if (this->uploadTexData(desc, false,
left, top, width, height,
config, buffer, rowBytes)) {
texture->dirtyMipMaps(true);
return true;
} else {
return false;
}
}
namespace {
bool adjust_pixel_ops_params(int surfaceWidth,
int surfaceHeight,
size_t bpp,
int* left, int* top, int* width, int* height,
const void** data,
size_t* rowBytes) {
if (!*rowBytes) {
*rowBytes = *width * bpp;
}
SkIRect subRect = SkIRect::MakeXYWH(*left, *top, *width, *height);
SkIRect bounds = SkIRect::MakeWH(surfaceWidth, surfaceHeight);
if (!subRect.intersect(bounds)) {
return false;
}
*data = reinterpret_cast<const void*>(reinterpret_cast<intptr_t>(*data) +
(subRect.fTop - *top) * *rowBytes + (subRect.fLeft - *left) * bpp);
*left = subRect.fLeft;
*top = subRect.fTop;
*width = subRect.width();
*height = subRect.height();
return true;
}
GrGLenum check_alloc_error(const GrTextureDesc& desc, const GrGLInterface* interface) {
if (SkToBool(desc.fFlags & kCheckAllocation_GrTextureFlagBit)) {
return GR_GL_GET_ERROR(interface);
} else {
return CHECK_ALLOC_ERROR(interface);
}
}
}
bool GrGpuGL::uploadTexData(const GrGLTexture::Desc& desc,
bool isNewTexture,
int left, int top, int width, int height,
GrPixelConfig dataConfig,
const void* data,
size_t rowBytes) {
SkASSERT(NULL != data || isNewTexture);
size_t bpp = GrBytesPerPixel(dataConfig);
if (!adjust_pixel_ops_params(desc.fWidth, desc.fHeight, bpp, &left, &top,
&width, &height, &data, &rowBytes)) {
return false;
}
size_t trimRowBytes = width * bpp;
// in case we need a temporary, trimmed copy of the src pixels
SkAutoSMalloc<128 * 128> tempStorage;
// paletted textures cannot be partially updated
// We currently lazily create MIPMAPs when the we see a draw with
// GrTextureParams::kMipMap_FilterMode. Using texture storage requires that the
// MIP levels are all created when the texture is created. So for now we don't use
// texture storage.
bool useTexStorage = false &&
isNewTexture &&
desc.fConfig != kIndex_8_GrPixelConfig &&
this->glCaps().texStorageSupport();
if (useTexStorage && kDesktop_GrGLBinding == this->glBinding()) {
// 565 is not a sized internal format on desktop GL. So on desktop with
// 565 we always use an unsized internal format to let the system pick
// the best sized format to convert the 565 data to. Since TexStorage
// only allows sized internal formats we will instead use TexImage2D.
useTexStorage = desc.fConfig != kRGB_565_GrPixelConfig;
}
GrGLenum internalFormat;
GrGLenum externalFormat;
GrGLenum externalType;
// glTexStorage requires sized internal formats on both desktop and ES. ES2 requires an unsized
// format for glTexImage, unlike ES3 and desktop. However, we allow the driver to decide the
// size of the internal format whenever possible and so only use a sized internal format when
// using texture storage.
if (!this->configToGLFormats(dataConfig, useTexStorage, &internalFormat,
&externalFormat, &externalType)) {
return false;
}
if (!isNewTexture && GR_GL_PALETTE8_RGBA8 == internalFormat) {
// paletted textures cannot be updated
return false;
}
/*
* check whether to allocate a temporary buffer for flipping y or
* because our srcData has extra bytes past each row. If so, we need
* to trim those off here, since GL ES may not let us specify
* GL_UNPACK_ROW_LENGTH.
*/
bool restoreGLRowLength = false;
bool swFlipY = false;
bool glFlipY = false;
if (NULL != data) {
if (kBottomLeft_GrSurfaceOrigin == desc.fOrigin) {
if (this->glCaps().unpackFlipYSupport()) {
glFlipY = true;
} else {
swFlipY = true;
}
}
if (this->glCaps().unpackRowLengthSupport() && !swFlipY) {
// can't use this for flipping, only non-neg values allowed. :(
if (rowBytes != trimRowBytes) {
GrGLint rowLength = static_cast<GrGLint>(rowBytes / bpp);
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, rowLength));
restoreGLRowLength = true;
}
} else {
if (trimRowBytes != rowBytes || swFlipY) {
// copy data into our new storage, skipping the trailing bytes
size_t trimSize = height * trimRowBytes;
const char* src = (const char*)data;
if (swFlipY) {
src += (height - 1) * rowBytes;
}
char* dst = (char*)tempStorage.reset(trimSize);
for (int y = 0; y < height; y++) {
memcpy(dst, src, trimRowBytes);
if (swFlipY) {
src -= rowBytes;
} else {
src += rowBytes;
}
dst += trimRowBytes;
}
// now point data to our copied version
data = tempStorage.get();
}
}
if (glFlipY) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_TRUE));
}
GL_CALL(PixelStorei(GR_GL_UNPACK_ALIGNMENT, static_cast<GrGLint>(bpp)));
}
bool succeeded = true;
if (isNewTexture &&
0 == left && 0 == top &&
desc.fWidth == width && desc.fHeight == height) {
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
if (useTexStorage) {
// We never resize or change formats of textures.
GL_ALLOC_CALL(this->glInterface(),
TexStorage2D(GR_GL_TEXTURE_2D,
1, // levels
internalFormat,
desc.fWidth, desc.fHeight));
} else {
if (GR_GL_PALETTE8_RGBA8 == internalFormat) {
GrGLsizei imageSize = desc.fWidth * desc.fHeight +
kGrColorTableSize;
GL_ALLOC_CALL(this->glInterface(),
CompressedTexImage2D(GR_GL_TEXTURE_2D,
0, // level
internalFormat,
desc.fWidth, desc.fHeight,
0, // border
imageSize,
data));
} else {
GL_ALLOC_CALL(this->glInterface(),
TexImage2D(GR_GL_TEXTURE_2D,
0, // level
internalFormat,
desc.fWidth, desc.fHeight,
0, // border
externalFormat, externalType,
data));
}
}
GrGLenum error = check_alloc_error(desc, this->glInterface());
if (error != GR_GL_NO_ERROR) {
succeeded = false;
} else {
// if we have data and we used TexStorage to create the texture, we
// now upload with TexSubImage.
if (NULL != data && useTexStorage) {
GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D,
0, // level
left, top,
width, height,
externalFormat, externalType,
data));
}
}
} else {
if (swFlipY || glFlipY) {
top = desc.fHeight - (top + height);
}
GL_CALL(TexSubImage2D(GR_GL_TEXTURE_2D,
0, // level
left, top,
width, height,
externalFormat, externalType, data));
}
if (restoreGLRowLength) {
SkASSERT(this->glCaps().unpackRowLengthSupport());
GL_CALL(PixelStorei(GR_GL_UNPACK_ROW_LENGTH, 0));
}
if (glFlipY) {
GL_CALL(PixelStorei(GR_GL_UNPACK_FLIP_Y, GR_GL_FALSE));
}
return succeeded;
}
static bool renderbuffer_storage_msaa(GrGLContext& ctx,
int sampleCount,
GrGLenum format,
int width, int height) {
CLEAR_ERROR_BEFORE_ALLOC(ctx.interface());
SkASSERT(GrGLCaps::kNone_MSFBOType != ctx.info().caps()->msFBOType());
#if GR_GL_IGNORE_ES3_MSAA
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
#else
switch (ctx.info().caps()->msFBOType()) {
case GrGLCaps::kDesktop_ARB_MSFBOType:
case GrGLCaps::kDesktop_EXT_MSFBOType:
case GrGLCaps::kES_3_0_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisample(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_Apple_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2APPLE(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kES_EXT_MsToTexture_MSFBOType:
case GrGLCaps::kES_IMG_MsToTexture_MSFBOType:
GL_ALLOC_CALL(ctx.interface(),
RenderbufferStorageMultisampleES2EXT(GR_GL_RENDERBUFFER,
sampleCount,
format,
width, height));
break;
case GrGLCaps::kNone_MSFBOType:
GrCrash("Shouldn't be here if we don't support multisampled renderbuffers.");
break;
}
#endif
return (GR_GL_NO_ERROR == CHECK_ALLOC_ERROR(ctx.interface()));;
}
bool GrGpuGL::createRenderTargetObjects(int width, int height,
GrGLuint texID,
GrGLRenderTarget::Desc* desc) {
desc->fMSColorRenderbufferID = 0;
desc->fRTFBOID = 0;
desc->fTexFBOID = 0;
desc->fIsWrapped = false;
GrGLenum status;
GrGLenum msColorFormat = 0; // suppress warning
if (desc->fSampleCnt > 0 && GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType()) {
goto FAILED;
}
GL_CALL(GenFramebuffers(1, &desc->fTexFBOID));
if (!desc->fTexFBOID) {
goto FAILED;
}
// If we are using multisampling we will create two FBOS. We render to one and then resolve to
// the texture bound to the other. The exception is the IMG multisample extension. With this
// extension the texture is multisampled when rendered to and then auto-resolves it when it is
// rendered from.
if (desc->fSampleCnt > 0 && this->glCaps().usesMSAARenderBuffers()) {
GL_CALL(GenFramebuffers(1, &desc->fRTFBOID));
GL_CALL(GenRenderbuffers(1, &desc->fMSColorRenderbufferID));
if (!desc->fRTFBOID ||
!desc->fMSColorRenderbufferID ||
!this->configToGLFormats(desc->fConfig,
// ES2 and ES3 require sized internal formats for rb storage.
