/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkLinearGradient.h"
static inline int repeat_bits(int x, const int bits) {
return x & ((1 << bits) - 1);
}
static inline int repeat_8bits(int x) {
return x & 0xFF;
}
// Visual Studio 2010 (MSC_VER=1600) optimizes bit-shift code incorrectly.
// See http://code.google.com/p/skia/issues/detail?id=472
#if defined(_MSC_VER) && (_MSC_VER >= 1600)
#pragma optimize("", off)
#endif
static inline int mirror_bits(int x, const int bits) {
if (x & (1 << bits)) {
x = ~x;
}
return x & ((1 << bits) - 1);
}
static inline int mirror_8bits(int x) {
if (x & 256) {
x = ~x;
}
return x & 255;
}
#if defined(_MSC_VER) && (_MSC_VER >= 1600)
#pragma optimize("", on)
#endif
static void pts_to_unit_matrix(const SkPoint pts[2], SkMatrix* matrix) {
SkVector vec = pts[1] - pts[0];
SkScalar mag = vec.length();
SkScalar inv = mag ? SkScalarInvert(mag) : 0;
vec.scale(inv);
matrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY);
matrix->postTranslate(-pts[0].fX, -pts[0].fY);
matrix->postScale(inv, inv);
}
///////////////////////////////////////////////////////////////////////////////
SkLinearGradient::SkLinearGradient(const SkPoint pts[2], const Descriptor& desc)
: SkGradientShaderBase(desc)
, fStart(pts[0])
, fEnd(pts[1]) {
pts_to_unit_matrix(pts, &fPtsToUnit);
}
SkLinearGradient::SkLinearGradient(SkFlattenableReadBuffer& buffer)
: INHERITED(buffer)
, fStart(buffer.readPoint())
, fEnd(buffer.readPoint()) {
}
void SkLinearGradient::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writePoint(fStart);
buffer.writePoint(fEnd);
}
bool SkLinearGradient::setContext(const SkBitmap& device, const SkPaint& paint,
const SkMatrix& matrix) {
if (!this->INHERITED::setContext(device, paint, matrix)) {
return false;
}
unsigned mask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;
if ((fDstToIndex.getType() & ~mask) == 0) {
// when we dither, we are (usually) not const-in-Y
if ((fFlags & SkShader::kHasSpan16_Flag) && !paint.isDither()) {
// only claim this if we do have a 16bit mode (i.e. none of our
// colors have alpha), and if we are not dithering (which obviously
// is not const in Y).
fFlags |= SkShader::kConstInY16_Flag;
}
}
return true;
}
#define NO_CHECK_ITER \
do { \
unsigned fi = fx >> SkGradientShaderBase::kCache32Shift; \
SkASSERT(fi <= 0xFF); \
fx += dx; \
*dstC++ = cache[toggle + fi]; \
toggle = next_dither_toggle(toggle); \
} while (0)
namespace {
typedef void (*LinearShadeProc)(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* dstC, const SkPMColor* cache,
int toggle, int count);
// Linear interpolation (lerp) is unnecessary if there are no sharp
// discontinuities in the gradient - which must be true if there are
// only 2 colors - but it's cheap.
void shadeSpan_linear_vertical_lerp(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
// We're a vertical gradient, so no change in a span.
// If colors change sharply across the gradient, dithering is
// insufficient (it subsamples the color space) and we need to lerp.
