/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrContext.h"
#include "effects/GrSingleTextureEffect.h"
#include "effects/GrConfigConversionEffect.h"
#include "GrAARectRenderer.h"
#include "GrBufferAllocPool.h"
#include "GrGpu.h"
#include "GrDrawTargetCaps.h"
#include "GrIndexBuffer.h"
#include "GrInOrderDrawBuffer.h"
#include "GrOvalRenderer.h"
#include "GrPathRenderer.h"
#include "GrPathUtils.h"
#include "GrResourceCache.h"
#include "GrSoftwarePathRenderer.h"
#include "GrStencilBuffer.h"
#include "GrTextStrike.h"
#include "SkRTConf.h"
#include "SkRRect.h"
#include "SkStrokeRec.h"
#include "SkTLazy.h"
#include "SkTLS.h"
#include "SkTrace.h"
// It can be useful to set this to false to test whether a bug is caused by using the
// InOrderDrawBuffer, to compare performance of using/not using InOrderDrawBuffer, or to make
// debugging simpler.
SK_CONF_DECLARE(bool, c_Defer, "gpu.deferContext", true,
"Defers rendering in GrContext via GrInOrderDrawBuffer.");
#define BUFFERED_DRAW (c_Defer ? kYes_BufferedDraw : kNo_BufferedDraw)
#ifdef SK_DEBUG
// change this to a 1 to see notifications when partial coverage fails
#define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0
#else
#define GR_DEBUG_PARTIAL_COVERAGE_CHECK 0
#endif
static const size_t MAX_RESOURCE_CACHE_COUNT = GR_DEFAULT_RESOURCE_CACHE_COUNT_LIMIT;
static const size_t MAX_RESOURCE_CACHE_BYTES = GR_DEFAULT_RESOURCE_CACHE_MB_LIMIT * 1024 * 1024;
static const size_t DRAW_BUFFER_VBPOOL_BUFFER_SIZE = 1 << 15;
static const int DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS = 4;
static const size_t DRAW_BUFFER_IBPOOL_BUFFER_SIZE = 1 << 11;
static const int DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS = 4;
#define ASSERT_OWNED_RESOURCE(R) SkASSERT(!(R) || (R)->getContext() == this)
// Glorified typedef to avoid including GrDrawState.h in GrContext.h
class GrContext::AutoRestoreEffects : public GrDrawState::AutoRestoreEffects {};
class GrContext::AutoCheckFlush {
public:
AutoCheckFlush(GrContext* context) : fContext(context) { SkASSERT(NULL != context); }
~AutoCheckFlush() {
if (fContext->fFlushToReduceCacheSize) {
fContext->flush();
}
}
private:
GrContext* fContext;
};
GrContext* GrContext::Create(GrBackend backend, GrBackendContext backendContext) {
GrContext* context = SkNEW(GrContext);
if (context->init(backend, backendContext)) {
return context;
} else {
context->unref();
return NULL;
}
}
GrContext::GrContext() {
fDrawState = NULL;
fGpu = NULL;
fClip = NULL;
fPathRendererChain = NULL;
fSoftwarePathRenderer = NULL;
fTextureCache = NULL;
fFontCache = NULL;
fDrawBuffer = NULL;
fDrawBufferVBAllocPool = NULL;
fDrawBufferIBAllocPool = NULL;
fFlushToReduceCacheSize = false;
fAARectRenderer = NULL;
fOvalRenderer = NULL;
fViewMatrix.reset();
fMaxTextureSizeOverride = 1 << 20;
}
bool GrContext::init(GrBackend backend, GrBackendContext backendContext) {
SkASSERT(NULL == fGpu);
fGpu = GrGpu::Create(backend, backendContext, this);
if (NULL == fGpu) {
return false;
}
fDrawState = SkNEW(GrDrawState);
fGpu->setDrawState(fDrawState);
fTextureCache = SkNEW_ARGS(GrResourceCache,
(MAX_RESOURCE_CACHE_COUNT,
MAX_RESOURCE_CACHE_BYTES));
fTextureCache->setOverbudgetCallback(OverbudgetCB, this);
fFontCache = SkNEW_ARGS(GrFontCache, (fGpu));
fLastDrawWasBuffered = kNo_BufferedDraw;
fAARectRenderer = SkNEW(GrAARectRenderer);
fOvalRenderer = SkNEW(GrOvalRenderer);
fDidTestPMConversions = false;
this->setupDrawBuffer();
return true;
}
GrContext::~GrContext() {
if (NULL == fGpu) {
return;
}
this->flush();
for (int i = 0; i < fCleanUpData.count(); ++i) {
(*fCleanUpData[i].fFunc)(this, fCleanUpData[i].fInfo);
}
// Since the gpu can hold scratch textures, give it a chance to let go
// of them before freeing the texture cache
fGpu->purgeResources();
delete fTextureCache;
fTextureCache = NULL;
delete fFontCache;
delete fDrawBuffer;
delete fDrawBufferVBAllocPool;
delete fDrawBufferIBAllocPool;
fAARectRenderer->unref();
fOvalRenderer->unref();
fGpu->unref();
SkSafeUnref(fPathRendererChain);
SkSafeUnref(fSoftwarePathRenderer);
fDrawState->unref();
}
void GrContext::contextLost() {
this->contextDestroyed();
this->setupDrawBuffer();
}
void GrContext::contextDestroyed() {
// abandon first to so destructors
// don't try to free the resources in the API.
fGpu->abandonResources();
// a path renderer may be holding onto resources that
// are now unusable
SkSafeSetNull(fPathRendererChain);
SkSafeSetNull(fSoftwarePathRenderer);
delete fDrawBuffer;
fDrawBuffer = NULL;
delete fDrawBufferVBAllocPool;
fDrawBufferVBAllocPool = NULL;
delete fDrawBufferIBAllocPool;
fDrawBufferIBAllocPool = NULL;
fAARectRenderer->reset();
fOvalRenderer->reset();
fTextureCache->purgeAllUnlocked();
fFontCache->freeAll();
fGpu->markContextDirty();
}
void GrContext::resetContext(uint32_t state) {
fGpu->markContextDirty(state);
}
void GrContext::freeGpuResources() {
this->flush();
fGpu->purgeResources();
fAARectRenderer->reset();
fOvalRenderer->reset();
fTextureCache->purgeAllUnlocked();
fFontCache->freeAll();
// a path renderer may be holding onto resources
SkSafeSetNull(fPathRendererChain);
SkSafeSetNull(fSoftwarePathRenderer);
}
size_t GrContext::getGpuTextureCacheBytes() const {
return fTextureCache->getCachedResourceBytes();
}
////////////////////////////////////////////////////////////////////////////////
GrTexture* GrContext::findAndRefTexture(const GrTextureDesc& desc,
const GrCacheID& cacheID,
const GrTextureParams* params) {
GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID);
GrResource* resource = fTextureCache->find(resourceKey);
SkSafeRef(resource);
return static_cast<GrTexture*>(resource);
}
bool GrContext::isTextureInCache(const GrTextureDesc& desc,
const GrCacheID& cacheID,
const GrTextureParams* params) const {
GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID);
return fTextureCache->hasKey(resourceKey);
}
void GrContext::addStencilBuffer(GrStencilBuffer* sb) {
ASSERT_OWNED_RESOURCE(sb);
GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(sb->width(),
sb->height(),
sb->numSamples());
fTextureCache->addResource(resourceKey, sb);
}
GrStencilBuffer* GrContext::findStencilBuffer(int width, int height,
int sampleCnt) {
GrResourceKey resourceKey = GrStencilBuffer::ComputeKey(width,
height,
sampleCnt);
GrResource* resource = fTextureCache->find(resourceKey);
return static_cast<GrStencilBuffer*>(resource);
}
static void stretchImage(void* dst,
int dstW,
int dstH,
void* src,
int srcW,
int srcH,
size_t bpp) {
GrFixed dx = (srcW << 16) / dstW;
GrFixed dy = (srcH << 16) / dstH;
GrFixed y = dy >> 1;
size_t dstXLimit = dstW*bpp;
for (int j = 0; j < dstH; ++j) {
GrFixed x = dx >> 1;
void* srcRow = (uint8_t*)src + (y>>16)*srcW*bpp;
void* dstRow = (uint8_t*)dst + j*dstW*bpp;
for (size_t i = 0; i < dstXLimit; i += bpp) {
memcpy((uint8_t*) dstRow + i,
(uint8_t*) srcRow + (x>>16)*bpp,
bpp);
x += dx;
}
y += dy;
}
}
namespace {
// position + local coordinate
extern const GrVertexAttrib gVertexAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
{kVec2f_GrVertexAttribType, sizeof(GrPoint), kLocalCoord_GrVertexAttribBinding}
};
};
// The desired texture is NPOT and tiled but that isn't supported by
// the current hardware. Resize the texture to be a POT
GrTexture* GrContext::createResizedTexture(const GrTextureDesc& desc,
const GrCacheID& cacheID,
void* srcData,
size_t rowBytes,
bool filter) {
SkAutoTUnref<GrTexture> clampedTexture(this->findAndRefTexture(desc, cacheID, NULL));
if (NULL == clampedTexture) {
clampedTexture.reset(this->createTexture(NULL, desc, cacheID, srcData, rowBytes));
if (NULL == clampedTexture) {
return NULL;
}
}
GrTextureDesc rtDesc = desc;
rtDesc.fFlags = rtDesc.fFlags |
kRenderTarget_GrTextureFlagBit |
kNoStencil_GrTextureFlagBit;
rtDesc.fWidth = GrNextPow2(desc.fWidth);
rtDesc.fHeight = GrNextPow2(desc.fHeight);
GrTexture* texture = fGpu->createTexture(rtDesc, NULL, 0);
if (NULL != texture) {
GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(texture->asRenderTarget());
// if filtering is not desired then we want to ensure all
// texels in the resampled image are copies of texels from
// the original.