kES_GrGLBinding == this->glBinding(),
&msColorFormat,
NULL,
NULL)) {
goto FAILED;
}
} else {
desc->fRTFBOID = desc->fTexFBOID;
}
// below here we may bind the FBO
fHWBoundRenderTarget = NULL;
if (desc->fRTFBOID != desc->fTexFBOID) {
SkASSERT(desc->fSampleCnt > 0);
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER,
desc->fMSColorRenderbufferID));
if (!renderbuffer_storage_msaa(fGLContext,
desc->fSampleCnt,
msColorFormat,
width, height)) {
goto FAILED;
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fRTFBOID));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_RENDERBUFFER,
desc->fMSColorRenderbufferID));
if (desc->fCheckAllocation ||
!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext.info().caps()->markConfigAsValidColorAttachment(desc->fConfig);
}
}
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, desc->fTexFBOID));
if (this->glCaps().usesImplicitMSAAResolve() && desc->fSampleCnt > 0) {
GL_CALL(FramebufferTexture2DMultisample(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID, 0, desc->fSampleCnt));
} else {
GL_CALL(FramebufferTexture2D(GR_GL_FRAMEBUFFER,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID, 0));
}
if (desc->fCheckAllocation ||
!this->glCaps().isConfigVerifiedColorAttachment(desc->fConfig)) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
goto FAILED;
}
fGLContext.info().caps()->markConfigAsValidColorAttachment(desc->fConfig);
}
return true;
FAILED:
if (desc->fMSColorRenderbufferID) {
GL_CALL(DeleteRenderbuffers(1, &desc->fMSColorRenderbufferID));
}
if (desc->fRTFBOID != desc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &desc->fRTFBOID));
}
if (desc->fTexFBOID) {
GL_CALL(DeleteFramebuffers(1, &desc->fTexFBOID));
}
return false;
}
// good to set a break-point here to know when createTexture fails
static GrTexture* return_null_texture() {
// SkDEBUGFAIL("null texture");
return NULL;
}
#if 0 && defined(SK_DEBUG)
static size_t as_size_t(int x) {
return x;
}
#endif
GrTexture* GrGpuGL::onCreateTexture(const GrTextureDesc& desc,
const void* srcData,
size_t rowBytes) {
GrGLTexture::Desc glTexDesc;
GrGLRenderTarget::Desc glRTDesc;
// Attempt to catch un- or wrongly initialized sample counts;
SkASSERT(desc.fSampleCnt >= 0 && desc.fSampleCnt <= 64);
// We fail if the MSAA was requested and is not available.
if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() && desc.fSampleCnt) {
//GrPrintf("MSAA RT requested but not supported on this platform.");
return return_null_texture();
}
// If the sample count exceeds the max then we clamp it.
glTexDesc.fSampleCnt = GrMin(desc.fSampleCnt, this->caps()->maxSampleCount());
glTexDesc.fFlags = desc.fFlags;
glTexDesc.fWidth = desc.fWidth;
glTexDesc.fHeight = desc.fHeight;
glTexDesc.fConfig = desc.fConfig;
glTexDesc.fIsWrapped = false;
glRTDesc.fMSColorRenderbufferID = 0;
glRTDesc.fRTFBOID = 0;
glRTDesc.fTexFBOID = 0;
glRTDesc.fIsWrapped = false;
glRTDesc.fConfig = glTexDesc.fConfig;
glRTDesc.fCheckAllocation = SkToBool(desc.fFlags & kCheckAllocation_GrTextureFlagBit);
bool renderTarget = SkToBool(desc.fFlags & kRenderTarget_GrTextureFlagBit);
glTexDesc.fOrigin = resolve_origin(desc.fOrigin, renderTarget);
glRTDesc.fOrigin = glTexDesc.fOrigin;
glRTDesc.fSampleCnt = glTexDesc.fSampleCnt;
if (GrGLCaps::kNone_MSFBOType == this->glCaps().msFBOType() &&
desc.fSampleCnt) {
//GrPrintf("MSAA RT requested but not supported on this platform.");
return return_null_texture();
}
if (renderTarget) {
int maxRTSize = this->caps()->maxRenderTargetSize();
if (glTexDesc.fWidth > maxRTSize || glTexDesc.fHeight > maxRTSize) {
return return_null_texture();
}
} else {
int maxSize = this->caps()->maxTextureSize();
if (glTexDesc.fWidth > maxSize || glTexDesc.fHeight > maxSize) {
return return_null_texture();
}
}
GL_CALL(GenTextures(1, &glTexDesc.fTextureID));
if (!glTexDesc.fTextureID) {
return return_null_texture();
}
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, glTexDesc.fTextureID));
if (renderTarget && this->glCaps().textureUsageSupport()) {
// provides a hint about how this texture will be used
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_USAGE,
GR_GL_FRAMEBUFFER_ATTACHMENT));
}
// Some drivers like to know filter/wrap before seeing glTexImage2D. Some
// drivers have a bug where an FBO won't be complete if it includes a
// texture that is not mipmap complete (considering the filter in use).
GrGLTexture::TexParams initialTexParams;
// we only set a subset here so invalidate first
initialTexParams.invalidate();
initialTexParams.fMinFilter = GR_GL_NEAREST;
initialTexParams.fMagFilter = GR_GL_NEAREST;
initialTexParams.fWrapS = GR_GL_CLAMP_TO_EDGE;
initialTexParams.fWrapT = GR_GL_CLAMP_TO_EDGE;
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
initialTexParams.fMagFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
initialTexParams.fMinFilter));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
initialTexParams.fWrapS));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
initialTexParams.fWrapT));
if (!this->uploadTexData(glTexDesc, true, 0, 0,
glTexDesc.fWidth, glTexDesc.fHeight,
desc.fConfig, srcData, rowBytes)) {
GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID));
return return_null_texture();
}
GrGLTexture* tex;
if (renderTarget) {
// unbind the texture from the texture unit before binding it to the frame buffer
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, 0));
if (!this->createRenderTargetObjects(glTexDesc.fWidth,
glTexDesc.fHeight,
glTexDesc.fTextureID,
&glRTDesc)) {
GL_CALL(DeleteTextures(1, &glTexDesc.fTextureID));
return return_null_texture();
}
tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc, glRTDesc));
} else {
tex = SkNEW_ARGS(GrGLTexture, (this, glTexDesc));
}
tex->setCachedTexParams(initialTexParams, this->getResetTimestamp());
#ifdef TRACE_TEXTURE_CREATION
GrPrintf("--- new texture [%d] size=(%d %d) config=%d\n",
glTexDesc.fTextureID, desc.fWidth, desc.fHeight, desc.fConfig);
#endif
return tex;
}
namespace {
const GrGLuint kUnknownBitCount = GrGLStencilBuffer::kUnknownBitCount;
void inline get_stencil_rb_sizes(const GrGLInterface* gl,
GrGLStencilBuffer::Format* format) {
// we shouldn't ever know one size and not the other
SkASSERT((kUnknownBitCount == format->fStencilBits) ==
(kUnknownBitCount == format->fTotalBits));
if (kUnknownBitCount == format->fStencilBits) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_STENCIL_SIZE,
(GrGLint*)&format->fStencilBits);
if (format->fPacked) {
GR_GL_GetRenderbufferParameteriv(gl, GR_GL_RENDERBUFFER,
GR_GL_RENDERBUFFER_DEPTH_SIZE,
(GrGLint*)&format->fTotalBits);
format->fTotalBits += format->fStencilBits;
} else {
format->fTotalBits = format->fStencilBits;
}
}
}
}
bool GrGpuGL::createStencilBufferForRenderTarget(GrRenderTarget* rt,
int width, int height) {
// All internally created RTs are also textures. We don't create
// SBs for a client's standalone RT (that is a RT that isn't also a texture).
SkASSERT(rt->asTexture());
SkASSERT(width >= rt->width());
SkASSERT(height >= rt->height());
int samples = rt->numSamples();
GrGLuint sbID;
GL_CALL(GenRenderbuffers(1, &sbID));
if (!sbID) {
return false;
}
int stencilFmtCnt = this->glCaps().stencilFormats().count();
for (int i = 0; i < stencilFmtCnt; ++i) {
GL_CALL(BindRenderbuffer(GR_GL_RENDERBUFFER, sbID));
// we start with the last stencil format that succeeded in hopes
// that we won't go through this loop more than once after the
// first (painful) stencil creation.
int sIdx = (i + fLastSuccessfulStencilFmtIdx) % stencilFmtCnt;
const GrGLCaps::StencilFormat& sFmt =
this->glCaps().stencilFormats()[sIdx];
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// we do this "if" so that we don't call the multisample
// version on a GL that doesn't have an MSAA extension.
bool created;
if (samples > 0) {
created = renderbuffer_storage_msaa(fGLContext,
samples,
sFmt.fInternalFormat,
width, height);
} else {
GL_ALLOC_CALL(this->glInterface(),
RenderbufferStorage(GR_GL_RENDERBUFFER,
sFmt.fInternalFormat,
width, height));
created =
(GR_GL_NO_ERROR == check_alloc_error(rt->desc(), this->glInterface()));
}
if (created) {
// After sized formats we attempt an unsized format and take
// whatever sizes GL gives us. In that case we query for the size.
