/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkBitmapProcState.h"
#include "SkColorPriv.h"
#include "SkFilterProc.h"
#include "SkPaint.h"
#include "SkShader.h" // for tilemodes
#include "SkUtilsArm.h"
#include "SkBitmapScaler.h"
#include "SkMipMap.h"
#include "SkPixelRef.h"
#include "SkScaledImageCache.h"
#if !SK_ARM_NEON_IS_NONE
// These are defined in src/opts/SkBitmapProcState_arm_neon.cpp
extern const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[];
extern const SkBitmapProcState::SampleProc32 gSkBitmapProcStateSample32_neon[];
extern void S16_D16_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, uint16_t*);
extern void Clamp_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int);
extern void Repeat_S16_D16_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint16_t*, int);
extern void SI8_opaque_D32_filter_DX_neon(const SkBitmapProcState&, const uint32_t*, int, SkPMColor*);
extern void SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int);
extern void Clamp_SI8_opaque_D32_filter_DX_shaderproc_neon(const SkBitmapProcState&, int, int, uint32_t*, int);
#endif
#define NAME_WRAP(x) x
#include "SkBitmapProcState_filter.h"
#include "SkBitmapProcState_procs.h"
///////////////////////////////////////////////////////////////////////////////
// true iff the matrix contains, at most, scale and translate elements
static bool matrix_only_scale_translate(const SkMatrix& m) {
return m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask);
}
/**
* For the purposes of drawing bitmaps, if a matrix is "almost" translate
* go ahead and treat it as if it were, so that subsequent code can go fast.
*/
static bool just_trans_clamp(const SkMatrix& matrix, const SkBitmap& bitmap) {
SkASSERT(matrix_only_scale_translate(matrix));
if (matrix.getType() & SkMatrix::kScale_Mask) {
SkRect src, dst;
bitmap.getBounds(&src);
// Can't call mapRect(), since that will fix up inverted rectangles,
// e.g. when scale is negative, and we don't want to return true for
// those.
matrix.mapPoints(SkTCast<SkPoint*>(&dst),
SkTCast<const SkPoint*>(&src),
2);
// Now round all 4 edges to device space, and then compare the device
// width/height to the original. Note: we must map all 4 and subtract
// rather than map the "width" and compare, since we care about the
// phase (in pixel space) that any translate in the matrix might impart.
SkIRect idst;
dst.round(&idst);
return idst.width() == bitmap.width() && idst.height() == bitmap.height();
}
// if we got here, we're either kTranslate_Mask or identity
return true;
}
static bool just_trans_general(const SkMatrix& matrix) {
SkASSERT(matrix_only_scale_translate(matrix));
if (matrix.getType() & SkMatrix::kScale_Mask) {
const SkScalar tol = SK_Scalar1 / 32768;
if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol)) {
return false;
}
if (!SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol)) {
return false;
}
}
// if we got here, treat us as either kTranslate_Mask or identity
return true;
}
///////////////////////////////////////////////////////////////////////////////
static bool valid_for_filtering(unsigned dimension) {
// for filtering, width and height must fit in 14bits, since we use steal
// 2 bits from each to store our 4bit subpixel data
return (dimension & ~0x3FFF) == 0;
}
static SkScalar effective_matrix_scale_sqrd(const SkMatrix& mat) {
SkPoint v1, v2;
v1.fX = mat.getScaleX();
v1.fY = mat.getSkewY();
v2.fX = mat.getSkewX();
v2.fY = mat.getScaleY();
return SkMaxScalar(v1.lengthSqd(), v2.lengthSqd());
}
class AutoScaledCacheUnlocker {
public:
AutoScaledCacheUnlocker(SkScaledImageCache::ID** idPtr) : fIDPtr(idPtr) {}
~AutoScaledCacheUnlocker() {
if (fIDPtr && *fIDPtr) {
SkScaledImageCache::Unlock(*fIDPtr);
*fIDPtr = NULL;
}
}
// forgets the ID, so it won't call Unlock
void release() {
fIDPtr = NULL;
}
private:
SkScaledImageCache::ID** fIDPtr;
};
#define AutoScaledCacheUnlocker(...) SK_REQUIRE_LOCAL_VAR(AutoScaledCacheUnlocker)
// TODO -- we may want to pass the clip into this function so we only scale
// the portion of the image that we're going to need. This will complicate
// the interface to the cache, but might be well worth it.