GrTextureParams params(SkShader::kClamp_TileMode, filter ? GrTextureParams::kBilerp_FilterMode :
GrTextureParams::kNone_FilterMode);
drawState->addColorTextureEffect(clampedTexture, SkMatrix::I(), params);
drawState->setVertexAttribs<gVertexAttribs>(SK_ARRAY_COUNT(gVertexAttribs));
GrDrawTarget::AutoReleaseGeometry arg(fGpu, 4, 0);
if (arg.succeeded()) {
GrPoint* verts = (GrPoint*) arg.vertices();
verts[0].setIRectFan(0, 0, texture->width(), texture->height(), 2 * sizeof(GrPoint));
verts[1].setIRectFan(0, 0, 1, 1, 2 * sizeof(GrPoint));
fGpu->drawNonIndexed(kTriangleFan_GrPrimitiveType, 0, 4);
}
} else {
// TODO: Our CPU stretch doesn't filter. But we create separate
// stretched textures when the texture params is either filtered or
// not. Either implement filtered stretch blit on CPU or just create
// one when FBO case fails.
rtDesc.fFlags = kNone_GrTextureFlags;
// no longer need to clamp at min RT size.
rtDesc.fWidth = GrNextPow2(desc.fWidth);
rtDesc.fHeight = GrNextPow2(desc.fHeight);
size_t bpp = GrBytesPerPixel(desc.fConfig);
SkAutoSMalloc<128*128*4> stretchedPixels(bpp * rtDesc.fWidth * rtDesc.fHeight);
stretchImage(stretchedPixels.get(), rtDesc.fWidth, rtDesc.fHeight,
srcData, desc.fWidth, desc.fHeight, bpp);
size_t stretchedRowBytes = rtDesc.fWidth * bpp;
SkDEBUGCODE(GrTexture* texture = )fGpu->createTexture(rtDesc, stretchedPixels.get(),
stretchedRowBytes);
SkASSERT(NULL != texture);
}
return texture;
}
GrTexture* GrContext::createTexture(const GrTextureParams* params,
const GrTextureDesc& desc,
const GrCacheID& cacheID,
void* srcData,
size_t rowBytes,
GrResourceKey* cacheKey) {
SK_TRACE_EVENT0("GrContext::createTexture");
GrResourceKey resourceKey = GrTexture::ComputeKey(fGpu, params, desc, cacheID);
GrTexture* texture;
if (GrTexture::NeedsResizing(resourceKey)) {
texture = this->createResizedTexture(desc, cacheID,
srcData, rowBytes,
GrTexture::NeedsBilerp(resourceKey));
} else {
texture= fGpu->createTexture(desc, srcData, rowBytes);
}
if (NULL != texture) {
// Adding a resource could put us overbudget. Try to free up the
// necessary space before adding it.
fTextureCache->purgeAsNeeded(1, texture->sizeInBytes());
fTextureCache->addResource(resourceKey, texture);
if (NULL != cacheKey) {
*cacheKey = resourceKey;
}
}
return texture;
}
static GrTexture* create_scratch_texture(GrGpu* gpu,
GrResourceCache* textureCache,
const GrTextureDesc& desc) {
GrTexture* texture = gpu->createTexture(desc, NULL, 0);
if (NULL != texture) {
GrResourceKey key = GrTexture::ComputeScratchKey(texture->desc());
// Adding a resource could put us overbudget. Try to free up the
// necessary space before adding it.
textureCache->purgeAsNeeded(1, texture->sizeInBytes());
// Make the resource exclusive so future 'find' calls don't return it
textureCache->addResource(key, texture, GrResourceCache::kHide_OwnershipFlag);
}
return texture;
}
GrTexture* GrContext::lockAndRefScratchTexture(const GrTextureDesc& inDesc, ScratchTexMatch match) {
SkASSERT((inDesc.fFlags & kRenderTarget_GrTextureFlagBit) ||
!(inDesc.fFlags & kNoStencil_GrTextureFlagBit));
// Renderable A8 targets are not universally supported (e.g., not on ANGLE)
SkASSERT(this->isConfigRenderable(kAlpha_8_GrPixelConfig, inDesc.fSampleCnt > 0) ||
!(inDesc.fFlags & kRenderTarget_GrTextureFlagBit) ||
(inDesc.fConfig != kAlpha_8_GrPixelConfig));
if (!fGpu->caps()->reuseScratchTextures() &&
!(inDesc.fFlags & kRenderTarget_GrTextureFlagBit)) {
// If we're never recycling this texture we can always make it the right size
return create_scratch_texture(fGpu, fTextureCache, inDesc);
}
GrTextureDesc desc = inDesc;
if (kApprox_ScratchTexMatch == match) {
// bin by pow2 with a reasonable min
static const int MIN_SIZE = 16;
desc.fWidth = GrMax(MIN_SIZE, GrNextPow2(desc.fWidth));
desc.fHeight = GrMax(MIN_SIZE, GrNextPow2(desc.fHeight));
}
GrResource* resource = NULL;
int origWidth = desc.fWidth;
int origHeight = desc.fHeight;
do {
GrResourceKey key = GrTexture::ComputeScratchKey(desc);
// Ensure we have exclusive access to the texture so future 'find' calls don't return it
resource = fTextureCache->find(key, GrResourceCache::kHide_OwnershipFlag);
if (NULL != resource) {
resource->ref();
break;
}
if (kExact_ScratchTexMatch == match) {
break;
}
// We had a cache miss and we are in approx mode, relax the fit of the flags.