GrGLStencilBuffer::Format format = sFmt;
get_stencil_rb_sizes(this->glInterface(), &format);
static const bool kIsWrapped = false;
SkAutoTUnref<GrStencilBuffer> sb(SkNEW_ARGS(GrGLStencilBuffer,
(this, kIsWrapped, sbID, width, height,
samples, format)));
if (this->attachStencilBufferToRenderTarget(sb, rt)) {
fLastSuccessfulStencilFmtIdx = sIdx;
sb->transferToCache();
rt->setStencilBuffer(sb);
return true;
}
sb->abandon(); // otherwise we lose sbID
}
}
GL_CALL(DeleteRenderbuffers(1, &sbID));
return false;
}
bool GrGpuGL::attachStencilBufferToRenderTarget(GrStencilBuffer* sb, GrRenderTarget* rt) {
GrGLRenderTarget* glrt = (GrGLRenderTarget*) rt;
GrGLuint fbo = glrt->renderFBOID();
if (NULL == sb) {
if (NULL != rt->getStencilBuffer()) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
#ifdef SK_DEBUG
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
SkASSERT(GR_GL_FRAMEBUFFER_COMPLETE == status);
#endif
}
return true;
} else {
GrGLStencilBuffer* glsb = static_cast<GrGLStencilBuffer*>(sb);
GrGLuint rb = glsb->renderbufferID();
fHWBoundRenderTarget = NULL;
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, fbo));
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, rb));
} else {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
GrGLenum status;
if (!this->glCaps().isColorConfigAndStencilFormatVerified(rt->config(), glsb->format())) {
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_STENCIL_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
if (glsb->format().fPacked) {
GL_CALL(FramebufferRenderbuffer(GR_GL_FRAMEBUFFER,
GR_GL_DEPTH_ATTACHMENT,
GR_GL_RENDERBUFFER, 0));
}
return false;
} else {
fGLContext.info().caps()->markColorConfigAndStencilFormatAsVerified(
rt->config(),
glsb->format());
}
}
return true;
}
}
////////////////////////////////////////////////////////////////////////////////
GrVertexBuffer* GrGpuGL::onCreateVertexBuffer(size_t size, bool dynamic) {
GrGLVertexBuffer::Desc desc;
desc.fDynamic = dynamic;
desc.fSizeInBytes = size;
desc.fIsWrapped = false;
if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) {
desc.fID = 0;
GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc));
return vertexBuffer;
} else {
GL_CALL(GenBuffers(1, &desc.fID));
if (desc.fID) {
fHWGeometryState.setVertexBufferID(this, desc.fID);
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// make sure driver can allocate memory for this buffer
GL_ALLOC_CALL(this->glInterface(),
BufferData(GR_GL_ARRAY_BUFFER,
(GrGLsizeiptr) desc.fSizeInBytes,
NULL, // data ptr
desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &desc.fID));
this->notifyVertexBufferDelete(desc.fID);
return NULL;
}
GrGLVertexBuffer* vertexBuffer = SkNEW_ARGS(GrGLVertexBuffer, (this, desc));
return vertexBuffer;
}
return NULL;
}
}
GrIndexBuffer* GrGpuGL::onCreateIndexBuffer(size_t size, bool dynamic) {
GrGLIndexBuffer::Desc desc;
desc.fDynamic = dynamic;
desc.fSizeInBytes = size;
desc.fIsWrapped = false;
if (this->glCaps().useNonVBOVertexAndIndexDynamicData() && desc.fDynamic) {
desc.fID = 0;
GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc));
return indexBuffer;
} else {
GL_CALL(GenBuffers(1, &desc.fID));
if (desc.fID) {
fHWGeometryState.setIndexBufferIDOnDefaultVertexArray(this, desc.fID);
CLEAR_ERROR_BEFORE_ALLOC(this->glInterface());
// make sure driver can allocate memory for this buffer
GL_ALLOC_CALL(this->glInterface(),
BufferData(GR_GL_ELEMENT_ARRAY_BUFFER,
(GrGLsizeiptr) desc.fSizeInBytes,
NULL, // data ptr
desc.fDynamic ? GR_GL_DYNAMIC_DRAW : GR_GL_STATIC_DRAW));
if (CHECK_ALLOC_ERROR(this->glInterface()) != GR_GL_NO_ERROR) {
GL_CALL(DeleteBuffers(1, &desc.fID));
this->notifyIndexBufferDelete(desc.fID);
return NULL;
}
GrIndexBuffer* indexBuffer = SkNEW_ARGS(GrGLIndexBuffer, (this, desc));
return indexBuffer;
}
return NULL;
}
}
GrPath* GrGpuGL::onCreatePath(const SkPath& inPath, const SkStrokeRec& stroke) {
SkASSERT(this->caps()->pathRenderingSupport());
return SkNEW_ARGS(GrGLPath, (this, inPath, stroke));
}
void GrGpuGL::flushScissor() {
if (fScissorState.fEnabled) {
// Only access the RT if scissoring is being enabled. We can call this before performing
// a glBitframebuffer for a surface->surface copy, which requires no RT to be bound to the
// GrDrawState.
const GrDrawState& drawState = this->getDrawState();
const GrGLRenderTarget* rt =
static_cast<const GrGLRenderTarget*>(drawState.getRenderTarget());
SkASSERT(NULL != rt);
const GrGLIRect& vp = rt->getViewport();
GrGLIRect scissor;
scissor.setRelativeTo(vp,
fScissorState.fRect.fLeft,
fScissorState.fRect.fTop,
fScissorState.fRect.width(),
fScissorState.fRect.height(),
rt->origin());
// if the scissor fully contains the viewport then we fall through and
// disable the scissor test.
if (!scissor.contains(vp)) {
if (fHWScissorSettings.fRect != scissor) {
scissor.pushToGLScissor(this->glInterface());
fHWScissorSettings.fRect = scissor;
}
if (kYes_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Enable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kYes_TriState;
}
return;
}
}
if (kNo_TriState != fHWScissorSettings.fEnabled) {
GL_CALL(Disable(GR_GL_SCISSOR_TEST));
fHWScissorSettings.fEnabled = kNo_TriState;
return;
}
}
void GrGpuGL::onClear(const SkIRect* rect, GrColor color, bool canIgnoreRect) {
const GrDrawState& drawState = this->getDrawState();
const GrRenderTarget* rt = drawState.getRenderTarget();
// parent class should never let us get here with no RT
SkASSERT(NULL != rt);
if (canIgnoreRect && this->glCaps().fullClearIsFree()) {
rect = NULL;
}
SkIRect clippedRect;
if (NULL != rect) {
// flushScissor expects rect to be clipped to the target.
clippedRect = *rect;
SkIRect rtRect = SkIRect::MakeWH(rt->width(), rt->height());
if (clippedRect.intersect(rtRect)) {
rect = &clippedRect;
} else {
return;
}
}
this->flushRenderTarget(rect);
GrAutoTRestore<ScissorState> asr(&fScissorState);
fScissorState.fEnabled = (NULL != rect);
if (fScissorState.fEnabled) {
fScissorState.fRect = *rect;
}
this->flushScissor();
GrGLfloat r, g, b, a;
static const GrGLfloat scale255 = 1.f / 255.f;
a = GrColorUnpackA(color) * scale255;
GrGLfloat scaleRGB = scale255;
r = GrColorUnpackR(color) * scaleRGB;
g = GrColorUnpackG(color) * scaleRGB;
b = GrColorUnpackB(color) * scaleRGB;
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
GL_CALL(ClearColor(r, g, b, a));
GL_CALL(Clear(GR_GL_COLOR_BUFFER_BIT));
}
void GrGpuGL::clearStencil() {
if (NULL == this->getDrawState().getRenderTarget()) {
return;
}
this->flushRenderTarget(&SkIRect::EmptyIRect());
GrAutoTRestore<ScissorState> asr(&fScissorState);
fScissorState.fEnabled = false;
this->flushScissor();
GL_CALL(StencilMask(0xffffffff));
GL_CALL(ClearStencil(0));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
void GrGpuGL::clearStencilClip(const SkIRect& rect, bool insideClip) {
const GrDrawState& drawState = this->getDrawState();
const GrRenderTarget* rt = drawState.getRenderTarget();
SkASSERT(NULL != rt);
// this should only be called internally when we know we have a
// stencil buffer.
SkASSERT(NULL != rt->getStencilBuffer());
GrGLint stencilBitCount = rt->getStencilBuffer()->bits();
#if 0
SkASSERT(stencilBitCount > 0);
GrGLint clipStencilMask = (1 << (stencilBitCount - 1));
#else
// we could just clear the clip bit but when we go through
// ANGLE a partial stencil mask will cause clears to be
// turned into draws. Our contract on GrDrawTarget says that
// changing the clip between stencil passes may or may not
// zero the client's clip bits. So we just clear the whole thing.
static const GrGLint clipStencilMask = ~0;
#endif
GrGLint value;
if (insideClip) {
value = (1 << (stencilBitCount - 1));
} else {
value = 0;
}
this->flushRenderTarget(&SkIRect::EmptyIRect());
GrAutoTRestore<ScissorState> asr(&fScissorState);
fScissorState.fEnabled = true;
fScissorState.fRect = rect;
this->flushScissor();
GL_CALL(StencilMask((uint32_t) clipStencilMask));
GL_CALL(ClearStencil(value));
GL_CALL(Clear(GR_GL_STENCIL_BUFFER_BIT));
fHWStencilSettings.invalidate();
}
void GrGpuGL::onForceRenderTargetFlush() {
this->flushRenderTarget(&SkIRect::EmptyIRect());
}
bool GrGpuGL::readPixelsWillPayForYFlip(GrRenderTarget* renderTarget,
int left, int top,
int width, int height,
GrPixelConfig config,
size_t rowBytes) const {
// If this rendertarget is aready TopLeft, we don't need to flip.
if (kTopLeft_GrSurfaceOrigin == renderTarget->origin()) {
return false;
}
// if GL can do the flip then we'll never pay for it.
if (this->glCaps().packFlipYSupport()) {
return false;
}
// If we have to do memcpy to handle non-trim rowBytes then we
// get the flip for free. Otherwise it costs.
if (this->glCaps().packRowLengthSupport()) {
return true;
}
// If we have to do memcpys to handle rowBytes then y-flip is free
// Note the rowBytes might be tight to the passed in data, but if data
// gets clipped in x to the target the rowBytes will no longer be tight.
if (left >= 0 && (left + width) < renderTarget->width()) {
return 0 == rowBytes ||
GrBytesPerPixel(config) * width == rowBytes;
} else {
return false;
}
}
bool GrGpuGL::onReadPixels(GrRenderTarget* target,
int left, int top,
int width, int height,
GrPixelConfig config,
void* buffer,
size_t rowBytes) {
GrGLenum format;
GrGLenum type;
bool flipY = kBottomLeft_GrSurfaceOrigin == target->origin();
if (!this->configToGLFormats(config, false, NULL, &format, &type)) {
return false;
}
size_t bpp = GrBytesPerPixel(config);
if (!adjust_pixel_ops_params(target->width(), target->height(), bpp,
&left, &top, &width, &height,
const_cast<const void**>(&buffer),
&rowBytes)) {
return false;
}
// resolve the render target if necessary
GrGLRenderTarget* tgt = static_cast<GrGLRenderTarget*>(target);
GrDrawState::AutoRenderTargetRestore artr;
switch (tgt->getResolveType()) {
case GrGLRenderTarget::kCantResolve_ResolveType:
return false;
case GrGLRenderTarget::kAutoResolves_ResolveType:
artr.set(this->drawState(), target);
this->flushRenderTarget(&SkIRect::EmptyIRect());
break;
case GrGLRenderTarget::kCanResolve_ResolveType:
this->onResolveRenderTarget(tgt);
// we don't track the state of the READ FBO ID.