bool SkBitmapProcState::possiblyScaleImage() {
AutoScaledCacheUnlocker unlocker(&fScaledCacheID);
SkASSERT(NULL == fBitmap);
SkASSERT(NULL == fScaledCacheID);
if (fFilterLevel <= SkPaint::kLow_FilterLevel) {
return false;
}
// Check to see if the transformation matrix is simple, and if we're
// doing high quality scaling. If so, do the bitmap scale here and
// remove the scaling component from the matrix.
if (SkPaint::kHigh_FilterLevel == fFilterLevel &&
fInvMatrix.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask) &&
fOrigBitmap.config() == SkBitmap::kARGB_8888_Config) {
SkScalar invScaleX = fInvMatrix.getScaleX();
SkScalar invScaleY = fInvMatrix.getScaleY();
fScaledCacheID = SkScaledImageCache::FindAndLock(fOrigBitmap,
invScaleX, invScaleY,
&fScaledBitmap);
if (fScaledCacheID) {
fScaledBitmap.lockPixels();
if (!fScaledBitmap.getPixels()) {
fScaledBitmap.unlockPixels();
// found a purged entry (discardablememory?), release it
SkScaledImageCache::Unlock(fScaledCacheID);
fScaledCacheID = NULL;
// fall through to rebuild
}
}
if (NULL == fScaledCacheID) {
int dest_width = SkScalarCeilToInt(fOrigBitmap.width() / invScaleX);
int dest_height = SkScalarCeilToInt(fOrigBitmap.height() / invScaleY);
// All the criteria are met; let's make a new bitmap.
SkConvolutionProcs simd;
sk_bzero(&simd, sizeof(simd));
this->platformConvolutionProcs(&simd);
if (!SkBitmapScaler::Resize(&fScaledBitmap,
fOrigBitmap,
SkBitmapScaler::RESIZE_BEST,
dest_width,
dest_height,
simd,
SkScaledImageCache::GetAllocator())) {
// we failed to create fScaledBitmap, so just return and let
// the scanline proc handle it.
return false;
}
SkASSERT(NULL != fScaledBitmap.getPixels());
fScaledCacheID = SkScaledImageCache::AddAndLock(fOrigBitmap,
invScaleX,
invScaleY,
fScaledBitmap);
if (!fScaledCacheID) {
fScaledBitmap.reset();
return false;
}
SkASSERT(NULL != fScaledBitmap.getPixels());
}
SkASSERT(NULL != fScaledBitmap.getPixels());
fBitmap = &fScaledBitmap;
// set the inv matrix type to translate-only;
fInvMatrix.setTranslate(fInvMatrix.getTranslateX() / fInvMatrix.getScaleX(),
fInvMatrix.getTranslateY() / fInvMatrix.getScaleY());
// no need for any further filtering; we just did it!
fFilterLevel = SkPaint::kNone_FilterLevel;
unlocker.release();
return true;
}
/*
* If High, then our special-case for scale-only did not take, and so we
* have to make a choice:
* 1. fall back on mipmaps + bilerp
* 2. fall back on scanline bicubic filter
* For now, we compute the "scale" value from the matrix, and have a
* threshold to decide when bicubic is better, and when mips are better.
* No doubt a fancier decision tree could be used uere.
*
* If Medium, then we just try to build a mipmap and select a level,
* setting the filter-level to kLow to signal that we just need bilerp
* to process the selected level.