// We no longer try to reuse textures that were previously used as render targets in
// situations where no RT is needed; doing otherwise can confuse the video driver and
// cause significant performance problems in some cases.
if (desc.fFlags & kNoStencil_GrTextureFlagBit) {
desc.fFlags = desc.fFlags & ~kNoStencil_GrTextureFlagBit;
} else {
break;
}
} while (true);
if (NULL == resource) {
desc.fFlags = inDesc.fFlags;
desc.fWidth = origWidth;
desc.fHeight = origHeight;
resource = create_scratch_texture(fGpu, fTextureCache, desc);
}
return static_cast<GrTexture*>(resource);
}
void GrContext::addExistingTextureToCache(GrTexture* texture) {
if (NULL == texture) {
return;
}
// This texture should already have a cache entry since it was once
// attached
SkASSERT(NULL != texture->getCacheEntry());
// Conceptually, the cache entry is going to assume responsibility
// for the creation ref. Assert refcnt == 1.
SkASSERT(texture->unique());
if (fGpu->caps()->reuseScratchTextures() || NULL != texture->asRenderTarget()) {
// Since this texture came from an AutoScratchTexture it should
// still be in the exclusive pile. Recycle it.
fTextureCache->makeNonExclusive(texture->getCacheEntry());
this->purgeCache();
} else if (texture->getDeferredRefCount() <= 0) {
// When we aren't reusing textures we know this scratch texture
// will never be reused and would be just wasting time in the cache
fTextureCache->makeNonExclusive(texture->getCacheEntry());
fTextureCache->deleteResource(texture->getCacheEntry());
} else {
// In this case (fDeferredRefCount > 0) but the cache is the only
// one holding a real ref. Mark the object so when the deferred
// ref count goes to 0 the texture will be deleted (remember
// in this code path scratch textures aren't getting reused).
texture->setNeedsDeferredUnref();
}
}
void GrContext::unlockScratchTexture(GrTexture* texture) {
ASSERT_OWNED_RESOURCE(texture);
SkASSERT(NULL != texture->getCacheEntry());
// If this is a scratch texture we detached it from the cache
// while it was locked (to avoid two callers simultaneously getting
// the same texture).
if (texture->getCacheEntry()->key().isScratch()) {
if (fGpu->caps()->reuseScratchTextures() || NULL != texture->asRenderTarget()) {
fTextureCache->makeNonExclusive(texture->getCacheEntry());
this->purgeCache();
} else if (texture->unique() && texture->getDeferredRefCount() <= 0) {
// Only the cache now knows about this texture. Since we're never
// reusing scratch textures (in this code path) it would just be
// wasting time sitting in the cache.
fTextureCache->makeNonExclusive(texture->getCacheEntry());
fTextureCache->deleteResource(texture->getCacheEntry());
} else {
// In this case (fRefCnt > 1 || defRefCnt > 0) but we don't really
// want to readd it to the cache (since it will never be reused).
// Instead, give up the cache's ref and leave the decision up to
// addExistingTextureToCache once its ref count reaches 0. For
// this to work we need to leave it in the exclusive list.
texture->setFlag((GrTextureFlags) GrTexture::kReturnToCache_FlagBit);
// Give up the cache's ref to the texture
texture->unref();
}
}
}
void GrContext::purgeCache() {
if (NULL != fTextureCache) {
fTextureCache->purgeAsNeeded();
}
}
bool GrContext::OverbudgetCB(void* data) {
SkASSERT(NULL != data);
GrContext* context = reinterpret_cast<GrContext*>(data);
// Flush the InOrderDrawBuffer to possibly free up some textures
context->fFlushToReduceCacheSize = true;
return true;
}
GrTexture* GrContext::createUncachedTexture(const GrTextureDesc& descIn,
void* srcData,
size_t rowBytes) {
GrTextureDesc descCopy = descIn;
return fGpu->createTexture(descCopy, srcData, rowBytes);
}
void GrContext::getTextureCacheLimits(int* maxTextures,
size_t* maxTextureBytes) const {
fTextureCache->getLimits(maxTextures, maxTextureBytes);
}
void GrContext::setTextureCacheLimits(int maxTextures, size_t maxTextureBytes) {
fTextureCache->setLimits(maxTextures, maxTextureBytes);
}
int GrContext::getMaxTextureSize() const {
return GrMin(fGpu->caps()->maxTextureSize(), fMaxTextureSizeOverride);
}
int GrContext::getMaxRenderTargetSize() const {
return fGpu->caps()->maxRenderTargetSize();
}
int GrContext::getMaxSampleCount() const {
return fGpu->caps()->maxSampleCount();
}
///////////////////////////////////////////////////////////////////////////////
GrTexture* GrContext::wrapBackendTexture(const GrBackendTextureDesc& desc) {
return fGpu->wrapBackendTexture(desc);
}
GrRenderTarget* GrContext::wrapBackendRenderTarget(const GrBackendRenderTargetDesc& desc) {
return fGpu->wrapBackendRenderTarget(desc);
}
///////////////////////////////////////////////////////////////////////////////
bool GrContext::supportsIndex8PixelConfig(const GrTextureParams* params,
int width, int height) const {
const GrDrawTargetCaps* caps = fGpu->caps();
if (!caps->eightBitPaletteSupport()) {
return false;
}
bool isPow2 = GrIsPow2(width) && GrIsPow2(height);
if (!isPow2) {
bool tiled = NULL != params && params->isTiled();
if (tiled && !caps->npotTextureTileSupport()) {
return false;
}
}
return true;
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::clear(const SkIRect* rect,
const GrColor color,
bool canIgnoreRect,
GrRenderTarget* target) {
AutoRestoreEffects are;
AutoCheckFlush acf(this);
this->prepareToDraw(NULL, BUFFERED_DRAW, &are, &acf)->clear(rect, color,
canIgnoreRect, target);
}
void GrContext::drawPaint(const GrPaint& origPaint) {
// set rect to be big enough to fill the space, but not super-huge, so we
// don't overflow fixed-point implementations
SkRect r;
r.setLTRB(0, 0,
SkIntToScalar(getRenderTarget()->width()),
SkIntToScalar(getRenderTarget()->height()));
SkMatrix inverse;
SkTCopyOnFirstWrite<GrPaint> paint(origPaint);
AutoMatrix am;
// We attempt to map r by the inverse matrix and draw that. mapRect will
// map the four corners and bound them with a new rect. This will not
// produce a correct result for some perspective matrices.
if (!this->getMatrix().hasPerspective()) {
if (!fViewMatrix.invert(&inverse)) {
GrPrintf("Could not invert matrix\n");
return;
}
inverse.mapRect(&r);
} else {
if (!am.setIdentity(this, paint.writable())) {
GrPrintf("Could not invert matrix\n");
return;
}
}
// by definition this fills the entire clip, no need for AA
if (paint->isAntiAlias()) {
paint.writable()->setAntiAlias(false);
}
this->drawRect(*paint, r);
}
#ifdef SK_DEVELOPER
void GrContext::dumpFontCache() const {
fFontCache->dump();
}
#endif
////////////////////////////////////////////////////////////////////////////////
/* create a triangle strip that strokes the specified triangle. There are 8
unique vertices, but we repreat the last 2 to close up. Alternatively we
could use an indices array, and then only send 8 verts, but not sure that
would be faster.