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER,
tgt->textureFBOID()));
break;
default:
GrCrash("Unknown resolve type");
}
const GrGLIRect& glvp = tgt->getViewport();
// the read rect is viewport-relative
GrGLIRect readRect;
readRect.setRelativeTo(glvp, left, top, width, height, target->origin());
size_t tightRowBytes = bpp * width;
if (0 == rowBytes) {
rowBytes = tightRowBytes;
}
size_t readDstRowBytes = tightRowBytes;
void* readDst = buffer;
// determine if GL can read using the passed rowBytes or if we need
// a scratch buffer.
SkAutoSMalloc<32 * sizeof(GrColor)> scratch;
if (rowBytes != tightRowBytes) {
if (this->glCaps().packRowLengthSupport()) {
SkASSERT(!(rowBytes % sizeof(GrColor)));
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH,
static_cast<GrGLint>(rowBytes / sizeof(GrColor))));
readDstRowBytes = rowBytes;
} else {
scratch.reset(tightRowBytes * height);
readDst = scratch.get();
}
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 1));
}
GL_CALL(ReadPixels(readRect.fLeft, readRect.fBottom,
readRect.fWidth, readRect.fHeight,
format, type, readDst));
if (readDstRowBytes != tightRowBytes) {
SkASSERT(this->glCaps().packRowLengthSupport());
GL_CALL(PixelStorei(GR_GL_PACK_ROW_LENGTH, 0));
}
if (flipY && this->glCaps().packFlipYSupport()) {
GL_CALL(PixelStorei(GR_GL_PACK_REVERSE_ROW_ORDER, 0));
flipY = false;
}
// now reverse the order of the rows, since GL's are bottom-to-top, but our
// API presents top-to-bottom. We must preserve the padding contents. Note
// that the above readPixels did not overwrite the padding.
if (readDst == buffer) {
SkASSERT(rowBytes == readDstRowBytes);
if (flipY) {
scratch.reset(tightRowBytes);
void* tmpRow = scratch.get();
// flip y in-place by rows
const int halfY = height >> 1;
char* top = reinterpret_cast<char*>(buffer);
char* bottom = top + (height - 1) * rowBytes;
for (int y = 0; y < halfY; y++) {
memcpy(tmpRow, top, tightRowBytes);
memcpy(top, bottom, tightRowBytes);
memcpy(bottom, tmpRow, tightRowBytes);
top += rowBytes;
bottom -= rowBytes;
}
}
} else {
SkASSERT(readDst != buffer); SkASSERT(rowBytes != tightRowBytes);
// copy from readDst to buffer while flipping y
// const int halfY = height >> 1;
const char* src = reinterpret_cast<const char*>(readDst);
char* dst = reinterpret_cast<char*>(buffer);
if (flipY) {
dst += (height-1) * rowBytes;
}
for (int y = 0; y < height; y++) {
memcpy(dst, src, tightRowBytes);
src += readDstRowBytes;
if (!flipY) {
dst += rowBytes;
} else {
dst -= rowBytes;
}
}
}
return true;
}
void GrGpuGL::flushRenderTarget(const SkIRect* bound) {
GrGLRenderTarget* rt =
static_cast<GrGLRenderTarget*>(this->drawState()->getRenderTarget());
SkASSERT(NULL != rt);
if (fHWBoundRenderTarget != rt) {
GL_CALL(BindFramebuffer(GR_GL_FRAMEBUFFER, rt->renderFBOID()));
#ifdef SK_DEBUG
// don't do this check in Chromium -- this is causing
// lots of repeated command buffer flushes when the compositor is
// rendering with Ganesh, which is really slow; even too slow for
// Debug mode.
if (!this->glContext().info().isChromium()) {
GrGLenum status;
GL_CALL_RET(status, CheckFramebufferStatus(GR_GL_FRAMEBUFFER));
if (status != GR_GL_FRAMEBUFFER_COMPLETE) {
GrPrintf("GrGpuGL::flushRenderTarget glCheckFramebufferStatus %x\n", status);
}
}
#endif
fHWBoundRenderTarget = rt;
const GrGLIRect& vp = rt->getViewport();
if (fHWViewport != vp) {
vp.pushToGLViewport(this->glInterface());
fHWViewport = vp;
}
}
if (NULL == bound || !bound->isEmpty()) {
rt->flagAsNeedingResolve(bound);
}
GrTexture *texture = rt->asTexture();
if (texture) {
texture->dirtyMipMaps(true);
}
}
GrGLenum gPrimitiveType2GLMode[] = {
GR_GL_TRIANGLES,
GR_GL_TRIANGLE_STRIP,
GR_GL_TRIANGLE_FAN,
GR_GL_POINTS,
GR_GL_LINES,
GR_GL_LINE_STRIP
};
#define SWAP_PER_DRAW 0
#if SWAP_PER_DRAW
#if defined(SK_BUILD_FOR_MAC)
#include <AGL/agl.h>
#elif defined(SK_BUILD_FOR_WIN32)
#include <gl/GL.h>
void SwapBuf() {
DWORD procID = GetCurrentProcessId();
HWND hwnd = GetTopWindow(GetDesktopWindow());
while(hwnd) {
DWORD wndProcID = 0;
GetWindowThreadProcessId(hwnd, &wndProcID);
if(wndProcID == procID) {
SwapBuffers(GetDC(hwnd));
}
hwnd = GetNextWindow(hwnd, GW_HWNDNEXT);
}
}
#endif
#endif
void GrGpuGL::onGpuDraw(const DrawInfo& info) {
size_t indexOffsetInBytes;
this->setupGeometry(info, &indexOffsetInBytes);
SkASSERT((size_t)info.primitiveType() < GR_ARRAY_COUNT(gPrimitiveType2GLMode));
if (info.isIndexed()) {
GrGLvoid* indices =
reinterpret_cast<GrGLvoid*>(indexOffsetInBytes + sizeof(uint16_t) * info.startIndex());
// info.startVertex() was accounted for by setupGeometry.
GL_CALL(DrawElements(gPrimitiveType2GLMode[info.primitiveType()],
info.indexCount(),
GR_GL_UNSIGNED_SHORT,
indices));
} else {
// Pass 0 for parameter first. We have to adjust glVertexAttribPointer() to account for
// startVertex in the DrawElements case. So we always rely on setupGeometry to have
// accounted for startVertex.
GL_CALL(DrawArrays(gPrimitiveType2GLMode[info.primitiveType()], 0, info.vertexCount()));
}
#if SWAP_PER_DRAW
glFlush();
#if defined(SK_BUILD_FOR_MAC)
aglSwapBuffers(aglGetCurrentContext());
int set_a_break_pt_here = 9;
aglSwapBuffers(aglGetCurrentContext());
#elif defined(SK_BUILD_FOR_WIN32)
SwapBuf();
int set_a_break_pt_here = 9;
SwapBuf();
#endif
#endif
}
static GrGLenum gr_stencil_op_to_gl_path_rendering_fill_mode(GrStencilOp op) {
switch (op) {
default:
GrCrash("Unexpected path fill.");
/* fallthrough */;
case kIncClamp_StencilOp:
return GR_GL_COUNT_UP;
case kInvert_StencilOp:
return GR_GL_INVERT;
}
}
void GrGpuGL::onGpuStencilPath(const GrPath* path, SkPath::FillType fill) {
SkASSERT(this->caps()->pathRenderingSupport());
GrGLuint id = static_cast<const GrGLPath*>(path)->pathID();
SkASSERT(NULL != this->drawState()->getRenderTarget());
SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer());
flushPathStencilSettings(fill);
// Decide how to manipulate the stencil buffer based on the fill rule.
SkASSERT(!fHWPathStencilSettings.isTwoSided());
GrGLenum fillMode =
gr_stencil_op_to_gl_path_rendering_fill_mode(fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face));
GrGLint writeMask = fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face);
GL_CALL(StencilFillPath(id, fillMode, writeMask));
}
void GrGpuGL::onGpuDrawPath(const GrPath* path, SkPath::FillType fill) {
SkASSERT(this->caps()->pathRenderingSupport());
GrGLuint id = static_cast<const GrGLPath*>(path)->pathID();
SkASSERT(NULL != this->drawState()->getRenderTarget());
SkASSERT(NULL != this->drawState()->getRenderTarget()->getStencilBuffer());
SkASSERT(!fCurrentProgram->hasVertexShader());
flushPathStencilSettings(fill);
const SkStrokeRec& stroke = path->getStroke();
SkPath::FillType nonInvertedFill = SkPath::ConvertToNonInverseFillType(fill);
SkASSERT(!fHWPathStencilSettings.isTwoSided());
GrGLenum fillMode =
gr_stencil_op_to_gl_path_rendering_fill_mode(fHWPathStencilSettings.passOp(GrStencilSettings::kFront_Face));
GrGLint writeMask = fHWPathStencilSettings.writeMask(GrStencilSettings::kFront_Face);
if (stroke.isFillStyle() || SkStrokeRec::kStrokeAndFill_Style == stroke.getStyle()) {
GL_CALL(StencilFillPath(id, fillMode, writeMask));
}
if (stroke.needToApply()) {
GL_CALL(StencilStrokePath(id, 0xffff, writeMask));
}
if (nonInvertedFill == fill) {
if (stroke.needToApply()) {
GL_CALL(CoverStrokePath(id, GR_GL_BOUNDING_BOX));
} else {
GL_CALL(CoverFillPath(id, GR_GL_BOUNDING_BOX));
}
} else {
GrDrawState* drawState = this->drawState();
GrDrawState::AutoViewMatrixRestore avmr;
SkRect bounds = SkRect::MakeLTRB(0, 0,
SkIntToScalar(drawState->getRenderTarget()->width()),
SkIntToScalar(drawState->getRenderTarget()->height()));
SkMatrix vmi;
// mapRect through persp matrix may not be correct
if (!drawState->getViewMatrix().hasPerspective() && drawState->getViewInverse(&vmi)) {
vmi.mapRect(&bounds);
// theoretically could set bloat = 0, instead leave it because of matrix inversion
// precision.
