/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAAHairLinePathRenderer.h"
#include "GrContext.h"
#include "GrDrawState.h"
#include "GrDrawTargetCaps.h"
#include "GrEffect.h"
#include "GrGpu.h"
#include "GrIndexBuffer.h"
#include "GrPathUtils.h"
#include "GrTBackendEffectFactory.h"
#include "SkGeometry.h"
#include "SkStroke.h"
#include "SkTemplates.h"
#include "effects/GrBezierEffect.h"
namespace {
// quadratics are rendered as 5-sided polys in order to bound the
// AA stroke around the center-curve. See comments in push_quad_index_buffer and
// bloat_quad. Quadratics and conics share an index buffer
static const int kVertsPerQuad = 5;
static const int kIdxsPerQuad = 9;
// lines are rendered as:
// *______________*
// |\ -_______ /|
// | \ \ / |
// | *--------* |
// | / ______/ \ |
// */_-__________\*
// For: 6 vertices and 18 indices (for 6 triangles)
static const int kVertsPerLineSeg = 6;
static const int kIdxsPerLineSeg = 18;
static const int kNumQuadsInIdxBuffer = 256;
static const size_t kQuadIdxSBufize = kIdxsPerQuad *
sizeof(uint16_t) *
kNumQuadsInIdxBuffer;
static const int kNumLineSegsInIdxBuffer = 256;
static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
sizeof(uint16_t) *
kNumLineSegsInIdxBuffer;
static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
uint16_t* data = (uint16_t*) qIdxBuffer->lock();
bool tempData = NULL == data;
if (tempData) {
data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
}
for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
// Each quadratic is rendered as a five sided polygon. This poly bounds
// the quadratic's bounding triangle but has been expanded so that the
// 1-pixel wide area around the curve is inside the poly.
// If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
// that is rendered would look like this:
// b0
// b
//
// a0 c0
// a c
// a1 c1
// Each is drawn as three triangles specified by these 9 indices:
int baseIdx = i * kIdxsPerQuad;
uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
data[0 + baseIdx] = baseVert + 0; // a0
data[1 + baseIdx] = baseVert + 1; // a1
data[2 + baseIdx] = baseVert + 2; // b0
data[3 + baseIdx] = baseVert + 2; // b0
data[4 + baseIdx] = baseVert + 4; // c1
data[5 + baseIdx] = baseVert + 3; // c0
data[6 + baseIdx] = baseVert + 1; // a1
data[7 + baseIdx] = baseVert + 4; // c1
data[8 + baseIdx] = baseVert + 2; // b0
}
if (tempData) {
bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
delete[] data;
return ret;
} else {
qIdxBuffer->unlock();
return true;
}
}
static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
uint16_t* data = (uint16_t*) lIdxBuffer->lock();
bool tempData = NULL == data;
if (tempData) {
data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
}
for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
// Each line segment is rendered as two quads and two triangles.
// p0 and p1 have alpha = 1 while all other points have alpha = 0.
// The four external points are offset 1 pixel perpendicular to the
// line and half a pixel parallel to the line.