*/
static void setStrokeRectStrip(GrPoint verts[10], SkRect rect,
SkScalar width) {
const SkScalar rad = SkScalarHalf(width);
rect.sort();
verts[0].set(rect.fLeft + rad, rect.fTop + rad);
verts[1].set(rect.fLeft - rad, rect.fTop - rad);
verts[2].set(rect.fRight - rad, rect.fTop + rad);
verts[3].set(rect.fRight + rad, rect.fTop - rad);
verts[4].set(rect.fRight - rad, rect.fBottom - rad);
verts[5].set(rect.fRight + rad, rect.fBottom + rad);
verts[6].set(rect.fLeft + rad, rect.fBottom - rad);
verts[7].set(rect.fLeft - rad, rect.fBottom + rad);
verts[8] = verts[0];
verts[9] = verts[1];
}
static bool isIRect(const SkRect& r) {
return SkScalarIsInt(r.fLeft) && SkScalarIsInt(r.fTop) &&
SkScalarIsInt(r.fRight) && SkScalarIsInt(r.fBottom);
}
static bool apply_aa_to_rect(GrDrawTarget* target,
const SkRect& rect,
SkScalar strokeWidth,
const SkMatrix& combinedMatrix,
SkRect* devBoundRect,
bool* useVertexCoverage) {
// we use a simple coverage ramp to do aa on axis-aligned rects
// we check if the rect will be axis-aligned, and the rect won't land on
// integer coords.
// we are keeping around the "tweak the alpha" trick because
// it is our only hope for the fixed-pipe implementation.
// In a shader implementation we can give a separate coverage input
// TODO: remove this ugliness when we drop the fixed-pipe impl
*useVertexCoverage = false;
if (!target->getDrawState().canTweakAlphaForCoverage()) {
if (target->shouldDisableCoverageAAForBlend()) {
#ifdef SK_DEBUG
//GrPrintf("Turning off AA to correctly apply blend.\n");
#endif
return false;
} else {
*useVertexCoverage = true;
}
}
const GrDrawState& drawState = target->getDrawState();
if (drawState.getRenderTarget()->isMultisampled()) {
return false;
}
if (0 == strokeWidth && target->willUseHWAALines()) {
return false;
}
#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
if (strokeWidth >= 0) {
#endif
if (!combinedMatrix.preservesAxisAlignment()) {
return false;
}
#if defined(SHADER_AA_FILL_RECT) || !defined(IGNORE_ROT_AA_RECT_OPT)
} else {
if (!combinedMatrix.preservesRightAngles()) {
return false;
}
}
#endif
combinedMatrix.mapRect(devBoundRect, rect);
if (strokeWidth < 0) {
return !isIRect(*devBoundRect);
} else {
return true;
}
}
static inline bool rect_contains_inclusive(const SkRect& rect, const SkPoint& point) {
return point.fX >= rect.fLeft && point.fX <= rect.fRight &&
point.fY >= rect.fTop && point.fY <= rect.fBottom;
}
void GrContext::drawRect(const GrPaint& paint,
const SkRect& rect,
const SkStrokeRec* stroke,
const SkMatrix* matrix) {
SK_TRACE_EVENT0("GrContext::drawRect");
AutoRestoreEffects are;
AutoCheckFlush acf(this);
GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf);
SkScalar width = stroke == NULL ? -1 : stroke->getWidth();
SkMatrix combinedMatrix = target->drawState()->getViewMatrix();
if (NULL != matrix) {
combinedMatrix.preConcat(*matrix);
}
// Check if this is a full RT draw and can be replaced with a clear. We don't bother checking
// cases where the RT is fully inside a stroke.
if (width < 0) {
SkRect rtRect;
target->getDrawState().getRenderTarget()->getBoundsRect(&rtRect);
SkRect clipSpaceRTRect = rtRect;
bool checkClip = false;
if (NULL != this->getClip()) {
checkClip = true;
clipSpaceRTRect.offset(SkIntToScalar(this->getClip()->fOrigin.fX),
SkIntToScalar(this->getClip()->fOrigin.fY));
}
// Does the clip contain the entire RT?
if (!checkClip || target->getClip()->fClipStack->quickContains(clipSpaceRTRect)) {
SkMatrix invM;
if (!combinedMatrix.invert(&invM)) {
return;
}
// Does the rect bound the RT?
SkPoint srcSpaceRTQuad[4];
invM.mapRectToQuad(srcSpaceRTQuad, rtRect);
if (rect_contains_inclusive(rect, srcSpaceRTQuad[0]) &&
rect_contains_inclusive(rect, srcSpaceRTQuad[1]) &&
rect_contains_inclusive(rect, srcSpaceRTQuad[2]) &&
rect_contains_inclusive(rect, srcSpaceRTQuad[3])) {
// Will it blend?
GrColor clearColor;
if (paint.isOpaqueAndConstantColor(&clearColor)) {
target->clear(NULL, clearColor, true);
return;
}
}
}
}
SkRect devBoundRect;
bool useVertexCoverage;
bool needAA = paint.isAntiAlias() &&
!target->getDrawState().getRenderTarget()->isMultisampled();
bool doAA = needAA && apply_aa_to_rect(target, rect, width, combinedMatrix, &devBoundRect,
&useVertexCoverage);
if (doAA) {
GrDrawState::AutoViewMatrixRestore avmr;
if (!avmr.setIdentity(target->drawState())) {
return;
}
if (width >= 0) {
fAARectRenderer->strokeAARect(this->getGpu(), target, rect,
combinedMatrix, devBoundRect,
stroke, useVertexCoverage);
} else {
// filled AA rect
fAARectRenderer->fillAARect(this->getGpu(), target,
rect, combinedMatrix, devBoundRect,
useVertexCoverage);
}
return;
}
if (width >= 0) {
// TODO: consider making static vertex buffers for these cases.
// Hairline could be done by just adding closing vertex to
// unitSquareVertexBuffer()
static const int worstCaseVertCount = 10;
target->drawState()->setDefaultVertexAttribs();
GrDrawTarget::AutoReleaseGeometry geo(target, worstCaseVertCount, 0);
if (!geo.succeeded()) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
GrPrimitiveType primType;
int vertCount;
GrPoint* vertex = geo.positions();
if (width > 0) {
vertCount = 10;
primType = kTriangleStrip_GrPrimitiveType;
setStrokeRectStrip(vertex, rect, width);
} else {
// hairline
vertCount = 5;
primType = kLineStrip_GrPrimitiveType;
vertex[0].set(rect.fLeft, rect.fTop);
vertex[1].set(rect.fRight, rect.fTop);
vertex[2].set(rect.fRight, rect.fBottom);
vertex[3].set(rect.fLeft, rect.fBottom);
vertex[4].set(rect.fLeft, rect.fTop);
}
GrDrawState::AutoViewMatrixRestore avmr;
if (NULL != matrix) {
GrDrawState* drawState = target->drawState();
avmr.set(drawState, *matrix);
}
target->drawNonIndexed(primType, 0, vertCount);
} else {
// filled BW rect
target->drawSimpleRect(rect, matrix);
}
}
void GrContext::drawRectToRect(const GrPaint& paint,
const SkRect& dstRect,
const SkRect& localRect,
const SkMatrix* dstMatrix,
const SkMatrix* localMatrix) {
SK_TRACE_EVENT0("GrContext::drawRectToRect");
AutoRestoreEffects are;
AutoCheckFlush acf(this);
GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf);
target->drawRect(dstRect, dstMatrix, &localRect, localMatrix);
}
namespace {
extern const GrVertexAttrib gPosUVColorAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding },
{kVec2f_GrVertexAttribType, sizeof(GrPoint), kLocalCoord_GrVertexAttribBinding },
{kVec4ub_GrVertexAttribType, 2*sizeof(GrPoint), kColor_GrVertexAttribBinding}
};
extern const GrVertexAttrib gPosColorAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
{kVec4ub_GrVertexAttribType, sizeof(GrPoint), kColor_GrVertexAttribBinding},
};
static void set_vertex_attributes(GrDrawState* drawState,
const GrPoint* texCoords,
const GrColor* colors,
int* colorOffset,
int* texOffset) {
*texOffset = -1;
*colorOffset = -1;
if (NULL != texCoords && NULL != colors) {
*texOffset = sizeof(GrPoint);
*colorOffset = 2*sizeof(GrPoint);
drawState->setVertexAttribs<gPosUVColorAttribs>(3);
} else if (NULL != texCoords) {
*texOffset = sizeof(GrPoint);
drawState->setVertexAttribs<gPosUVColorAttribs>(2);
} else if (NULL != colors) {
*colorOffset = sizeof(GrPoint);
drawState->setVertexAttribs<gPosColorAttribs>(2);
} else {
drawState->setVertexAttribs<gPosColorAttribs>(1);
}
}
};
void GrContext::drawVertices(const GrPaint& paint,
GrPrimitiveType primitiveType,
int vertexCount,
const GrPoint positions[],
const GrPoint texCoords[],
const GrColor colors[],
const uint16_t indices[],
int indexCount) {
SK_TRACE_EVENT0("GrContext::drawVertices");
GrDrawTarget::AutoReleaseGeometry geo;
AutoRestoreEffects are;
AutoCheckFlush acf(this);
GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf);
GrDrawState* drawState = target->drawState();
int colorOffset = -1, texOffset = -1;
set_vertex_attributes(drawState, texCoords, colors, &colorOffset, &texOffset);
size_t vertexSize = drawState->getVertexSize();
if (sizeof(GrPoint) != vertexSize) {
if (!geo.set(target, vertexCount, 0)) {
GrPrintf("Failed to get space for vertices!\n");
return;
}
void* curVertex = geo.vertices();
for (int i = 0; i < vertexCount; ++i) {
*((GrPoint*)curVertex) = positions[i];
if (texOffset >= 0) {
*(GrPoint*)((intptr_t)curVertex + texOffset) = texCoords[i];
}
if (colorOffset >= 0) {
*(GrColor*)((intptr_t)curVertex + colorOffset) = colors[i];
}
curVertex = (void*)((intptr_t)curVertex + vertexSize);
}
} else {
target->setVertexSourceToArray(positions, vertexCount);
}
// we don't currently apply offscreen AA to this path. Need improved
// management of GrDrawTarget's geometry to avoid copying points per-tile.