SkScalar bloat = drawState->getViewMatrix().getMaxStretch() * SK_ScalarHalf;
bounds.outset(bloat, bloat);
} else {
avmr.setIdentity(drawState);
}
this->drawSimpleRect(bounds, NULL);
}
}
void GrGpuGL::onResolveRenderTarget(GrRenderTarget* target) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(target);
if (rt->needsResolve()) {
// Some extensions automatically resolves the texture when it is read.
if (this->glCaps().usesMSAARenderBuffers()) {
SkASSERT(rt->textureFBOID() != rt->renderFBOID());
GL_CALL(BindFramebuffer(GR_GL_READ_FRAMEBUFFER, rt->renderFBOID()));
GL_CALL(BindFramebuffer(GR_GL_DRAW_FRAMEBUFFER, rt->textureFBOID()));
// make sure we go through flushRenderTarget() since we've modified
// the bound DRAW FBO ID.
fHWBoundRenderTarget = NULL;
const GrGLIRect& vp = rt->getViewport();
const SkIRect dirtyRect = rt->getResolveRect();
GrGLIRect r;
r.setRelativeTo(vp, dirtyRect.fLeft, dirtyRect.fTop,
dirtyRect.width(), dirtyRect.height(), target->origin());
GrAutoTRestore<ScissorState> asr;
if (GrGLCaps::kES_Apple_MSFBOType == this->glCaps().msFBOType()) {
// Apple's extension uses the scissor as the blit bounds.
asr.reset(&fScissorState);
fScissorState.fEnabled = true;
fScissorState.fRect = dirtyRect;
this->flushScissor();
GL_CALL(ResolveMultisampleFramebuffer());
} else {
if (GrGLCaps::kDesktop_EXT_MSFBOType == this->glCaps().msFBOType()) {
// this respects the scissor during the blit, so disable it.
asr.reset(&fScissorState);
fScissorState.fEnabled = false;
this->flushScissor();
}
int right = r.fLeft + r.fWidth;
int top = r.fBottom + r.fHeight;
GL_CALL(BlitFramebuffer(r.fLeft, r.fBottom, right, top,
r.fLeft, r.fBottom, right, top,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
}
}
rt->flagAsResolved();
}
}
namespace {
GrGLenum gr_to_gl_stencil_func(GrStencilFunc basicFunc) {
static const GrGLenum gTable[] = {
GR_GL_ALWAYS, // kAlways_StencilFunc
GR_GL_NEVER, // kNever_StencilFunc
GR_GL_GREATER, // kGreater_StencilFunc
GR_GL_GEQUAL, // kGEqual_StencilFunc
GR_GL_LESS, // kLess_StencilFunc
GR_GL_LEQUAL, // kLEqual_StencilFunc,
GR_GL_EQUAL, // kEqual_StencilFunc,
GR_GL_NOTEQUAL, // kNotEqual_StencilFunc,
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(gTable) == kBasicStencilFuncCount);
GR_STATIC_ASSERT(0 == kAlways_StencilFunc);
GR_STATIC_ASSERT(1 == kNever_StencilFunc);
GR_STATIC_ASSERT(2 == kGreater_StencilFunc);
GR_STATIC_ASSERT(3 == kGEqual_StencilFunc);
GR_STATIC_ASSERT(4 == kLess_StencilFunc);
GR_STATIC_ASSERT(5 == kLEqual_StencilFunc);
GR_STATIC_ASSERT(6 == kEqual_StencilFunc);
GR_STATIC_ASSERT(7 == kNotEqual_StencilFunc);
SkASSERT((unsigned) basicFunc < kBasicStencilFuncCount);
return gTable[basicFunc];
}
GrGLenum gr_to_gl_stencil_op(GrStencilOp op) {
static const GrGLenum gTable[] = {
GR_GL_KEEP, // kKeep_StencilOp
GR_GL_REPLACE, // kReplace_StencilOp
GR_GL_INCR_WRAP, // kIncWrap_StencilOp
GR_GL_INCR, // kIncClamp_StencilOp
GR_GL_DECR_WRAP, // kDecWrap_StencilOp
GR_GL_DECR, // kDecClamp_StencilOp
GR_GL_ZERO, // kZero_StencilOp
GR_GL_INVERT, // kInvert_StencilOp
};
GR_STATIC_ASSERT(GR_ARRAY_COUNT(gTable) == kStencilOpCount);
GR_STATIC_ASSERT(0 == kKeep_StencilOp);
GR_STATIC_ASSERT(1 == kReplace_StencilOp);
GR_STATIC_ASSERT(2 == kIncWrap_StencilOp);
GR_STATIC_ASSERT(3 == kIncClamp_StencilOp);
GR_STATIC_ASSERT(4 == kDecWrap_StencilOp);
GR_STATIC_ASSERT(5 == kDecClamp_StencilOp);
GR_STATIC_ASSERT(6 == kZero_StencilOp);
GR_STATIC_ASSERT(7 == kInvert_StencilOp);
SkASSERT((unsigned) op < kStencilOpCount);
return gTable[op];
}
void set_gl_stencil(const GrGLInterface* gl,
const GrStencilSettings& settings,
GrGLenum glFace,
GrStencilSettings::Face grFace) {
GrGLenum glFunc = gr_to_gl_stencil_func(settings.func(grFace));
GrGLenum glFailOp = gr_to_gl_stencil_op(settings.failOp(grFace));
GrGLenum glPassOp = gr_to_gl_stencil_op(settings.passOp(grFace));
GrGLint ref = settings.funcRef(grFace);
GrGLint mask = settings.funcMask(grFace);
GrGLint writeMask = settings.writeMask(grFace);
if (GR_GL_FRONT_AND_BACK == glFace) {
// we call the combined func just in case separate stencil is not
// supported.
GR_GL_CALL(gl, StencilFunc(glFunc, ref, mask));
GR_GL_CALL(gl, StencilMask(writeMask));
GR_GL_CALL(gl, StencilOp(glFailOp, glPassOp, glPassOp));
} else {
GR_GL_CALL(gl, StencilFuncSeparate(glFace, glFunc, ref, mask));
GR_GL_CALL(gl, StencilMaskSeparate(glFace, writeMask));
GR_GL_CALL(gl, StencilOpSeparate(glFace, glFailOp, glPassOp, glPassOp));
}
}
}
void GrGpuGL::flushStencil(DrawType type) {
if (kStencilPath_DrawType != type && fHWStencilSettings != fStencilSettings) {
if (fStencilSettings.isDisabled()) {
if (kNo_TriState != fHWStencilTestEnabled) {
GL_CALL(Disable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kNo_TriState;
}
} else {
if (kYes_TriState != fHWStencilTestEnabled) {
GL_CALL(Enable(GR_GL_STENCIL_TEST));
fHWStencilTestEnabled = kYes_TriState;
}
}
if (!fStencilSettings.isDisabled()) {
if (this->caps()->twoSidedStencilSupport()) {
set_gl_stencil(this->glInterface(),
fStencilSettings,
GR_GL_FRONT,
GrStencilSettings::kFront_Face);
set_gl_stencil(this->glInterface(),
fStencilSettings,
GR_GL_BACK,
GrStencilSettings::kBack_Face);
} else {
set_gl_stencil(this->glInterface(),
fStencilSettings,
GR_GL_FRONT_AND_BACK,
GrStencilSettings::kFront_Face);
}
}
fHWStencilSettings = fStencilSettings;
}
}
void GrGpuGL::flushAAState(DrawType type) {
// At least some ATI linux drivers will render GL_LINES incorrectly when MSAA state is enabled but
// the target is not multisampled. Single pixel wide lines are rendered thicker than 1 pixel wide.
#if 0
// Replace RT_HAS_MSAA with this definition once this driver bug is no longer a relevant concern
#define RT_HAS_MSAA rt->isMultisampled()
#else
#define RT_HAS_MSAA (rt->isMultisampled() || kDrawLines_DrawType == type)
#endif
const GrRenderTarget* rt = this->getDrawState().getRenderTarget();
if (kDesktop_GrGLBinding == this->glBinding()) {
// ES doesn't support toggling GL_MULTISAMPLE and doesn't have
// smooth lines.
// we prefer smooth lines over multisampled lines
bool smoothLines = false;
if (kDrawLines_DrawType == type) {
smoothLines = this->willUseHWAALines();
if (smoothLines) {
if (kYes_TriState != fHWAAState.fSmoothLineEnabled) {
GL_CALL(Enable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = kYes_TriState;
// must disable msaa to use line smoothing
if (RT_HAS_MSAA &&
kNo_TriState != fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = kNo_TriState;
}
}
} else {
if (kNo_TriState != fHWAAState.fSmoothLineEnabled) {
GL_CALL(Disable(GR_GL_LINE_SMOOTH));
fHWAAState.fSmoothLineEnabled = kNo_TriState;
}
}
}
if (!smoothLines && RT_HAS_MSAA) {
// FIXME: GL_NV_pr doesn't seem to like MSAA disabled. The paths
// convex hulls of each segment appear to get filled.
bool enableMSAA = kStencilPath_DrawType == type ||
this->getDrawState().isHWAntialiasState();
if (enableMSAA) {
if (kYes_TriState != fHWAAState.fMSAAEnabled) {
GL_CALL(Enable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fHWAAState.fMSAAEnabled) {
GL_CALL(Disable(GR_GL_MULTISAMPLE));
fHWAAState.fMSAAEnabled = kNo_TriState;
}
}
}
}
}
void GrGpuGL::flushPathStencilSettings(SkPath::FillType fill) {
GrStencilSettings pathStencilSettings;
this->getPathStencilSettingsForFillType(fill, &pathStencilSettings);
if (fHWPathStencilSettings != pathStencilSettings) {
// Just the func, ref, and mask is set here. The op and write mask are params to the call
// that draws the path to the SB (glStencilFillPath)
GrGLenum func =
gr_to_gl_stencil_func(pathStencilSettings.func(GrStencilSettings::kFront_Face));
GL_CALL(PathStencilFunc(func,
pathStencilSettings.funcRef(GrStencilSettings::kFront_Face),
pathStencilSettings.funcMask(GrStencilSettings::kFront_Face)));
fHWPathStencilSettings = pathStencilSettings;
}
}
void GrGpuGL::flushBlend(bool isLines,
GrBlendCoeff srcCoeff,
GrBlendCoeff dstCoeff) {
if (isLines && this->willUseHWAALines()) {
if (kYes_TriState != fHWBlendState.fEnabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendState.fEnabled = kYes_TriState;
}
if (kSA_GrBlendCoeff != fHWBlendState.fSrcCoeff ||
kISA_GrBlendCoeff != fHWBlendState.fDstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[kSA_GrBlendCoeff],
gXfermodeCoeff2Blend[kISA_GrBlendCoeff]));
fHWBlendState.fSrcCoeff = kSA_GrBlendCoeff;
fHWBlendState.fDstCoeff = kISA_GrBlendCoeff;
}
} else {
// any optimization to disable blending should
// have already been applied and tweaked the coeffs
// to (1, 0).