//
// p4 p5
// p0 p1
// p2 p3
//
// Each is drawn as six triangles specified by these 18 indices:
int baseIdx = i * kIdxsPerLineSeg;
uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
data[0 + baseIdx] = baseVert + 0;
data[1 + baseIdx] = baseVert + 1;
data[2 + baseIdx] = baseVert + 3;
data[3 + baseIdx] = baseVert + 0;
data[4 + baseIdx] = baseVert + 3;
data[5 + baseIdx] = baseVert + 2;
data[6 + baseIdx] = baseVert + 0;
data[7 + baseIdx] = baseVert + 4;
data[8 + baseIdx] = baseVert + 5;
data[9 + baseIdx] = baseVert + 0;
data[10+ baseIdx] = baseVert + 5;
data[11+ baseIdx] = baseVert + 1;
data[12 + baseIdx] = baseVert + 0;
data[13 + baseIdx] = baseVert + 2;
data[14 + baseIdx] = baseVert + 4;
data[15 + baseIdx] = baseVert + 1;
data[16 + baseIdx] = baseVert + 5;
data[17 + baseIdx] = baseVert + 3;
}
if (tempData) {
bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
delete[] data;
return ret;
} else {
lIdxBuffer->unlock();
return true;
}
}
}
GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
GrGpu* gpu = context->getGpu();
GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
return NULL;
}
GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
return NULL;
}
return SkNEW_ARGS(GrAAHairLinePathRenderer,
(context, lIdxBuf, qIdxBuf));
}
GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
const GrContext* context,
const GrIndexBuffer* linesIndexBuffer,
const GrIndexBuffer* quadsIndexBuffer) {
fLinesIndexBuffer = linesIndexBuffer;
linesIndexBuffer->ref();
fQuadsIndexBuffer = quadsIndexBuffer;
quadsIndexBuffer->ref();
}
GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
fLinesIndexBuffer->unref();
fQuadsIndexBuffer->unref();
}
namespace {
#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
// Takes 178th time of logf on Z600 / VC2010
int get_float_exp(float x) {
GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
#ifdef SK_DEBUG
static bool tested;
if (!tested) {
tested = true;
SkASSERT(get_float_exp(0.25f) == -2);
SkASSERT(get_float_exp(0.3f) == -2);
SkASSERT(get_float_exp(0.5f) == -1);
SkASSERT(get_float_exp(1.f) == 0);
SkASSERT(get_float_exp(2.f) == 1);
SkASSERT(get_float_exp(2.5f) == 1);
SkASSERT(get_float_exp(8.f) == 3);
SkASSERT(get_float_exp(100.f) == 6);
SkASSERT(get_float_exp(1000.f) == 9);
SkASSERT(get_float_exp(1024.f) == 10);
SkASSERT(get_float_exp(3000000.f) == 21);
}
#endif
const int* iptr = (const int*)&x;
return (((*iptr) & 0x7f800000) >> 23) - 127;
}
// Uses the max curvature function for quads to estimate
// where to chop the conic. If the max curvature is not
// found along the curve segment it will return 1 and
// dst[0] is the original conic. If it returns 2 the dst[0]
// and dst[1] are the two new conics.
int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
SkScalar t = SkFindQuadMaxCurvature(src);
if (t == 0) {
if (dst) {
dst[0].set(src, weight);
}
return 1;
} else {
if (dst) {
SkConic conic;
conic.set(src, weight);
conic.chopAt(t, dst);
}
return 2;
}
}
// Calls split_conic on the entire conic and then once more on each subsection.
// Most cases will result in either 1 conic (chop point is not within t range)
// or 3 points (split once and then one subsection is split again).
int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
SkConic dstTemp[2];
int conicCnt = split_conic(src, dstTemp, weight);
if (2 == conicCnt) {
int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
} else {
dst[0] = dstTemp[0];
}
return conicCnt;
}
// returns 0 if quad/conic is degen or close to it
// in this case approx the path with lines
// otherwise returns 1
int is_degen_quad_or_conic(const SkPoint p[3]) {
static const SkScalar gDegenerateToLineTol = SK_Scalar1;
static const SkScalar gDegenerateToLineTolSqd =
SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
return 1;
}
SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
if (dsqd < gDegenerateToLineTolSqd) {
return 1;
}
if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
return 1;
}
return 0;
}
// we subdivide the quads to avoid huge overfill
// if it returns -1 then should be drawn as lines
int num_quad_subdivs(const SkPoint p[3]) {
static const SkScalar gDegenerateToLineTol = SK_Scalar1;
static const SkScalar gDegenerateToLineTolSqd =
SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
return -1;
}
SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
if (dsqd < gDegenerateToLineTolSqd) {
return -1;
}
if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
return -1;
}
// tolerance of triangle height in pixels
// tuned on windows Quadro FX 380 / Z600
// trade off of fill vs cpu time on verts
// maybe different when do this using gpu (geo or tess shaders)
static const SkScalar gSubdivTol = 175 * SK_Scalar1;
if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
return 0;
} else {
static const int kMaxSub = 4;
// subdividing the quad reduces d by 4. so we want x = log4(d/tol)
// = log4(d*d/tol*tol)/2
// = log2(d*d/tol*tol)
#ifdef SK_SCALAR_IS_FLOAT
// +1 since we're ignoring the mantissa contribution.