if (NULL != indices) {
target->setIndexSourceToArray(indices, indexCount);
target->drawIndexed(primitiveType, 0, 0, vertexCount, indexCount);
target->resetIndexSource();
} else {
target->drawNonIndexed(primitiveType, 0, vertexCount);
}
}
///////////////////////////////////////////////////////////////////////////////
void GrContext::drawRRect(const GrPaint& paint,
const SkRRect& rect,
const SkStrokeRec& stroke) {
if (rect.isEmpty()) {
return;
}
AutoRestoreEffects are;
AutoCheckFlush acf(this);
GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf);
if (!fOvalRenderer->drawSimpleRRect(target, this, paint.isAntiAlias(), rect, stroke)) {
SkPath path;
path.addRRect(rect);
this->internalDrawPath(target, paint.isAntiAlias(), path, stroke);
}
}
///////////////////////////////////////////////////////////////////////////////
void GrContext::drawOval(const GrPaint& paint,
const SkRect& oval,
const SkStrokeRec& stroke) {
if (oval.isEmpty()) {
return;
}
AutoRestoreEffects are;
AutoCheckFlush acf(this);
GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf);
if (!fOvalRenderer->drawOval(target, this, paint.isAntiAlias(), oval, stroke)) {
SkPath path;
path.addOval(oval);
this->internalDrawPath(target, paint.isAntiAlias(), path, stroke);
}
}
// Can 'path' be drawn as a pair of filled nested rectangles?
static bool is_nested_rects(GrDrawTarget* target,
const SkPath& path,
const SkStrokeRec& stroke,
SkRect rects[2],
bool* useVertexCoverage) {
SkASSERT(stroke.isFillStyle());
if (path.isInverseFillType()) {
return false;
}
const GrDrawState& drawState = target->getDrawState();
// TODO: this restriction could be lifted if we were willing to apply
// the matrix to all the points individually rather than just to the rect
if (!drawState.getViewMatrix().preservesAxisAlignment()) {
return false;
}
*useVertexCoverage = false;
if (!target->getDrawState().canTweakAlphaForCoverage()) {
if (target->shouldDisableCoverageAAForBlend()) {
return false;
} else {
*useVertexCoverage = true;
}
}
SkPath::Direction dirs[2];
if (!path.isNestedRects(rects, dirs)) {
return false;
}
if (SkPath::kWinding_FillType == path.getFillType() && dirs[0] == dirs[1]) {
// The two rects need to be wound opposite to each other
return false;
}
// Right now, nested rects where the margin is not the same width
// all around do not render correctly
const SkScalar* outer = rects[0].asScalars();
const SkScalar* inner = rects[1].asScalars();
SkScalar margin = SkScalarAbs(outer[0] - inner[0]);
for (int i = 1; i < 4; ++i) {
SkScalar temp = SkScalarAbs(outer[i] - inner[i]);
if (!SkScalarNearlyEqual(margin, temp)) {
return false;
}
}
return true;
}
void GrContext::drawPath(const GrPaint& paint, const SkPath& path, const SkStrokeRec& stroke) {
if (path.isEmpty()) {
if (path.isInverseFillType()) {
this->drawPaint(paint);
}
return;
}
// Note that internalDrawPath may sw-rasterize the path into a scratch texture.
// Scratch textures can be recycled after they are returned to the texture
// cache. This presents a potential hazard for buffered drawing. However,
// the writePixels that uploads to the scratch will perform a flush so we're
// OK.
AutoRestoreEffects are;
AutoCheckFlush acf(this);
GrDrawTarget* target = this->prepareToDraw(&paint, BUFFERED_DRAW, &are, &acf);
GrDrawState* drawState = target->drawState();
bool useCoverageAA = paint.isAntiAlias() && !drawState->getRenderTarget()->isMultisampled();
if (useCoverageAA && stroke.getWidth() < 0 && !path.isConvex()) {
// Concave AA paths are expensive - try to avoid them for special cases
bool useVertexCoverage;
SkRect rects[2];
if (is_nested_rects(target, path, stroke, rects, &useVertexCoverage)) {
SkMatrix origViewMatrix = drawState->getViewMatrix();
GrDrawState::AutoViewMatrixRestore avmr;
if (!avmr.setIdentity(target->drawState())) {
return;
}
fAARectRenderer->fillAANestedRects(this->getGpu(), target,
rects,
origViewMatrix,
useVertexCoverage);
return;
}
}
SkRect ovalRect;
bool isOval = path.isOval(&ovalRect);
if (!isOval || path.isInverseFillType()
|| !fOvalRenderer->drawOval(target, this, paint.isAntiAlias(), ovalRect, stroke)) {
this->internalDrawPath(target, paint.isAntiAlias(), path, stroke);
}
}
void GrContext::internalDrawPath(GrDrawTarget* target, bool useAA, const SkPath& path,
const SkStrokeRec& stroke) {
SkASSERT(!path.isEmpty());
// An Assumption here is that path renderer would use some form of tweaking
// the src color (either the input alpha or in the frag shader) to implement
// aa. If we have some future driver-mojo path AA that can do the right
// thing WRT to the blend then we'll need some query on the PR.