bool blendOff = kOne_GrBlendCoeff == srcCoeff &&
kZero_GrBlendCoeff == dstCoeff;
if (blendOff) {
if (kNo_TriState != fHWBlendState.fEnabled) {
GL_CALL(Disable(GR_GL_BLEND));
fHWBlendState.fEnabled = kNo_TriState;
}
} else {
if (kYes_TriState != fHWBlendState.fEnabled) {
GL_CALL(Enable(GR_GL_BLEND));
fHWBlendState.fEnabled = kYes_TriState;
}
if (fHWBlendState.fSrcCoeff != srcCoeff ||
fHWBlendState.fDstCoeff != dstCoeff) {
GL_CALL(BlendFunc(gXfermodeCoeff2Blend[srcCoeff],
gXfermodeCoeff2Blend[dstCoeff]));
fHWBlendState.fSrcCoeff = srcCoeff;
fHWBlendState.fDstCoeff = dstCoeff;
}
GrColor blendConst = this->getDrawState().getBlendConstant();
if ((BlendCoeffReferencesConstant(srcCoeff) ||
BlendCoeffReferencesConstant(dstCoeff)) &&
(!fHWBlendState.fConstColorValid ||
fHWBlendState.fConstColor != blendConst)) {
GrGLfloat c[4];
GrColorToRGBAFloat(blendConst, c);
GL_CALL(BlendColor(c[0], c[1], c[2], c[3]));
fHWBlendState.fConstColor = blendConst;
fHWBlendState.fConstColorValid = true;
}
}
}
}
static inline GrGLenum tile_to_gl_wrap(SkShader::TileMode tm) {
static const GrGLenum gWrapModes[] = {
GR_GL_CLAMP_TO_EDGE,
GR_GL_REPEAT,
GR_GL_MIRRORED_REPEAT
};
GR_STATIC_ASSERT(SkShader::kTileModeCount == SK_ARRAY_COUNT(gWrapModes));
GR_STATIC_ASSERT(0 == SkShader::kClamp_TileMode);
GR_STATIC_ASSERT(1 == SkShader::kRepeat_TileMode);
GR_STATIC_ASSERT(2 == SkShader::kMirror_TileMode);
return gWrapModes[tm];
}
void GrGpuGL::bindTexture(int unitIdx, const GrTextureParams& params, GrGLTexture* texture) {
SkASSERT(NULL != texture);
// If we created a rt/tex and rendered to it without using a texture and now we're texturing
// from the rt it will still be the last bound texture, but it needs resolving. So keep this
// out of the "last != next" check.
GrGLRenderTarget* texRT = static_cast<GrGLRenderTarget*>(texture->asRenderTarget());
if (NULL != texRT) {
this->onResolveRenderTarget(texRT);
}
if (fHWBoundTextures[unitIdx] != texture) {
this->setTextureUnit(unitIdx);
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, texture->textureID()));
fHWBoundTextures[unitIdx] = texture;
}
ResetTimestamp timestamp;
const GrGLTexture::TexParams& oldTexParams = texture->getCachedTexParams(×tamp);
bool setAll = timestamp < this->getResetTimestamp();
GrGLTexture::TexParams newTexParams;
static GrGLenum glMinFilterModes[] = {
GR_GL_NEAREST,
GR_GL_LINEAR,
GR_GL_LINEAR_MIPMAP_LINEAR
};
static GrGLenum glMagFilterModes[] = {
GR_GL_NEAREST,
GR_GL_LINEAR,
GR_GL_LINEAR
};
newTexParams.fMinFilter = glMinFilterModes[params.filterMode()];
newTexParams.fMagFilter = glMagFilterModes[params.filterMode()];
if (params.filterMode() == GrTextureParams::kMipMap_FilterMode &&
texture->mipMapsAreDirty()) {
// GL_CALL(Hint(GR_GL_GENERATE_MIPMAP_HINT,GR_GL_NICEST));
GL_CALL(GenerateMipmap(GR_GL_TEXTURE_2D));
texture->dirtyMipMaps(false);
}
newTexParams.fWrapS = tile_to_gl_wrap(params.getTileModeX());
newTexParams.fWrapT = tile_to_gl_wrap(params.getTileModeY());
memcpy(newTexParams.fSwizzleRGBA,
GrGLShaderBuilder::GetTexParamSwizzle(texture->config(), this->glCaps()),
sizeof(newTexParams.fSwizzleRGBA));
if (setAll || newTexParams.fMagFilter != oldTexParams.fMagFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MAG_FILTER,
newTexParams.fMagFilter));
}
if (setAll || newTexParams.fMinFilter != oldTexParams.fMinFilter) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_MIN_FILTER,
newTexParams.fMinFilter));
}
if (setAll || newTexParams.fWrapS != oldTexParams.fWrapS) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_S,
newTexParams.fWrapS));
}
if (setAll || newTexParams.fWrapT != oldTexParams.fWrapT) {
this->setTextureUnit(unitIdx);
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D,
GR_GL_TEXTURE_WRAP_T,
newTexParams.fWrapT));
}
if (this->glCaps().textureSwizzleSupport() &&
(setAll || memcmp(newTexParams.fSwizzleRGBA,
oldTexParams.fSwizzleRGBA,
sizeof(newTexParams.fSwizzleRGBA)))) {
this->setTextureUnit(unitIdx);
if (this->glBinding() == kES_GrGLBinding) {
// ES3 added swizzle support but not GL_TEXTURE_SWIZZLE_RGBA.
const GrGLenum* swizzle = newTexParams.fSwizzleRGBA;
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_R, swizzle[0]));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_G, swizzle[1]));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_B, swizzle[2]));
GL_CALL(TexParameteri(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_A, swizzle[3]));
} else {
GR_STATIC_ASSERT(sizeof(newTexParams.fSwizzleRGBA[0]) == sizeof(GrGLint));
const GrGLint* swizzle = reinterpret_cast<const GrGLint*>(newTexParams.fSwizzleRGBA);
GL_CALL(TexParameteriv(GR_GL_TEXTURE_2D, GR_GL_TEXTURE_SWIZZLE_RGBA, swizzle));
}
}
texture->setCachedTexParams(newTexParams, this->getResetTimestamp());
}
void GrGpuGL::setProjectionMatrix(const SkMatrix& matrix,
const SkISize& renderTargetSize,
GrSurfaceOrigin renderTargetOrigin) {
SkASSERT(this->glCaps().fixedFunctionSupport());
if (renderTargetOrigin == fHWProjectionMatrixState.fRenderTargetOrigin &&
renderTargetSize == fHWProjectionMatrixState.fRenderTargetSize &&
matrix.cheapEqualTo(fHWProjectionMatrixState.fViewMatrix)) {
return;
}
fHWProjectionMatrixState.fViewMatrix = matrix;
fHWProjectionMatrixState.fRenderTargetSize = renderTargetSize;
fHWProjectionMatrixState.fRenderTargetOrigin = renderTargetOrigin;
GrGLfloat glMatrix[4 * 4];
fHWProjectionMatrixState.getGLMatrix<4>(glMatrix);
GL_CALL(MatrixMode(GR_GL_PROJECTION));
GL_CALL(LoadMatrixf(glMatrix));
}
void GrGpuGL::enableTexGen(int unitIdx,
TexGenComponents components,
const GrGLfloat* coefficients) {
SkASSERT(this->glCaps().fixedFunctionSupport());
SkASSERT(components >= kS_TexGenComponents && components <= kSTR_TexGenComponents);
SkASSERT(this->glCaps().maxFixedFunctionTextureCoords() >= unitIdx);
if (GR_GL_OBJECT_LINEAR == fHWTexGenSettings[unitIdx].fMode &&
components == fHWTexGenSettings[unitIdx].fNumComponents &&
!memcmp(coefficients, fHWTexGenSettings[unitIdx].fCoefficients,
3 * components * sizeof(GrGLfloat))) {
return;
}
this->setTextureUnit(unitIdx);
if (GR_GL_OBJECT_LINEAR != fHWTexGenSettings[unitIdx].fMode) {
for (int i = 0; i < 4; i++) {
GL_CALL(TexGeni(GR_GL_S + i, GR_GL_TEXTURE_GEN_MODE, GR_GL_OBJECT_LINEAR));
}
fHWTexGenSettings[unitIdx].fMode = GR_GL_OBJECT_LINEAR;
}
for (int i = fHWTexGenSettings[unitIdx].fNumComponents; i < components; i++) {
GL_CALL(Enable(GR_GL_TEXTURE_GEN_S + i));
}
for (int i = components; i < fHWTexGenSettings[unitIdx].fNumComponents; i++) {
GL_CALL(Disable(GR_GL_TEXTURE_GEN_S + i));
}
fHWTexGenSettings[unitIdx].fNumComponents = components;
for (int i = 0; i < components; i++) {
GrGLfloat plane[] = {coefficients[0 + 3 * i],
coefficients[1 + 3 * i],
0,
coefficients[2 + 3 * i]};
GL_CALL(TexGenfv(GR_GL_S + i, GR_GL_OBJECT_PLANE, plane));
}
if (this->caps()->pathRenderingSupport()) {
GL_CALL(PathTexGen(GR_GL_TEXTURE0 + unitIdx,
GR_GL_OBJECT_LINEAR,
components,
coefficients));
}
memcpy(fHWTexGenSettings[unitIdx].fCoefficients, coefficients,
3 * components * sizeof(GrGLfloat));
}
void GrGpuGL::enableTexGen(int unitIdx, TexGenComponents components, const SkMatrix& matrix) {
GrGLfloat coefficients[3 * 3];
SkASSERT(this->glCaps().fixedFunctionSupport());
SkASSERT(components >= kS_TexGenComponents && components <= kSTR_TexGenComponents);
coefficients[0] = SkScalarToFloat(matrix[SkMatrix::kMScaleX]);
coefficients[1] = SkScalarToFloat(matrix[SkMatrix::kMSkewX]);
coefficients[2] = SkScalarToFloat(matrix[SkMatrix::kMTransX]);
if (components >= kST_TexGenComponents) {
coefficients[3] = SkScalarToFloat(matrix[SkMatrix::kMSkewY]);
coefficients[4] = SkScalarToFloat(matrix[SkMatrix::kMScaleY]);
coefficients[5] = SkScalarToFloat(matrix[SkMatrix::kMTransY]);
}
if (components >= kSTR_TexGenComponents) {
coefficients[6] = SkScalarToFloat(matrix[SkMatrix::kMPersp0]);
coefficients[7] = SkScalarToFloat(matrix[SkMatrix::kMPersp1]);
coefficients[8] = SkScalarToFloat(matrix[SkMatrix::kMPersp2]);
}
enableTexGen(unitIdx, components, coefficients);
}
void GrGpuGL::flushTexGenSettings(int numUsedTexCoordSets) {
SkASSERT(this->glCaps().fixedFunctionSupport());
SkASSERT(this->glCaps().maxFixedFunctionTextureCoords() >= numUsedTexCoordSets);
// Only write the inactive tex gens, since active tex gens were written
// when they were enabled.