int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
log = GrMin(GrMax(0, log), kMaxSub);
return log;
#else
SkScalar log = SkScalarLog(
SkScalarDiv(dsqd,
SkScalarMul(gSubdivTol, gSubdivTol)));
static const SkScalar conv = SkScalarInvert(SkScalarLog(2));
log = SkScalarMul(log, conv);
return GrMin(GrMax(0, SkScalarCeilToInt(log)),kMaxSub);
#endif
}
}
/**
* Generates the lines and quads to be rendered. Lines are always recorded in
* device space. We will do a device space bloat to account for the 1pixel
* thickness.
* Quads are recorded in device space unless m contains
* perspective, then in they are in src space. We do this because we will
* subdivide large quads to reduce over-fill. This subdivision has to be
* performed before applying the perspective matrix.
*/
int generate_lines_and_quads(const SkPath& path,
const SkMatrix& m,
const SkIRect& devClipBounds,
GrAAHairLinePathRenderer::PtArray* lines,
GrAAHairLinePathRenderer::PtArray* quads,
GrAAHairLinePathRenderer::PtArray* conics,
GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
GrAAHairLinePathRenderer::FloatArray* conicWeights) {
SkPath::Iter iter(path, false);
int totalQuadCount = 0;
SkRect bounds;
SkIRect ibounds;
bool persp = m.hasPerspective();
for (;;) {
GrPoint pathPts[4];
GrPoint devPts[4];
SkPath::Verb verb = iter.next(pathPts);
switch (verb) {
case SkPath::kConic_Verb: {
SkConic dst[4];
// We chop the conics to create tighter clipping to hide error
// that appears near max curvature of very thin conics. Thin
// hyperbolas with high weight still show error.
int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
for (int i = 0; i < conicCnt; ++i) {
SkPoint* chopPnts = dst[i].fPts;
m.mapPoints(devPts, chopPnts, 3);
bounds.setBounds(devPts, 3);
bounds.outset(SK_Scalar1, SK_Scalar1);
bounds.roundOut(&ibounds);
if (SkIRect::Intersects(devClipBounds, ibounds)) {
if (is_degen_quad_or_conic(devPts)) {
SkPoint* pts = lines->push_back_n(4);
pts[0] = devPts[0];
pts[1] = devPts[1];
pts[2] = devPts[1];
pts[3] = devPts[2];
} else {
// when in perspective keep conics in src space
SkPoint* cPts = persp ? chopPnts : devPts;
SkPoint* pts = conics->push_back_n(3);
pts[0] = cPts[0];
pts[1] = cPts[1];
pts[2] = cPts[2];
conicWeights->push_back() = dst[i].fW;
}
}
}
break;
}
case SkPath::kMove_Verb:
break;
case SkPath::kLine_Verb:
m.mapPoints(devPts, pathPts, 2);
bounds.setBounds(devPts, 2);
bounds.outset(SK_Scalar1, SK_Scalar1);
bounds.roundOut(&ibounds);
if (SkIRect::Intersects(devClipBounds, ibounds)) {
SkPoint* pts = lines->push_back_n(2);
pts[0] = devPts[0];
pts[1] = devPts[1];
}
break;
case SkPath::kQuad_Verb: {
SkPoint choppedPts[5];
// Chopping the quad helps when the quad is either degenerate or nearly degenerate.
// When it is degenerate it allows the approximation with lines to work since the
// chop point (if there is one) will be at the parabola's vertex. In the nearly
// degenerate the QuadUVMatrix computed for the points is almost singular which
// can cause rendering artifacts.