bool useCoverageAA = useAA &&
!target->getDrawState().getRenderTarget()->isMultisampled() &&
!target->shouldDisableCoverageAAForBlend();
GrPathRendererChain::DrawType type =
useCoverageAA ? GrPathRendererChain::kColorAntiAlias_DrawType :
GrPathRendererChain::kColor_DrawType;
const SkPath* pathPtr = &path;
SkPath tmpPath;
SkStrokeRec strokeRec(stroke);
// Try a 1st time without stroking the path and without allowing the SW renderer
GrPathRenderer* pr = this->getPathRenderer(*pathPtr, strokeRec, target, false, type);
if (NULL == pr) {
if (!GrPathRenderer::IsStrokeHairlineOrEquivalent(strokeRec, this->getMatrix(), NULL)) {
// It didn't work the 1st time, so try again with the stroked path
if (strokeRec.applyToPath(&tmpPath, *pathPtr)) {
pathPtr = &tmpPath;
strokeRec.setFillStyle();
if (pathPtr->isEmpty()) {
return;
}
}
}
// This time, allow SW renderer
pr = this->getPathRenderer(*pathPtr, strokeRec, target, true, type);
}
if (NULL == pr) {
#ifdef SK_DEBUG
GrPrintf("Unable to find path renderer compatible with path.\n");
#endif
return;
}
pr->drawPath(*pathPtr, strokeRec, target, useCoverageAA);
}
////////////////////////////////////////////////////////////////////////////////
void GrContext::flush(int flagsBitfield) {
if (NULL == fDrawBuffer) {
return;
}
if (kDiscard_FlushBit & flagsBitfield) {
fDrawBuffer->reset();
} else {
fDrawBuffer->flush();
}
fFlushToReduceCacheSize = false;
}
bool GrContext::writeTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, const void* buffer, size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::writeTexturePixels");
ASSERT_OWNED_RESOURCE(texture);
if ((kUnpremul_PixelOpsFlag & flags) || !fGpu->canWriteTexturePixels(texture, config)) {
if (NULL != texture->asRenderTarget()) {
return this->writeRenderTargetPixels(texture->asRenderTarget(),
left, top, width, height,
config, buffer, rowBytes, flags);
} else {
return false;
}
}
if (!(kDontFlush_PixelOpsFlag & flags)) {
this->flush();
}
return fGpu->writeTexturePixels(texture, left, top, width, height,
config, buffer, rowBytes);
}
bool GrContext::readTexturePixels(GrTexture* texture,
int left, int top, int width, int height,
GrPixelConfig config, void* buffer, size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::readTexturePixels");
ASSERT_OWNED_RESOURCE(texture);
GrRenderTarget* target = texture->asRenderTarget();
if (NULL != target) {
return this->readRenderTargetPixels(target,
left, top, width, height,
config, buffer, rowBytes,
flags);
} else {
// TODO: make this more efficient for cases where we're reading the entire
// texture, i.e., use GetTexImage() instead
// create scratch rendertarget and read from that
GrAutoScratchTexture ast;
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = config;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
ast.set(this, desc, kExact_ScratchTexMatch);
GrTexture* dst = ast.texture();
if (NULL != dst && NULL != (target = dst->asRenderTarget())) {
this->copyTexture(texture, target, NULL);
return this->readRenderTargetPixels(target,
left, top, width, height,
config, buffer, rowBytes,
flags);
}
return false;
}
}
#include "SkConfig8888.h"
namespace {
/**
* Converts a GrPixelConfig to a SkCanvas::Config8888. Only byte-per-channel
* formats are representable as Config8888 and so the function returns false
* if the GrPixelConfig has no equivalent Config8888.
*/
bool grconfig_to_config8888(GrPixelConfig config,
bool unpremul,
SkCanvas::Config8888* config8888) {
switch (config) {
case kRGBA_8888_GrPixelConfig:
if (unpremul) {
*config8888 = SkCanvas::kRGBA_Unpremul_Config8888;
} else {
*config8888 = SkCanvas::kRGBA_Premul_Config8888;
}
return true;
case kBGRA_8888_GrPixelConfig:
if (unpremul) {
*config8888 = SkCanvas::kBGRA_Unpremul_Config8888;
} else {
*config8888 = SkCanvas::kBGRA_Premul_Config8888;
}
return true;
default:
return false;
}
}
// It returns a configuration with where the byte position of the R & B components are swapped in
// relation to the input config. This should only be called with the result of
// grconfig_to_config8888 as it will fail for other configs.
SkCanvas::Config8888 swap_config8888_red_and_blue(SkCanvas::Config8888 config8888) {
switch (config8888) {
case SkCanvas::kBGRA_Premul_Config8888:
return SkCanvas::kRGBA_Premul_Config8888;
case SkCanvas::kBGRA_Unpremul_Config8888:
return SkCanvas::kRGBA_Unpremul_Config8888;
case SkCanvas::kRGBA_Premul_Config8888:
return SkCanvas::kBGRA_Premul_Config8888;
case SkCanvas::kRGBA_Unpremul_Config8888:
return SkCanvas::kBGRA_Unpremul_Config8888;
default:
GrCrash("Unexpected input");
return SkCanvas::kBGRA_Unpremul_Config8888;;
}
}
}
bool GrContext::readRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig dstConfig, void* buffer, size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::readRenderTargetPixels");
ASSERT_OWNED_RESOURCE(target);
if (NULL == target) {
target = fRenderTarget.get();
if (NULL == target) {
return false;
}
}
if (!(kDontFlush_PixelOpsFlag & flags)) {
this->flush();
}
// Determine which conversions have to be applied: flipY, swapRAnd, and/or unpremul.
// If fGpu->readPixels would incur a y-flip cost then we will read the pixels upside down. We'll
// either do the flipY by drawing into a scratch with a matrix or on the cpu after the read.
bool flipY = fGpu->readPixelsWillPayForYFlip(target, left, top,
width, height, dstConfig,
rowBytes);
// We ignore the preferred config if it is different than our config unless it is an R/B swap.
// In that case we'll perform an R and B swap while drawing to a scratch texture of the swapped
// config. Then we will call readPixels on the scratch with the swapped config. The swaps during
// the draw cancels out the fact that we call readPixels with a config that is R/B swapped from
// dstConfig.
GrPixelConfig readConfig = dstConfig;
bool swapRAndB = false;
if (GrPixelConfigSwapRAndB(dstConfig) ==
fGpu->preferredReadPixelsConfig(dstConfig, target->config())) {
readConfig = GrPixelConfigSwapRAndB(readConfig);
swapRAndB = true;
}
bool unpremul = SkToBool(kUnpremul_PixelOpsFlag & flags);
if (unpremul && !GrPixelConfigIs8888(dstConfig)) {
// The unpremul flag is only allowed for these two configs.
return false;
}
// If the src is a texture and we would have to do conversions after read pixels, we instead
// do the conversions by drawing the src to a scratch texture. If we handle any of the
// conversions in the draw we set the corresponding bool to false so that we don't reapply it
// on the read back pixels.
GrTexture* src = target->asTexture();
GrAutoScratchTexture ast;
if (NULL != src && (swapRAndB || unpremul || flipY)) {
// Make the scratch a render target because we don't have a robust readTexturePixels as of
// yet. It calls this function.
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = readConfig;
desc.fOrigin = kTopLeft_GrSurfaceOrigin;
// When a full read back is faster than a partial we could always make the scratch exactly
// match the passed rect. However, if we see many different size rectangles we will trash
// our texture cache and pay the cost of creating and destroying many textures. So, we only
// request an exact match when the caller is reading an entire RT.
ScratchTexMatch match = kApprox_ScratchTexMatch;
if (0 == left &&
0 == top &&
target->width() == width &&
target->height() == height &&
fGpu->fullReadPixelsIsFasterThanPartial()) {
match = kExact_ScratchTexMatch;
}
ast.set(this, desc, match);
GrTexture* texture = ast.texture();
if (texture) {
// compute a matrix to perform the draw
SkMatrix textureMatrix;
textureMatrix.setTranslate(SK_Scalar1 *left, SK_Scalar1 *top);
textureMatrix.postIDiv(src->width(), src->height());
SkAutoTUnref<const GrEffectRef> effect;
if (unpremul) {
effect.reset(this->createPMToUPMEffect(src, swapRAndB, textureMatrix));
if (NULL != effect) {
unpremul = false; // we no longer need to do this on CPU after the read back.