*/
SkScalar scaleSqd = effective_matrix_scale_sqrd(fInvMatrix);
if (SkPaint::kHigh_FilterLevel == fFilterLevel) {
// Set the limit at 0.25 for the CTM... if the CTM is scaling smaller
// than this, then the mipmaps quality may be greater (certainly faster)
// so we only keep High quality if the scale is greater than this.
//
// Since we're dealing with the inverse, we compare against its inverse.
const SkScalar bicubicLimit = 4.0f;
const SkScalar bicubicLimitSqd = bicubicLimit * bicubicLimit;
if (scaleSqd < bicubicLimitSqd) { // use bicubic scanline
return false;
}
// else set the filter-level to Medium, since we're scaling down and
// want to reqeust mipmaps
fFilterLevel = SkPaint::kMedium_FilterLevel;
}
SkASSERT(SkPaint::kMedium_FilterLevel == fFilterLevel);
/**
* Medium quality means use a mipmap for down-scaling, and just bilper
* for upscaling. Since we're examining the inverse matrix, we look for
* a scale > 1 to indicate down scaling by the CTM.
*/
if (scaleSqd > SK_Scalar1) {
const SkMipMap* mip = NULL;
SkASSERT(NULL == fScaledCacheID);
fScaledCacheID = SkScaledImageCache::FindAndLockMip(fOrigBitmap, &mip);
if (!fScaledCacheID) {
SkASSERT(NULL == mip);
mip = SkMipMap::Build(fOrigBitmap);
if (mip) {
fScaledCacheID = SkScaledImageCache::AddAndLockMip(fOrigBitmap,
mip);
mip->unref(); // the cache took a ref
SkASSERT(fScaledCacheID);
}
} else {
SkASSERT(mip);
}
if (mip) {
SkScalar levelScale = SkScalarInvert(SkScalarSqrt(scaleSqd));
SkMipMap::Level level;
if (mip->extractLevel(levelScale, &level)) {
SkScalar invScaleFixup = level.fScale;
fInvMatrix.postScale(invScaleFixup, invScaleFixup);
fScaledBitmap.setConfig(fOrigBitmap.config(),
level.fWidth, level.fHeight,
level.fRowBytes);
fScaledBitmap.setPixels(level.fPixels);
fBitmap = &fScaledBitmap;
fFilterLevel = SkPaint::kLow_FilterLevel;
unlocker.release();
return true;
}
}
}
return false;
}
static bool get_locked_pixels(const SkBitmap& src, int pow2, SkBitmap* dst) {
SkPixelRef* pr = src.pixelRef();
if (pr && pr->decodeInto(pow2, dst)) {
return true;
}
/*
* If decodeInto() fails, it is possibe that we have an old subclass that
* does not, or cannot, implement that. In that case we fall back to the
* older protocol of having the pixelRef handle the caching for us.
*/
*dst = src;
dst->lockPixels();
return SkToBool(dst->getPixels());
}
bool SkBitmapProcState::lockBaseBitmap() {
AutoScaledCacheUnlocker unlocker(&fScaledCacheID);
SkPixelRef* pr = fOrigBitmap.pixelRef();
SkASSERT(NULL == fScaledCacheID);
if (pr->isLocked() || !pr->implementsDecodeInto()) {
// fast-case, no need to look in our cache
fScaledBitmap = fOrigBitmap;
fScaledBitmap.lockPixels();
if (NULL == fScaledBitmap.getPixels()) {
return false;
}
} else {
fScaledCacheID = SkScaledImageCache::FindAndLock(fOrigBitmap,
SK_Scalar1, SK_Scalar1,
&fScaledBitmap);
if (fScaledCacheID) {
fScaledBitmap.lockPixels();
if (!fScaledBitmap.getPixels()) {
fScaledBitmap.unlockPixels();
// found a purged entry (discardablememory?), release it
SkScaledImageCache::Unlock(fScaledCacheID);
fScaledCacheID = NULL;
// fall through to rebuild
}
}
if (NULL == fScaledCacheID) {
if (!get_locked_pixels(fOrigBitmap, 0, &fScaledBitmap)) {
return false;
}
// TODO: if fScaled comes back at a different width/height than fOrig,
// we need to update the matrix we are using to sample from this guy.