SkDEBUGCODE(
for (int i = 0; i < numUsedTexCoordSets; i++) {
SkASSERT(0 != fHWTexGenSettings[i].fNumComponents);
}
);
for (int i = numUsedTexCoordSets; i < fHWActiveTexGenSets; i++) {
SkASSERT(0 != fHWTexGenSettings[i].fNumComponents);
this->setTextureUnit(i);
for (int j = 0; j < fHWTexGenSettings[i].fNumComponents; j++) {
GL_CALL(Disable(GR_GL_TEXTURE_GEN_S + j));
}
if (this->caps()->pathRenderingSupport()) {
GL_CALL(PathTexGen(GR_GL_TEXTURE0 + i, GR_GL_NONE, 0, NULL));
}
fHWTexGenSettings[i].fNumComponents = 0;
}
fHWActiveTexGenSets = numUsedTexCoordSets;
}
void GrGpuGL::flushMiscFixedFunctionState() {
const GrDrawState& drawState = this->getDrawState();
if (drawState.isDitherState()) {
if (kYes_TriState != fHWDitherEnabled) {
GL_CALL(Enable(GR_GL_DITHER));
fHWDitherEnabled = kYes_TriState;
}
} else {
if (kNo_TriState != fHWDitherEnabled) {
GL_CALL(Disable(GR_GL_DITHER));
fHWDitherEnabled = kNo_TriState;
}
}
if (drawState.isColorWriteDisabled()) {
if (kNo_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_FALSE, GR_GL_FALSE,
GR_GL_FALSE, GR_GL_FALSE));
fHWWriteToColor = kNo_TriState;
}
} else {
if (kYes_TriState != fHWWriteToColor) {
GL_CALL(ColorMask(GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE, GR_GL_TRUE));
fHWWriteToColor = kYes_TriState;
}
}
if (fHWDrawFace != drawState.getDrawFace()) {
switch (this->getDrawState().getDrawFace()) {
case GrDrawState::kCCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_BACK));
break;
case GrDrawState::kCW_DrawFace:
GL_CALL(Enable(GR_GL_CULL_FACE));
GL_CALL(CullFace(GR_GL_FRONT));
break;
case GrDrawState::kBoth_DrawFace:
GL_CALL(Disable(GR_GL_CULL_FACE));
break;
default:
GrCrash("Unknown draw face.");
}
fHWDrawFace = drawState.getDrawFace();
}
}
void GrGpuGL::notifyRenderTargetDelete(GrRenderTarget* renderTarget) {
SkASSERT(NULL != renderTarget);
if (fHWBoundRenderTarget == renderTarget) {
fHWBoundRenderTarget = NULL;
}
}
void GrGpuGL::notifyTextureDelete(GrGLTexture* texture) {
for (int s = 0; s < fHWBoundTextures.count(); ++s) {
if (fHWBoundTextures[s] == texture) {
// deleting bound texture does implied bind to 0
fHWBoundTextures[s] = NULL;
}
}
}
bool GrGpuGL::configToGLFormats(GrPixelConfig config,
bool getSizedInternalFormat,
GrGLenum* internalFormat,
GrGLenum* externalFormat,
GrGLenum* externalType) {
GrGLenum dontCare;
if (NULL == internalFormat) {
internalFormat = &dontCare;
}
if (NULL == externalFormat) {
externalFormat = &dontCare;
}
if (NULL == externalType) {
externalType = &dontCare;
}
switch (config) {
case kRGBA_8888_GrPixelConfig:
*internalFormat = GR_GL_RGBA;
*externalFormat = GR_GL_RGBA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA8;
} else {
*internalFormat = GR_GL_RGBA;
}
*externalType = GR_GL_UNSIGNED_BYTE;
break;
case kBGRA_8888_GrPixelConfig:
if (!this->glCaps().bgraFormatSupport()) {
return false;
}
if (this->glCaps().bgraIsInternalFormat()) {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_BGRA8;
} else {
*internalFormat = GR_GL_BGRA;
}
} else {
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA8;
} else {
*internalFormat = GR_GL_RGBA;
}
}
*externalFormat = GR_GL_BGRA;
*externalType = GR_GL_UNSIGNED_BYTE;
break;
case kRGB_565_GrPixelConfig:
*internalFormat = GR_GL_RGB;
*externalFormat = GR_GL_RGB;
if (getSizedInternalFormat) {
if (this->glBinding() == kDesktop_GrGLBinding) {
return false;
} else {
*internalFormat = GR_GL_RGB565;
}
} else {
*internalFormat = GR_GL_RGB;
}
*externalType = GR_GL_UNSIGNED_SHORT_5_6_5;
break;
case kRGBA_4444_GrPixelConfig:
*internalFormat = GR_GL_RGBA;
*externalFormat = GR_GL_RGBA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_RGBA4;
} else {
*internalFormat = GR_GL_RGBA;
}
*externalType = GR_GL_UNSIGNED_SHORT_4_4_4_4;
break;
case kIndex_8_GrPixelConfig:
if (this->caps()->eightBitPaletteSupport()) {
*internalFormat = GR_GL_PALETTE8_RGBA8;
// glCompressedTexImage doesn't take external params
*externalFormat = GR_GL_PALETTE8_RGBA8;
// no sized/unsized internal format distinction here
*internalFormat = GR_GL_PALETTE8_RGBA8;
// unused with CompressedTexImage
*externalType = GR_GL_UNSIGNED_BYTE;
} else {
return false;
}
break;
case kAlpha_8_GrPixelConfig:
if (this->glCaps().textureRedSupport()) {
*internalFormat = GR_GL_RED;
*externalFormat = GR_GL_RED;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_R8;
} else {
*internalFormat = GR_GL_RED;
}
*externalType = GR_GL_UNSIGNED_BYTE;
} else {
*internalFormat = GR_GL_ALPHA;
*externalFormat = GR_GL_ALPHA;
if (getSizedInternalFormat) {
*internalFormat = GR_GL_ALPHA8;
} else {
*internalFormat = GR_GL_ALPHA;
}
*externalType = GR_GL_UNSIGNED_BYTE;
}
break;
default:
return false;
}
return true;
}
void GrGpuGL::setTextureUnit(int unit) {
SkASSERT(unit >= 0 && unit < fHWBoundTextures.count());
if (unit != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + unit));
fHWActiveTextureUnitIdx = unit;
}
}
void GrGpuGL::setScratchTextureUnit() {
// Bind the last texture unit since it is the least likely to be used by GrGLProgram.
int lastUnitIdx = fHWBoundTextures.count() - 1;
if (lastUnitIdx != fHWActiveTextureUnitIdx) {
GL_CALL(ActiveTexture(GR_GL_TEXTURE0 + lastUnitIdx));
fHWActiveTextureUnitIdx = lastUnitIdx;
}
// clear out the this field so that if a program does use this unit it will rebind the correct
// texture.
fHWBoundTextures[lastUnitIdx] = NULL;
}
namespace {
// Determines whether glBlitFramebuffer could be used between src and dst.
inline bool can_blit_framebuffer(const GrSurface* dst,
const GrSurface* src,
const GrGpuGL* gpu,
bool* wouldNeedTempFBO = NULL) {
if (gpu->glCaps().isConfigRenderable(dst->config(), dst->desc().fSampleCnt > 0) &&
gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) &&
gpu->glCaps().usesMSAARenderBuffers()) {
// ES3 doesn't allow framebuffer blits when the src has MSAA and the configs don't match
// or the rects are not the same (not just the same size but have the same edges).
if (GrGLCaps::kES_3_0_MSFBOType == gpu->glCaps().msFBOType() &&
(src->desc().fSampleCnt > 0 || src->config() != dst->config())) {
return false;
}
if (NULL != wouldNeedTempFBO) {
*wouldNeedTempFBO = NULL == dst->asRenderTarget() || NULL == src->asRenderTarget();
}
return true;
} else {
return false;
}
}
inline bool can_copy_texsubimage(const GrSurface* dst,
const GrSurface* src,
const GrGpuGL* gpu,
bool* wouldNeedTempFBO = NULL) {
// Table 3.9 of the ES2 spec indicates the supported formats with CopyTexSubImage
// and BGRA isn't in the spec. There doesn't appear to be any extension that adds it. Perhaps
// many drivers would allow it to work, but ANGLE does not.
if (kES_GrGLBinding == gpu->glBinding() && gpu->glCaps().bgraIsInternalFormat() &&
(kBGRA_8888_GrPixelConfig == dst->config() || kBGRA_8888_GrPixelConfig == src->config())) {
return false;
}
const GrGLRenderTarget* dstRT = static_cast<const GrGLRenderTarget*>(dst->asRenderTarget());
// If dst is multisampled (and uses an extension where there is a separate MSAA renderbuffer)
// then we don't want to copy to the texture but to the MSAA buffer.