int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
for (int i = 0; i < n; ++i) {
SkPoint* quadPts = choppedPts + i * 2;
m.mapPoints(devPts, quadPts, 3);
bounds.setBounds(devPts, 3);
bounds.outset(SK_Scalar1, SK_Scalar1);
bounds.roundOut(&ibounds);
if (SkIRect::Intersects(devClipBounds, ibounds)) {
int subdiv = num_quad_subdivs(devPts);
SkASSERT(subdiv >= -1);
if (-1 == subdiv) {
SkPoint* pts = lines->push_back_n(4);
pts[0] = devPts[0];
pts[1] = devPts[1];
pts[2] = devPts[1];
pts[3] = devPts[2];
} else {
// when in perspective keep quads in src space
SkPoint* qPts = persp ? quadPts : devPts;
SkPoint* pts = quads->push_back_n(3);
pts[0] = qPts[0];
pts[1] = qPts[1];
pts[2] = qPts[2];
quadSubdivCnts->push_back() = subdiv;
totalQuadCount += 1 << subdiv;
}
}
}
break;
}
case SkPath::kCubic_Verb:
m.mapPoints(devPts, pathPts, 4);
bounds.setBounds(devPts, 4);
bounds.outset(SK_Scalar1, SK_Scalar1);
bounds.roundOut(&ibounds);
if (SkIRect::Intersects(devClipBounds, ibounds)) {
PREALLOC_PTARRAY(32) q;
// we don't need a direction if we aren't constraining the subdivision
static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
// We convert cubics to quadratics (for now).
// In perspective have to do conversion in src space.
if (persp) {
SkScalar tolScale =
GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
path.getBounds());
GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
} else {
GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
}
for (int i = 0; i < q.count(); i += 3) {
SkPoint* qInDevSpace;
// bounds has to be calculated in device space, but q is
// in src space when there is perspective.
if (persp) {
m.mapPoints(devPts, &q[i], 3);
bounds.setBounds(devPts, 3);
qInDevSpace = devPts;
} else {
bounds.setBounds(&q[i], 3);
qInDevSpace = &q[i];
}
bounds.outset(SK_Scalar1, SK_Scalar1);
bounds.roundOut(&ibounds);
if (SkIRect::Intersects(devClipBounds, ibounds)) {
int subdiv = num_quad_subdivs(qInDevSpace);
SkASSERT(subdiv >= -1);
if (-1 == subdiv) {
SkPoint* pts = lines->push_back_n(4);
// lines should always be in device coords
pts[0] = qInDevSpace[0];
pts[1] = qInDevSpace[1];
pts[2] = qInDevSpace[1];
pts[3] = qInDevSpace[2];
} else {
SkPoint* pts = quads->push_back_n(3);
// q is already in src space when there is no
// perspective and dev coords otherwise.
pts[0] = q[0 + i];
pts[1] = q[1 + i];
pts[2] = q[2 + i];
quadSubdivCnts->push_back() = subdiv;
totalQuadCount += 1 << subdiv;
}
}
}
}
break;
case SkPath::kClose_Verb:
break;
case SkPath::kDone_Verb:
return totalQuadCount;
}
}
}
struct LineVertex {
GrPoint fPos;
GrColor fCoverage;
};
struct BezierVertex {
GrPoint fPos;
union {
struct {
SkScalar fK;
SkScalar fL;
SkScalar fM;
} fConic;
GrVec fQuadCoord;
struct {
SkScalar fBogus[4];
};
};
};
GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(GrPoint));
void intersect_lines(const SkPoint& ptA, const SkVector& normA,
const SkPoint& ptB, const SkVector& normB,
SkPoint* result) {
SkScalar lineAW = -normA.dot(ptA);
SkScalar lineBW = -normB.dot(ptB);
SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
SkScalarMul(normA.fY, normB.fX);
wInv = SkScalarInvert(wInv);
result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
result->fX = SkScalarMul(result->fX, wInv);
result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
result->fY = SkScalarMul(result->fY, wInv);
}
void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
// this should be in the src space, not dev coords, when we have perspective
GrPathUtils::QuadUVMatrix DevToUV(qpts);
DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(GrPoint)>(verts);
}
void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
SkRect* devBounds) {
SkASSERT(!toDevice == !toSrc);
// original quad is specified by tri a,b,c
SkPoint a = qpts[0];
SkPoint b = qpts[1];
SkPoint c = qpts[2];
if (toDevice) {
toDevice->mapPoints(&a, 1);
toDevice->mapPoints(&b, 1);
toDevice->mapPoints(&c, 1);
}
// make a new poly where we replace a and c by a 1-pixel wide edges orthog
// to edges ab and bc:
//
// before | after
// | b0
// b |
// |
// | a0 c0
// a c | a1 c1
//
// edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
// respectively.