unsigned fullIndex = proc(fx);
unsigned fi = fullIndex >> SkGradientShaderBase::kCache32Shift;
unsigned remainder = fullIndex & ((1 << SkGradientShaderBase::kCache32Shift) - 1);
int index0 = fi + toggle;
int index1 = index0;
if (fi < SkGradientShaderBase::kCache32Count - 1) {
index1 += 1;
}
SkPMColor lerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder);
index0 ^= SkGradientShaderBase::kDitherStride32;
index1 ^= SkGradientShaderBase::kDitherStride32;
SkPMColor dlerp = SkFastFourByteInterp(cache[index1], cache[index0], remainder);
sk_memset32_dither(dstC, lerp, dlerp, count);
}
void shadeSpan_linear_clamp(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
SkClampRange range;
range.init(fx, dx, count, 0, SkGradientShaderBase::kCache32Count - 1);
if ((count = range.fCount0) > 0) {
sk_memset32_dither(dstC,
cache[toggle + range.fV0],
cache[next_dither_toggle(toggle) + range.fV0],
count);
dstC += count;
}
if ((count = range.fCount1) > 0) {
int unroll = count >> 3;
fx = range.fFx1;
for (int i = 0; i < unroll; i++) {
NO_CHECK_ITER; NO_CHECK_ITER;
NO_CHECK_ITER; NO_CHECK_ITER;
NO_CHECK_ITER; NO_CHECK_ITER;
NO_CHECK_ITER; NO_CHECK_ITER;
}
if ((count &= 7) > 0) {
do {
NO_CHECK_ITER;
} while (--count != 0);
}
}
if ((count = range.fCount2) > 0) {
sk_memset32_dither(dstC,
cache[toggle + range.fV1],
cache[next_dither_toggle(toggle) + range.fV1],
count);
}
}
void shadeSpan_linear_mirror(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
do {
unsigned fi = mirror_8bits(fx >> 8);
SkASSERT(fi <= 0xFF);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle = next_dither_toggle(toggle);
} while (--count != 0);
}
void shadeSpan_linear_repeat(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
do {
unsigned fi = repeat_8bits(fx >> 8);
SkASSERT(fi <= 0xFF);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle = next_dither_toggle(toggle);
} while (--count != 0);
}
}
void SkLinearGradient::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
int count) {
SkASSERT(count > 0);
SkPoint srcPt;
SkMatrix::MapXYProc dstProc = fDstToIndexProc;
TileProc proc = fTileProc;
const SkPMColor* SK_RESTRICT cache = this->getCache32();
int toggle = init_dither_toggle(x, y);
if (fDstToIndexClass != kPerspective_MatrixClass) {
dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
SkFixed dxStorage[1];
(void)fDstToIndex.fixedStepInX(SkIntToScalar(y), dxStorage, NULL);
dx = dxStorage[0];
} else {
SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
dx = SkScalarToFixed(fDstToIndex.getScaleX());
}
LinearShadeProc shadeProc = shadeSpan_linear_repeat;
if (SkFixedNearlyZero(dx)) {
shadeProc = shadeSpan_linear_vertical_lerp;
} else if (SkShader::kClamp_TileMode == fTileMode) {
shadeProc = shadeSpan_linear_clamp;
} else if (SkShader::kMirror_TileMode == fTileMode) {
shadeProc = shadeSpan_linear_mirror;
} else {
SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
}
(*shadeProc)(proc, dx, fx, dstC, cache, toggle, count);
} else {
SkScalar dstX = SkIntToScalar(x);
SkScalar dstY = SkIntToScalar(y);
do {
dstProc(fDstToIndex, dstX, dstY, &srcPt);
unsigned fi = proc(SkScalarToFixed(srcPt.fX));
SkASSERT(fi <= 0xFFFF);
*dstC++ = cache[toggle + (fi >> kCache32Shift)];
toggle = next_dither_toggle(toggle);
dstX += SK_Scalar1;
} while (--count != 0);
}
}
SkShader::BitmapType SkLinearGradient::asABitmap(SkBitmap* bitmap,
SkMatrix* matrix,
TileMode xy[]) const {
if (bitmap) {
this->getGradientTableBitmap(bitmap);
}
if (matrix) {
matrix->preConcat(fPtsToUnit);
}
if (xy) {
xy[0] = fTileMode;
xy[1] = kClamp_TileMode;
}
return kLinear_BitmapType;
}
SkShader::GradientType SkLinearGradient::asAGradient(GradientInfo* info) const {
if (info) {
commonAsAGradient(info);
info->fPoint[0] = fStart;
info->fPoint[1] = fEnd;
}
return kLinear_GradientType;
}
static void dither_memset16(uint16_t dst[], uint16_t value, uint16_t other,
int count) {