if (NULL != dstRT && dstRT->renderFBOID() != dstRT->textureFBOID()) {
return false;
}
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget());
// If the src is multisampled (and uses an extension where there is a separate MSAA
// renderbuffer) then it is an invalid operation to call CopyTexSubImage
if (NULL != srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) {
return false;
}
if (gpu->glCaps().isConfigRenderable(src->config(), src->desc().fSampleCnt > 0) &&
NULL != dst->asTexture() &&
dst->origin() == src->origin() &&
kIndex_8_GrPixelConfig != src->config()) {
if (NULL != wouldNeedTempFBO) {
*wouldNeedTempFBO = NULL == src->asRenderTarget();
}
return true;
} else {
return false;
}
}
// If a temporary FBO was created, its non-zero ID is returned. The viewport that the copy rect is
// relative to is output.
inline GrGLuint bind_surface_as_fbo(const GrGLInterface* gl,
GrSurface* surface,
GrGLenum fboTarget,
GrGLIRect* viewport) {
GrGLRenderTarget* rt = static_cast<GrGLRenderTarget*>(surface->asRenderTarget());
GrGLuint tempFBOID;
if (NULL == rt) {
SkASSERT(NULL != surface->asTexture());
GrGLuint texID = static_cast<GrGLTexture*>(surface->asTexture())->textureID();
GR_GL_CALL(gl, GenFramebuffers(1, &tempFBOID));
GR_GL_CALL(gl, BindFramebuffer(fboTarget, tempFBOID));
GR_GL_CALL(gl, FramebufferTexture2D(fboTarget,
GR_GL_COLOR_ATTACHMENT0,
GR_GL_TEXTURE_2D,
texID,
0));
viewport->fLeft = 0;
viewport->fBottom = 0;
viewport->fWidth = surface->width();
viewport->fHeight = surface->height();
} else {
tempFBOID = 0;
GR_GL_CALL(gl, BindFramebuffer(fboTarget, rt->renderFBOID()));
*viewport = rt->getViewport();
}
return tempFBOID;
}
}
void GrGpuGL::initCopySurfaceDstDesc(const GrSurface* src, GrTextureDesc* desc) {
// Check for format issues with glCopyTexSubImage2D
if (kES_GrGLBinding == this->glBinding() && this->glCaps().bgraIsInternalFormat() &&
kBGRA_8888_GrPixelConfig == src->config()) {
// glCopyTexSubImage2D doesn't work with this config. We'll want to make it a render target
// in order to call glBlitFramebuffer or to copy to it by rendering.
INHERITED::initCopySurfaceDstDesc(src, desc);
return;
} else if (NULL == src->asRenderTarget()) {
// We don't want to have to create an FBO just to use glCopyTexSubImage2D. Let the base
// class handle it by rendering.
INHERITED::initCopySurfaceDstDesc(src, desc);
return;
}
const GrGLRenderTarget* srcRT = static_cast<const GrGLRenderTarget*>(src->asRenderTarget());
if (NULL != srcRT && srcRT->renderFBOID() != srcRT->textureFBOID()) {
// It's illegal to call CopyTexSubImage2D on a MSAA renderbuffer.
INHERITED::initCopySurfaceDstDesc(src, desc);
} else {
desc->fConfig = src->config();
desc->fOrigin = src->origin();
desc->fFlags = kNone_GrTextureFlags;
}
}
bool GrGpuGL::onCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
bool inheritedCouldCopy = INHERITED::onCanCopySurface(dst, src, srcRect, dstPoint);
bool copied = false;
bool wouldNeedTempFBO = false;
if (can_copy_texsubimage(dst, src, this, &wouldNeedTempFBO) &&
(!wouldNeedTempFBO || !inheritedCouldCopy)) {
GrGLuint srcFBO;
GrGLIRect srcVP;
srcFBO = bind_surface_as_fbo(this->glInterface(), src, GR_GL_FRAMEBUFFER, &srcVP);
GrGLTexture* dstTex = static_cast<GrGLTexture*>(dst->asTexture());
SkASSERT(NULL != dstTex);
// We modified the bound FBO
fHWBoundRenderTarget = NULL;
GrGLIRect srcGLRect;
srcGLRect.setRelativeTo(srcVP,
srcRect.fLeft,
srcRect.fTop,
srcRect.width(),
srcRect.height(),
src->origin());
this->setScratchTextureUnit();
GL_CALL(BindTexture(GR_GL_TEXTURE_2D, dstTex->textureID()));
GrGLint dstY;
if (kBottomLeft_GrSurfaceOrigin == dst->origin()) {
dstY = dst->height() - (dstPoint.fY + srcGLRect.fHeight);
} else {
dstY = dstPoint.fY;
}
GL_CALL(CopyTexSubImage2D(GR_GL_TEXTURE_2D, 0,
dstPoint.fX, dstY,
srcGLRect.fLeft, srcGLRect.fBottom,
srcGLRect.fWidth, srcGLRect.fHeight));
copied = true;
if (srcFBO) {
GL_CALL(DeleteFramebuffers(1, &srcFBO));
}
} else if (can_blit_framebuffer(dst, src, this, &wouldNeedTempFBO) &&
(!wouldNeedTempFBO || !inheritedCouldCopy)) {
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
bool selfOverlap = false;
if (dst->isSameAs(src)) {
selfOverlap = SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect);
}
if (!selfOverlap) {
GrGLuint dstFBO;
GrGLuint srcFBO;
GrGLIRect dstVP;
GrGLIRect srcVP;
dstFBO = bind_surface_as_fbo(this->glInterface(), dst, GR_GL_DRAW_FRAMEBUFFER, &dstVP);
srcFBO = bind_surface_as_fbo(this->glInterface(), src, GR_GL_READ_FRAMEBUFFER, &srcVP);
// We modified the bound FBO
fHWBoundRenderTarget = NULL;
GrGLIRect srcGLRect;
GrGLIRect dstGLRect;
srcGLRect.setRelativeTo(srcVP,
srcRect.fLeft,
srcRect.fTop,
srcRect.width(),
srcRect.height(),
src->origin());
dstGLRect.setRelativeTo(dstVP,
dstRect.fLeft,
dstRect.fTop,
dstRect.width(),
dstRect.height(),
dst->origin());
GrAutoTRestore<ScissorState> asr;
if (GrGLCaps::kDesktop_EXT_MSFBOType == this->glCaps().msFBOType()) {
// The EXT version applies the scissor during the blit, so disable it.
asr.reset(&fScissorState);
fScissorState.fEnabled = false;
this->flushScissor();
}
GrGLint srcY0;
GrGLint srcY1;
// Does the blit need to y-mirror or not?
if (src->origin() == dst->origin()) {
srcY0 = srcGLRect.fBottom;
srcY1 = srcGLRect.fBottom + srcGLRect.fHeight;
} else {
srcY0 = srcGLRect.fBottom + srcGLRect.fHeight;
srcY1 = srcGLRect.fBottom;
}
GL_CALL(BlitFramebuffer(srcGLRect.fLeft,
srcY0,
srcGLRect.fLeft + srcGLRect.fWidth,
srcY1,
dstGLRect.fLeft,
dstGLRect.fBottom,
dstGLRect.fLeft + dstGLRect.fWidth,
dstGLRect.fBottom + dstGLRect.fHeight,
GR_GL_COLOR_BUFFER_BIT, GR_GL_NEAREST));
if (dstFBO) {
GL_CALL(DeleteFramebuffers(1, &dstFBO));
}
if (srcFBO) {
GL_CALL(DeleteFramebuffers(1, &srcFBO));
}
copied = true;
}
}
if (!copied && inheritedCouldCopy) {
copied = INHERITED::onCopySurface(dst, src, srcRect, dstPoint);
SkASSERT(copied);
}
return copied;
}
bool GrGpuGL::onCanCopySurface(GrSurface* dst,
GrSurface* src,
const SkIRect& srcRect,
const SkIPoint& dstPoint) {
// This mirrors the logic in onCopySurface.
if (can_copy_texsubimage(dst, src, this)) {
return true;
}
if (can_blit_framebuffer(dst, src, this)) {
if (dst->isSameAs(src)) {
SkIRect dstRect = SkIRect::MakeXYWH(dstPoint.fX, dstPoint.fY,
srcRect.width(), srcRect.height());
if(!SkIRect::IntersectsNoEmptyCheck(dstRect, srcRect)) {
return true;
}
} else {
return true;
}
}
return INHERITED::onCanCopySurface(dst, src, srcRect, dstPoint);
}
///////////////////////////////////////////////////////////////////////////////
GrGLAttribArrayState* GrGpuGL::HWGeometryState::bindArrayAndBuffersToDraw(
GrGpuGL* gpu,
const GrGLVertexBuffer* vbuffer,
const GrGLIndexBuffer* ibuffer) {
SkASSERT(NULL != vbuffer);
GrGLAttribArrayState* attribState;
// We use a vertex array if we're on a core profile and the verts are in a VBO.
if (gpu->glCaps().isCoreProfile() && !vbuffer->isCPUBacked()) {
if (NULL == fVBOVertexArray || !fVBOVertexArray->isValid()) {
SkSafeUnref(fVBOVertexArray);
GrGLuint arrayID;
GR_GL_CALL(gpu->glInterface(), GenVertexArrays(1, &arrayID));
int attrCount = gpu->glCaps().maxVertexAttributes();
fVBOVertexArray = SkNEW_ARGS(GrGLVertexArray, (gpu, arrayID, attrCount));
}
attribState = fVBOVertexArray->bindWithIndexBuffer(ibuffer);
} else {
if (NULL != ibuffer) {
this->setIndexBufferIDOnDefaultVertexArray(gpu, ibuffer->bufferID());
} else {
this->setVertexArrayID(gpu, 0);
}
int attrCount = gpu->glCaps().maxVertexAttributes();
if (fDefaultVertexArrayAttribState.count() != attrCount) {
fDefaultVertexArrayAttribState.resize(attrCount);
}
attribState = &fDefaultVertexArrayAttribState;
}
return attribState;
}