BezierVertex& a0 = verts[0];
BezierVertex& a1 = verts[1];
BezierVertex& b0 = verts[2];
BezierVertex& c0 = verts[3];
BezierVertex& c1 = verts[4];
SkVector ab = b;
ab -= a;
SkVector ac = c;
ac -= a;
SkVector cb = b;
cb -= c;
// We should have already handled degenerates
SkASSERT(ab.length() > 0 && cb.length() > 0);
ab.normalize();
SkVector abN;
abN.setOrthog(ab, SkVector::kLeft_Side);
if (abN.dot(ac) > 0) {
abN.negate();
}
cb.normalize();
SkVector cbN;
cbN.setOrthog(cb, SkVector::kLeft_Side);
if (cbN.dot(ac) < 0) {
cbN.negate();
}
a0.fPos = a;
a0.fPos += abN;
a1.fPos = a;
a1.fPos -= abN;
c0.fPos = c;
c0.fPos += cbN;
c1.fPos = c;
c1.fPos -= cbN;
intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
if (toSrc) {
toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
}
}
// Equations based off of Loop-Blinn Quadratic GPU Rendering
// Input Parametric:
// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
// Output Implicit:
// f(x, y, w) = f(P) = K^2 - LM
// K = dot(k, P), L = dot(l, P), M = dot(m, P)
// k, l, m are calculated in function GrPathUtils::getConicKLM
void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
const SkScalar weight) {
SkScalar klm[9];
GrPathUtils::getConicKLM(p, weight, klm);
for (int i = 0; i < kVertsPerQuad; ++i) {
const SkPoint pnt = verts[i].fPos;
verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
}
}
void add_conics(const SkPoint p[3],
const SkScalar weight,
const SkMatrix* toDevice,
const SkMatrix* toSrc,
BezierVertex** vert,
SkRect* devBounds) {
bloat_quad(p, toDevice, toSrc, *vert, devBounds);
set_conic_coeffs(p, *vert, weight);
*vert += kVertsPerQuad;
}
void add_quads(const SkPoint p[3],
int subdiv,
const SkMatrix* toDevice,
const SkMatrix* toSrc,
BezierVertex** vert,
SkRect* devBounds) {
SkASSERT(subdiv >= 0);
if (subdiv) {
SkPoint newP[5];
SkChopQuadAtHalf(p, newP);
add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
} else {
bloat_quad(p, toDevice, toSrc, *vert, devBounds);
set_uv_quad(p, *vert);
*vert += kVertsPerQuad;
}
}
void add_line(const SkPoint p[2],
const SkMatrix* toSrc,
GrColor coverage,
LineVertex** vert) {
const SkPoint& a = p[0];
const SkPoint& b = p[1];
SkVector ortho, vec = b;
vec -= a;
if (vec.setLength(SK_ScalarHalf)) {
// Create a vector orthogonal to 'vec' and of unit length
ortho.fX = 2.0f * vec.fY;
ortho.fY = -2.0f * vec.fX;
(*vert)[0].fPos = a;
(*vert)[0].fCoverage = coverage;
(*vert)[1].fPos = b;
(*vert)[1].fCoverage = coverage;
(*vert)[2].fPos = a - vec + ortho;
(*vert)[2].fCoverage = 0;
(*vert)[3].fPos = b + vec + ortho;
(*vert)[3].fCoverage = 0;
(*vert)[4].fPos = a - vec - ortho;
(*vert)[4].fCoverage = 0;
(*vert)[5].fPos = b + vec - ortho;
(*vert)[5].fCoverage = 0;
if (NULL != toSrc) {
toSrc->mapPointsWithStride(&(*vert)->fPos,
sizeof(LineVertex),
kVertsPerLineSeg);
}
} else {
// just make it degenerate and likely offscreen
for (int i = 0; i < kVertsPerLineSeg; ++i) {
(*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
}
}
*vert += kVertsPerLineSeg;
}
}
///////////////////////////////////////////////////////////////////////////////
namespace {
// position + edge
extern const GrVertexAttrib gHairlineBezierAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
{kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding}
};
// position + coverage
extern const GrVertexAttrib gHairlineLineAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
{kVec4ub_GrVertexAttribType, sizeof(GrPoint), kCoverage_GrVertexAttribBinding},
};
};
bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
GrDrawTarget* target,
const PtArray& lines,
int lineCnt,
GrDrawTarget::AutoReleaseGeometry* arg,
SkRect* devBounds) {
GrDrawState* drawState = target->drawState();
const SkMatrix& viewM = drawState->getViewMatrix();
int vertCnt = kVertsPerLineSeg * lineCnt;
drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
if (!arg->set(target, vertCnt, 0)) {
return false;
}
LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
const SkMatrix* toSrc = NULL;
SkMatrix ivm;
if (viewM.hasPerspective()) {
if (viewM.invert(&ivm)) {
toSrc = &ivm;
}
}
devBounds->set(lines.begin(), lines.count());
for (int i = 0; i < lineCnt; ++i) {
add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
}
// All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
// Add a little extra to account for vector normalization precision.