if (reinterpret_cast<uintptr_t>(dst) & 2) {
*dst++ = value;
count -= 1;
SkTSwap(value, other);
}
sk_memset32((uint32_t*)dst, (value << 16) | other, count >> 1);
if (count & 1) {
dst[count - 1] = value;
}
}
#define NO_CHECK_ITER_16 \
do { \
unsigned fi = fx >> SkGradientShaderBase::kCache16Shift; \
SkASSERT(fi < SkGradientShaderBase::kCache16Count); \
fx += dx; \
*dstC++ = cache[toggle + fi]; \
toggle = next_dither_toggle16(toggle); \
} while (0)
namespace {
typedef void (*LinearShade16Proc)(TileProc proc, SkFixed dx, SkFixed fx,
uint16_t* dstC, const uint16_t* cache,
int toggle, int count);
void shadeSpan16_linear_vertical(TileProc proc, SkFixed dx, SkFixed fx,
uint16_t* SK_RESTRICT dstC,
const uint16_t* SK_RESTRICT cache,
int toggle, int count) {
// we're a vertical gradient, so no change in a span
unsigned fi = proc(fx) >> SkGradientShaderBase::kCache16Shift;
SkASSERT(fi < SkGradientShaderBase::kCache16Count);
dither_memset16(dstC, cache[toggle + fi],
cache[next_dither_toggle16(toggle) + fi], count);
}
void shadeSpan16_linear_clamp(TileProc proc, SkFixed dx, SkFixed fx,
uint16_t* SK_RESTRICT dstC,
const uint16_t* SK_RESTRICT cache,
int toggle, int count) {
SkClampRange range;
range.init(fx, dx, count, 0, SkGradientShaderBase::kCache32Count - 1);
if ((count = range.fCount0) > 0) {
dither_memset16(dstC,
cache[toggle + range.fV0],
cache[next_dither_toggle16(toggle) + range.fV0],
count);
dstC += count;
}
if ((count = range.fCount1) > 0) {
int unroll = count >> 3;
fx = range.fFx1;
for (int i = 0; i < unroll; i++) {
NO_CHECK_ITER_16; NO_CHECK_ITER_16;
NO_CHECK_ITER_16; NO_CHECK_ITER_16;
NO_CHECK_ITER_16; NO_CHECK_ITER_16;
NO_CHECK_ITER_16; NO_CHECK_ITER_16;
}
if ((count &= 7) > 0) {
do {
NO_CHECK_ITER_16;
} while (--count != 0);
}
}
if ((count = range.fCount2) > 0) {
dither_memset16(dstC,
cache[toggle + range.fV1],
cache[next_dither_toggle16(toggle) + range.fV1],
count);
}
}
void shadeSpan16_linear_mirror(TileProc proc, SkFixed dx, SkFixed fx,
uint16_t* SK_RESTRICT dstC,
const uint16_t* SK_RESTRICT cache,
int toggle, int count) {
do {
unsigned fi = mirror_bits(fx >> SkGradientShaderBase::kCache16Shift,
SkGradientShaderBase::kCache16Bits);
SkASSERT(fi < SkGradientShaderBase::kCache16Count);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle = next_dither_toggle16(toggle);
} while (--count != 0);
}
void shadeSpan16_linear_repeat(TileProc proc, SkFixed dx, SkFixed fx,
uint16_t* SK_RESTRICT dstC,
const uint16_t* SK_RESTRICT cache,
int toggle, int count) {
do {
unsigned fi = repeat_bits(fx >> SkGradientShaderBase::kCache16Shift,
SkGradientShaderBase::kCache16Bits);
SkASSERT(fi < SkGradientShaderBase::kCache16Count);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle = next_dither_toggle16(toggle);
} while (--count != 0);
}
}
void SkLinearGradient::shadeSpan16(int x, int y,
uint16_t* SK_RESTRICT dstC, int count) {
SkASSERT(count > 0);
SkPoint srcPt;
SkMatrix::MapXYProc dstProc = fDstToIndexProc;
TileProc proc = fTileProc;
const uint16_t* SK_RESTRICT cache = this->getCache16();
int toggle = init_dither_toggle16(x, y);
if (fDstToIndexClass != kPerspective_MatrixClass) {
dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &srcPt);
SkFixed dx, fx = SkScalarToFixed(srcPt.fX);
if (fDstToIndexClass == kFixedStepInX_MatrixClass) {
SkFixed dxStorage[1];
(void)fDstToIndex.fixedStepInX(SkIntToScalar(y), dxStorage, NULL);
dx = dxStorage[0];
} else {
SkASSERT(fDstToIndexClass == kLinear_MatrixClass);
dx = SkScalarToFixed(fDstToIndex.getScaleX());
}
LinearShade16Proc shadeProc = shadeSpan16_linear_repeat;
if (SkFixedNearlyZero(dx)) {
shadeProc = shadeSpan16_linear_vertical;
} else if (SkShader::kClamp_TileMode == fTileMode) {
shadeProc = shadeSpan16_linear_clamp;
} else if (SkShader::kMirror_TileMode == fTileMode) {
shadeProc = shadeSpan16_linear_mirror;
} else {
SkASSERT(SkShader::kRepeat_TileMode == fTileMode);
}