}
}
// If we failed to create a PM->UPM effect and have no other conversions to perform then
// there is no longer any point to using the scratch.
if (NULL != effect || flipY || swapRAndB) {
if (!effect) {
effect.reset(GrConfigConversionEffect::Create(
src,
swapRAndB,
GrConfigConversionEffect::kNone_PMConversion,
textureMatrix));
}
swapRAndB = false; // we will handle the swap in the draw.
// We protect the existing geometry here since it may not be
// clear to the caller that a draw operation (i.e., drawSimpleRect)
// can be invoked in this method
GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
SkASSERT(effect);
drawState->addColorEffect(effect);
drawState->setRenderTarget(texture->asRenderTarget());
SkRect rect = SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height));
fGpu->drawSimpleRect(rect, NULL);
// we want to read back from the scratch's origin
left = 0;
top = 0;
target = texture->asRenderTarget();
}
}
}
if (!fGpu->readPixels(target,
left, top, width, height,
readConfig, buffer, rowBytes)) {
return false;
}
// Perform any conversions we weren't able to perform using a scratch texture.
if (unpremul || swapRAndB) {
// These are initialized to suppress a warning
SkCanvas::Config8888 srcC8888 = SkCanvas::kNative_Premul_Config8888;
SkCanvas::Config8888 dstC8888 = SkCanvas::kNative_Premul_Config8888;
SkDEBUGCODE(bool c8888IsValid =) grconfig_to_config8888(dstConfig, false, &srcC8888);
grconfig_to_config8888(dstConfig, unpremul, &dstC8888);
if (swapRAndB) {
SkASSERT(c8888IsValid); // we should only do r/b swap on 8888 configs
srcC8888 = swap_config8888_red_and_blue(srcC8888);
}
SkASSERT(c8888IsValid);
uint32_t* b32 = reinterpret_cast<uint32_t*>(buffer);
SkConvertConfig8888Pixels(b32, rowBytes, dstC8888,
b32, rowBytes, srcC8888,
width, height);
}
return true;
}
void GrContext::resolveRenderTarget(GrRenderTarget* target) {
SkASSERT(target);
ASSERT_OWNED_RESOURCE(target);
// In the future we may track whether there are any pending draws to this
// target. We don't today so we always perform a flush. We don't promise
// this to our clients, though.
this->flush();
fGpu->resolveRenderTarget(target);
}
void GrContext::copyTexture(GrTexture* src, GrRenderTarget* dst, const SkIPoint* topLeft) {
if (NULL == src || NULL == dst) {
return;
}
ASSERT_OWNED_RESOURCE(src);
// Writes pending to the source texture are not tracked, so a flush
// is required to ensure that the copy captures the most recent contents
// of the source texture. See similar behavior in
// GrContext::resolveRenderTarget.
this->flush();
GrDrawTarget::AutoStateRestore asr(fGpu, GrDrawTarget::kReset_ASRInit);
GrDrawState* drawState = fGpu->drawState();
drawState->setRenderTarget(dst);
SkMatrix sampleM;
sampleM.setIDiv(src->width(), src->height());
SkIRect srcRect = SkIRect::MakeWH(dst->width(), dst->height());
if (NULL != topLeft) {
srcRect.offset(*topLeft);
}
SkIRect srcBounds = SkIRect::MakeWH(src->width(), src->height());
if (!srcRect.intersect(srcBounds)) {
return;
}
sampleM.preTranslate(SkIntToScalar(srcRect.fLeft), SkIntToScalar(srcRect.fTop));
drawState->addColorTextureEffect(src, sampleM);
SkRect dstR = SkRect::MakeWH(SkIntToScalar(srcRect.width()), SkIntToScalar(srcRect.height()));
fGpu->drawSimpleRect(dstR, NULL);
}
bool GrContext::writeRenderTargetPixels(GrRenderTarget* target,
int left, int top, int width, int height,
GrPixelConfig srcConfig,
const void* buffer,
size_t rowBytes,
uint32_t flags) {
SK_TRACE_EVENT0("GrContext::writeRenderTargetPixels");
ASSERT_OWNED_RESOURCE(target);
if (NULL == target) {
target = fRenderTarget.get();
if (NULL == target) {
return false;
}
}
// TODO: when underlying api has a direct way to do this we should use it (e.g. glDrawPixels on
// desktop GL).
// We will always call some form of writeTexturePixels and we will pass our flags on to it.
// Thus, we don't perform a flush here since that call will do it (if the kNoFlush flag isn't
// set.)
// If the RT is also a texture and we don't have to premultiply then take the texture path.
// We expect to be at least as fast or faster since it doesn't use an intermediate texture as
// we do below.
#if !defined(SK_BUILD_FOR_MAC)
// At least some drivers on the Mac get confused when glTexImage2D is called on a texture
// attached to an FBO. The FBO still sees the old image. TODO: determine what OS versions and/or
// HW is affected.
if (NULL != target->asTexture() && !(kUnpremul_PixelOpsFlag & flags) &&
fGpu->canWriteTexturePixels(target->asTexture(), srcConfig)) {
return this->writeTexturePixels(target->asTexture(),
left, top, width, height,
srcConfig, buffer, rowBytes, flags);
}
#endif
// We ignore the preferred config unless it is a R/B swap of the src config. In that case
// we will upload the original src data to a scratch texture but we will spoof it as the swapped
// config. This scratch will then have R and B swapped. We correct for this by swapping again
// when drawing the scratch to the dst using a conversion effect.
bool swapRAndB = false;
GrPixelConfig writeConfig = srcConfig;
if (GrPixelConfigSwapRAndB(srcConfig) ==
fGpu->preferredWritePixelsConfig(srcConfig, target->config())) {
writeConfig = GrPixelConfigSwapRAndB(srcConfig);
swapRAndB = true;
}
GrTextureDesc desc;
desc.fWidth = width;
desc.fHeight = height;
desc.fConfig = writeConfig;
GrAutoScratchTexture ast(this, desc);
GrTexture* texture = ast.texture();
if (NULL == texture) {
return false;
}
SkAutoTUnref<const GrEffectRef> effect;
SkMatrix textureMatrix;
textureMatrix.setIDiv(texture->width(), texture->height());
// allocate a tmp buffer and sw convert the pixels to premul
SkAutoSTMalloc<128 * 128, uint32_t> tmpPixels(0);
if (kUnpremul_PixelOpsFlag & flags) {
if (!GrPixelConfigIs8888(srcConfig)) {
return false;
}
effect.reset(this->createUPMToPMEffect(texture, swapRAndB, textureMatrix));
// handle the unpremul step on the CPU if we couldn't create an effect to do it.
if (NULL == effect) {
SkCanvas::Config8888 srcConfig8888, dstConfig8888;
SkDEBUGCODE(bool success = )
grconfig_to_config8888(srcConfig, true, &srcConfig8888);
SkASSERT(success);
SkDEBUGCODE(success = )
grconfig_to_config8888(srcConfig, false, &dstConfig8888);
SkASSERT(success);
const uint32_t* src = reinterpret_cast<const uint32_t*>(buffer);
tmpPixels.reset(width * height);
SkConvertConfig8888Pixels(tmpPixels.get(), 4 * width, dstConfig8888,
src, rowBytes, srcConfig8888,
width, height);
buffer = tmpPixels.get();
rowBytes = 4 * width;
}
}
if (NULL == effect) {
effect.reset(GrConfigConversionEffect::Create(texture,
swapRAndB,
GrConfigConversionEffect::kNone_PMConversion,
textureMatrix));
}
if (!this->writeTexturePixels(texture,
0, 0, width, height,
writeConfig, buffer, rowBytes,
flags & ~kUnpremul_PixelOpsFlag)) {
return false;
}
// writeRenderTargetPixels can be called in the midst of drawing another
// object (e.g., when uploading a SW path rendering to the gpu while
// drawing a rect) so preserve the current geometry.