static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
devBounds->outset(kOutset, kOutset);
return true;
}
bool GrAAHairLinePathRenderer::createBezierGeom(
const SkPath& path,
GrDrawTarget* target,
const PtArray& quads,
int quadCnt,
const PtArray& conics,
int conicCnt,
const IntArray& qSubdivs,
const FloatArray& cWeights,
GrDrawTarget::AutoReleaseGeometry* arg,
SkRect* devBounds) {
GrDrawState* drawState = target->drawState();
const SkMatrix& viewM = drawState->getViewMatrix();
int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
if (!arg->set(target, vertCnt, 0)) {
return false;
}
BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
const SkMatrix* toDevice = NULL;
const SkMatrix* toSrc = NULL;
SkMatrix ivm;
if (viewM.hasPerspective()) {
if (viewM.invert(&ivm)) {
toDevice = &viewM;
toSrc = &ivm;
}
}
// Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
// box to include its vertices.
SkPoint seedPts[2];
if (quadCnt) {
seedPts[0] = quads[0];
seedPts[1] = quads[2];
} else if (conicCnt) {
seedPts[0] = conics[0];
seedPts[1] = conics[2];
}
if (NULL != toDevice) {
toDevice->mapPoints(seedPts, 2);
}
devBounds->set(seedPts[0], seedPts[1]);
int unsubdivQuadCnt = quads.count() / 3;
for (int i = 0; i < unsubdivQuadCnt; ++i) {
SkASSERT(qSubdivs[i] >= 0);
add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
}
// Start Conics
for (int i = 0; i < conicCnt; ++i) {
add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
}
return true;
}
bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
const SkStrokeRec& stroke,
const GrDrawTarget* target,
bool antiAlias) const {
if (!antiAlias) {
return false;
}
if (!IsStrokeHairlineOrEquivalent(stroke,
target->getDrawState().getViewMatrix(),
NULL)) {
return false;
}
if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
target->caps()->shaderDerivativeSupport()) {
return true;
}
return false;
}
template <class VertexType>
bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
{
SkRect tolDevBounds = devBounds;
// The bounds ought to be tight, but in perspective the below code runs the verts
// through the view matrix to get back to dev coords, which can introduce imprecision.
if (drawState->getViewMatrix().hasPerspective()) {
tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
} else {
// Non-persp matrices cause this path renderer to draw in device space.
SkASSERT(drawState->getViewMatrix().isIdentity());
}
SkRect actualBounds;
VertexType* verts = reinterpret_cast<VertexType*>(vertices);
bool first = true;
for (int i = 0; i < vCount; ++i) {
SkPoint pos = verts[i].fPos;
// This is a hack to workaround the fact that we move some degenerate segments offscreen.