(*shadeProc)(proc, dx, fx, dstC, cache, toggle, count);
} else {
SkScalar dstX = SkIntToScalar(x);
SkScalar dstY = SkIntToScalar(y);
do {
dstProc(fDstToIndex, dstX, dstY, &srcPt);
unsigned fi = proc(SkScalarToFixed(srcPt.fX));
SkASSERT(fi <= 0xFFFF);
int index = fi >> kCache16Shift;
*dstC++ = cache[toggle + index];
toggle = next_dither_toggle16(toggle);
dstX += SK_Scalar1;
} while (--count != 0);
}
}
#if SK_SUPPORT_GPU
#include "GrTBackendEffectFactory.h"
/////////////////////////////////////////////////////////////////////
class GrGLLinearGradient : public GrGLGradientEffect {
public:
GrGLLinearGradient(const GrBackendEffectFactory& factory, const GrDrawEffect&)
: INHERITED (factory) { }
virtual ~GrGLLinearGradient() { }
virtual void emitCode(GrGLShaderBuilder*,
const GrDrawEffect&,
EffectKey,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray&,
const TextureSamplerArray&) SK_OVERRIDE;
static EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
return GenBaseGradientKey(drawEffect);
}
private:
typedef GrGLGradientEffect INHERITED;
};
/////////////////////////////////////////////////////////////////////
class GrLinearGradient : public GrGradientEffect {
public:
static GrEffectRef* Create(GrContext* ctx,
const SkLinearGradient& shader,
const SkMatrix& matrix,
SkShader::TileMode tm) {
AutoEffectUnref effect(SkNEW_ARGS(GrLinearGradient, (ctx, shader, matrix, tm)));
return CreateEffectRef(effect);
}
virtual ~GrLinearGradient() { }
static const char* Name() { return "Linear Gradient"; }
const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
return GrTBackendEffectFactory<GrLinearGradient>::getInstance();
}
typedef GrGLLinearGradient GLEffect;
private:
GrLinearGradient(GrContext* ctx,
const SkLinearGradient& shader,
const SkMatrix& matrix,
SkShader::TileMode tm)
: INHERITED(ctx, shader, matrix, tm) { }
GR_DECLARE_EFFECT_TEST;
typedef GrGradientEffect INHERITED;
};
/////////////////////////////////////////////////////////////////////
GR_DEFINE_EFFECT_TEST(GrLinearGradient);
GrEffectRef* GrLinearGradient::TestCreate(SkRandom* random,
GrContext* context,
const GrDrawTargetCaps&,
GrTexture**) {
SkPoint points[] = {{random->nextUScalar1(), random->nextUScalar1()},
{random->nextUScalar1(), random->nextUScalar1()}};
SkColor colors[kMaxRandomGradientColors];
SkScalar stopsArray[kMaxRandomGradientColors];
SkScalar* stops = stopsArray;
SkShader::TileMode tm;
int colorCount = RandomGradientParams(random, colors, &stops, &tm);
SkAutoTUnref<SkShader> shader(SkGradientShader::CreateLinear(points,
colors, stops, colorCount,
tm));
SkPaint paint;
return shader->asNewEffect(context, paint);
}
/////////////////////////////////////////////////////////////////////
void GrGLLinearGradient::emitCode(GrGLShaderBuilder* builder,
const GrDrawEffect&,
EffectKey key,
const char* outputColor,
const char* inputColor,
const TransformedCoordsArray& coords,
const TextureSamplerArray& samplers) {
this->emitUniforms(builder, key);
SkString t = builder->ensureFSCoords2D(coords, 0);
t.append(".x");
this->emitColor(builder, t.c_str(), key, outputColor, inputColor, samplers);
}
/////////////////////////////////////////////////////////////////////
GrEffectRef* SkLinearGradient::asNewEffect(GrContext* context, const SkPaint&) const {
SkASSERT(NULL != context);
SkMatrix matrix;
if (!this->getLocalMatrix().invert(&matrix)) {
return NULL;
}
matrix.postConcat(fPtsToUnit);
return GrLinearGradient::Create(context, *this, matrix, fTileMode);
}
#else
GrEffectRef* SkLinearGradient::asNewEffect(GrContext*, const SkPaint&) const {
SkDEBUGFAIL("Should not call in GPU-less build");
return NULL;
}
#endif
#ifdef SK_DEVELOPER
void SkLinearGradient::toString(SkString* str) const {
str->append("SkLinearGradient (");
str->appendf("start: (%f, %f)", fStart.fX, fStart.fY);
str->appendf(" end: (%f, %f) ", fEnd.fX, fEnd.fY);
this->INHERITED::toString(str);
str->append(")");
}
#endif