SkMatrix matrix;
matrix.setTranslate(SkIntToScalar(left), SkIntToScalar(top));
GrDrawTarget::AutoGeometryAndStatePush agasp(fGpu, GrDrawTarget::kReset_ASRInit, &matrix);
GrDrawState* drawState = fGpu->drawState();
SkASSERT(effect);
drawState->addColorEffect(effect);
drawState->setRenderTarget(target);
fGpu->drawSimpleRect(SkRect::MakeWH(SkIntToScalar(width), SkIntToScalar(height)), NULL);
return true;
}
////////////////////////////////////////////////////////////////////////////////
GrDrawTarget* GrContext::prepareToDraw(const GrPaint* paint,
BufferedDraw buffered,
AutoRestoreEffects* are,
AutoCheckFlush* acf) {
// All users of this draw state should be freeing up all effects when they're done.
// Otherwise effects that own resources may keep those resources alive indefinitely.
SkASSERT(0 == fDrawState->numColorStages() && 0 == fDrawState->numCoverageStages());
if (kNo_BufferedDraw == buffered && kYes_BufferedDraw == fLastDrawWasBuffered) {
fDrawBuffer->flush();
fLastDrawWasBuffered = kNo_BufferedDraw;
}
ASSERT_OWNED_RESOURCE(fRenderTarget.get());
if (NULL != paint) {
SkASSERT(NULL != are);
SkASSERT(NULL != acf);
are->set(fDrawState);
fDrawState->setFromPaint(*paint, fViewMatrix, fRenderTarget.get());
#if GR_DEBUG_PARTIAL_COVERAGE_CHECK
if ((paint->hasMask() || 0xff != paint->fCoverage) &&
!fGpu->canApplyCoverage()) {
GrPrintf("Partial pixel coverage will be incorrectly blended.\n");
}
#endif
} else {
fDrawState->reset(fViewMatrix);
fDrawState->setRenderTarget(fRenderTarget.get());
}
GrDrawTarget* target;
if (kYes_BufferedDraw == buffered) {
fLastDrawWasBuffered = kYes_BufferedDraw;
target = fDrawBuffer;
} else {
SkASSERT(kNo_BufferedDraw == buffered);
fLastDrawWasBuffered = kNo_BufferedDraw;
target = fGpu;
}
fDrawState->setState(GrDrawState::kClip_StateBit, NULL != fClip &&
!fClip->fClipStack->isWideOpen());
target->setClip(fClip);
SkASSERT(fDrawState == target->drawState());
return target;
}
/*
* This method finds a path renderer that can draw the specified path on
* the provided target.
* Due to its expense, the software path renderer has split out so it can
* can be individually allowed/disallowed via the "allowSW" boolean.
*/
GrPathRenderer* GrContext::getPathRenderer(const SkPath& path,
const SkStrokeRec& stroke,
const GrDrawTarget* target,
bool allowSW,
GrPathRendererChain::DrawType drawType,
GrPathRendererChain::StencilSupport* stencilSupport) {
if (NULL == fPathRendererChain) {
fPathRendererChain = SkNEW_ARGS(GrPathRendererChain, (this));
}
GrPathRenderer* pr = fPathRendererChain->getPathRenderer(path,
stroke,
target,
drawType,
stencilSupport);
if (NULL == pr && allowSW) {
if (NULL == fSoftwarePathRenderer) {
fSoftwarePathRenderer = SkNEW_ARGS(GrSoftwarePathRenderer, (this));
}
pr = fSoftwarePathRenderer;
}
return pr;
}
////////////////////////////////////////////////////////////////////////////////
bool GrContext::isConfigRenderable(GrPixelConfig config, bool withMSAA) const {
return fGpu->caps()->isConfigRenderable(config, withMSAA);
}
void GrContext::setupDrawBuffer() {
SkASSERT(NULL == fDrawBuffer);
SkASSERT(NULL == fDrawBufferVBAllocPool);
SkASSERT(NULL == fDrawBufferIBAllocPool);
fDrawBufferVBAllocPool =
SkNEW_ARGS(GrVertexBufferAllocPool, (fGpu, false,
DRAW_BUFFER_VBPOOL_BUFFER_SIZE,
DRAW_BUFFER_VBPOOL_PREALLOC_BUFFERS));
fDrawBufferIBAllocPool =
SkNEW_ARGS(GrIndexBufferAllocPool, (fGpu, false,
DRAW_BUFFER_IBPOOL_BUFFER_SIZE,
DRAW_BUFFER_IBPOOL_PREALLOC_BUFFERS));
fDrawBuffer = SkNEW_ARGS(GrInOrderDrawBuffer, (fGpu,
fDrawBufferVBAllocPool,
fDrawBufferIBAllocPool));
fDrawBuffer->setDrawState(fDrawState);
}
GrDrawTarget* GrContext::getTextTarget() {
return this->prepareToDraw(NULL, BUFFERED_DRAW, NULL, NULL);
}
const GrIndexBuffer* GrContext::getQuadIndexBuffer() const {
return fGpu->getQuadIndexBuffer();
}
namespace {
void test_pm_conversions(GrContext* ctx, int* pmToUPMValue, int* upmToPMValue) {
GrConfigConversionEffect::PMConversion pmToUPM;
GrConfigConversionEffect::PMConversion upmToPM;
GrConfigConversionEffect::TestForPreservingPMConversions(ctx, &pmToUPM, &upmToPM);
*pmToUPMValue = pmToUPM;
*upmToPMValue = upmToPM;
}
}
const GrEffectRef* GrContext::createPMToUPMEffect(GrTexture* texture,
bool swapRAndB,
const SkMatrix& matrix) {
if (!fDidTestPMConversions) {
test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion);
fDidTestPMConversions = true;
}
GrConfigConversionEffect::PMConversion pmToUPM =
static_cast<GrConfigConversionEffect::PMConversion>(fPMToUPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != pmToUPM) {
return GrConfigConversionEffect::Create(texture, swapRAndB, pmToUPM, matrix);
} else {
return NULL;
}
}
const GrEffectRef* GrContext::createUPMToPMEffect(GrTexture* texture,
bool swapRAndB,
const SkMatrix& matrix) {
if (!fDidTestPMConversions) {
test_pm_conversions(this, &fPMToUPMConversion, &fUPMToPMConversion);
fDidTestPMConversions = true;
}
GrConfigConversionEffect::PMConversion upmToPM =
static_cast<GrConfigConversionEffect::PMConversion>(fUPMToPMConversion);
if (GrConfigConversionEffect::kNone_PMConversion != upmToPM) {
return GrConfigConversionEffect::Create(texture, swapRAndB, upmToPM, matrix);
} else {
return NULL;
}
}
GrPath* GrContext::createPath(const SkPath& inPath, const SkStrokeRec& stroke) {
SkASSERT(fGpu->caps()->pathRenderingSupport());
// TODO: now we add to fTextureCache. This should change to fResourceCache.
GrResourceKey resourceKey = GrPath::ComputeKey(inPath, stroke);
GrPath* path = static_cast<GrPath*>(fTextureCache->find(resourceKey));
if (NULL != path && path->isEqualTo(inPath, stroke)) {
path->ref();
} else {
path = fGpu->createPath(inPath, stroke);
fTextureCache->purgeAsNeeded(1, path->sizeInBytes());
fTextureCache->addResource(resourceKey, path);
}
return path;
}
///////////////////////////////////////////////////////////////////////////////
#if GR_CACHE_STATS
void GrContext::printCacheStats() const {
fTextureCache->printStats();
}
#endif