if (SK_ScalarMax == pos.fX) {
continue;
}
drawState->getViewMatrix().mapPoints(&pos, 1);
if (first) {
actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
first = false;
} else {
actualBounds.growToInclude(pos.fX, pos.fY);
}
}
if (!first) {
return tolDevBounds.contains(actualBounds);
}
return true;
}
bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
const SkStrokeRec& stroke,
GrDrawTarget* target,
bool antiAlias) {
GrDrawState* drawState = target->drawState();
SkScalar hairlineCoverage;
if (IsStrokeHairlineOrEquivalent(stroke,
target->getDrawState().getViewMatrix(),
&hairlineCoverage)) {
uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
target->getDrawState().getCoverage());
target->drawState()->setCoverage(newCoverage);
}
SkIRect devClipBounds;
target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
int lineCnt;
int quadCnt;
int conicCnt;
PREALLOC_PTARRAY(128) lines;
PREALLOC_PTARRAY(128) quads;
PREALLOC_PTARRAY(128) conics;
IntArray qSubdivs;
FloatArray cWeights;
quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
&lines, &quads, &conics, &qSubdivs, &cWeights);
lineCnt = lines.count() / 2;
conicCnt = conics.count() / 3;
// do lines first
if (lineCnt) {
GrDrawTarget::AutoReleaseGeometry arg;
SkRect devBounds;
if (!this->createLineGeom(path,
target,
lines,
lineCnt,
&arg,
&devBounds)) {
return false;
}
GrDrawTarget::AutoStateRestore asr;
// createLineGeom transforms the geometry to device space when the matrix does not have
// perspective.
if (target->getDrawState().getViewMatrix().hasPerspective()) {
asr.set(target, GrDrawTarget::kPreserve_ASRInit);
} else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
return false;
}
GrDrawState* drawState = target->drawState();
// Check devBounds
SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
kVertsPerLineSeg * lineCnt));
{
GrDrawState::AutoRestoreEffects are(drawState);
target->setIndexSourceToBuffer(fLinesIndexBuffer);
int lines = 0;
while (lines < lineCnt) {
int n = GrMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
target->drawIndexed(kTriangles_GrPrimitiveType,
kVertsPerLineSeg*lines, // startV
0, // startI
kVertsPerLineSeg*n, // vCount
kIdxsPerLineSeg*n, // iCount
&devBounds);
lines += n;
}
}
}
// then quadratics/conics
if (quadCnt || conicCnt) {
GrDrawTarget::AutoReleaseGeometry arg;
SkRect devBounds;
if (!this->createBezierGeom(path,
target,
quads,
quadCnt,
conics,
conicCnt,
qSubdivs,
cWeights,
&arg,
&devBounds)) {
return false;
}
GrDrawTarget::AutoStateRestore asr;
// createGeom transforms the geometry to device space when the matrix does not have
// perspective.
if (target->getDrawState().getViewMatrix().hasPerspective()) {
asr.set(target, GrDrawTarget::kPreserve_ASRInit);
} else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
return false;
}
GrDrawState* drawState = target->drawState();
static const int kEdgeAttrIndex = 1;
// Check devBounds
SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
if (quadCnt > 0) {
GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairAA_GrBezierEdgeType,
*target->caps());
SkASSERT(NULL != hairQuadEffect);
GrDrawState::AutoRestoreEffects are(drawState);
target->setIndexSourceToBuffer(fQuadsIndexBuffer);
drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
int quads = 0;
while (quads < quadCnt) {
int n = GrMin(quadCnt - quads, kNumQuadsInIdxBuffer);
target->drawIndexed(kTriangles_GrPrimitiveType,
kVertsPerQuad*quads, // startV
0, // startI
kVertsPerQuad*n, // vCount
kIdxsPerQuad*n, // iCount
&devBounds);
quads += n;
}
}
if (conicCnt > 0) {
GrDrawState::AutoRestoreEffects are(drawState);
GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairAA_GrBezierEdgeType,
*target->caps());
SkASSERT(NULL != hairConicEffect);
drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
int conics = 0;
while (conics < conicCnt) {
int n = GrMin(conicCnt - conics, kNumQuadsInIdxBuffer);
target->drawIndexed(kTriangles_GrPrimitiveType,
kVertsPerQuad*(quadCnt + conics), // startV
0, // startI
kVertsPerQuad*n, // vCount
kIdxsPerQuad*n, // iCount
&devBounds);
conics += n;
}
}
}
target->resetIndexSource();
return true;
}