fScaledCacheID = SkScaledImageCache::AddAndLock(fOrigBitmap,
SK_Scalar1, SK_Scalar1,
fScaledBitmap);
if (!fScaledCacheID) {
fScaledBitmap.reset();
return false;
}
}
}
fBitmap = &fScaledBitmap;
unlocker.release();
return true;
}
void SkBitmapProcState::endContext() {
SkDELETE(fBitmapFilter);
fBitmapFilter = NULL;
fScaledBitmap.reset();
if (fScaledCacheID) {
SkScaledImageCache::Unlock(fScaledCacheID);
fScaledCacheID = NULL;
}
}
SkBitmapProcState::~SkBitmapProcState() {
if (fScaledCacheID) {
SkScaledImageCache::Unlock(fScaledCacheID);
}
SkDELETE(fBitmapFilter);
}
bool SkBitmapProcState::chooseProcs(const SkMatrix& inv, const SkPaint& paint) {
SkASSERT(fOrigBitmap.width() && fOrigBitmap.height());
fBitmap = NULL;
fInvMatrix = inv;
fFilterLevel = paint.getFilterLevel();
SkASSERT(NULL == fScaledCacheID);
// possiblyScaleImage will look to see if it can rescale the image as a
// preprocess; either by scaling up to the target size, or by selecting
// a nearby mipmap level. If it does, it will adjust the working
// matrix as well as the working bitmap. It may also adjust the filter
// quality to avoid re-filtering an already perfectly scaled image.
if (!this->possiblyScaleImage()) {
if (!this->lockBaseBitmap()) {
return false;
}
}
// The above logic should have always assigned fBitmap, but in case it
// didn't, we check for that now...
if (NULL == fBitmap) {
return false;
}
bool trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
bool clampClamp = SkShader::kClamp_TileMode == fTileModeX &&
SkShader::kClamp_TileMode == fTileModeY;
if (!(clampClamp || trivialMatrix)) {
fInvMatrix.postIDiv(fOrigBitmap.width(), fOrigBitmap.height());
}
// Now that all possible changes to the matrix have taken place, check
// to see if we're really close to a no-scale matrix. If so, explicitly
// set it to be so. Subsequent code may inspect this matrix to choose
// a faster path in this case.
// This code will only execute if the matrix has some scale component;
// if it's already pure translate then we won't do this inversion.
if (matrix_only_scale_translate(fInvMatrix)) {
SkMatrix forward;
if (fInvMatrix.invert(&forward)) {
if (clampClamp ? just_trans_clamp(forward, *fBitmap)
: just_trans_general(forward)) {
SkScalar tx = -SkScalarRoundToScalar(forward.getTranslateX());
SkScalar ty = -SkScalarRoundToScalar(forward.getTranslateY());
fInvMatrix.setTranslate(tx, ty);
}
}
}
fInvProc = fInvMatrix.getMapXYProc();
fInvType = fInvMatrix.getType();
fInvSx = SkScalarToFixed(fInvMatrix.getScaleX());
fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX());
fInvKy = SkScalarToFixed(fInvMatrix.getSkewY());
fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY());
fAlphaScale = SkAlpha255To256(paint.getAlpha());
fShaderProc32 = NULL;
fShaderProc16 = NULL;
fSampleProc32 = NULL;
fSampleProc16 = NULL;
// recompute the triviality of the matrix here because we may have
// changed it!
trivialMatrix = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0;
if (SkPaint::kHigh_FilterLevel == fFilterLevel) {
// If this is still set, that means we wanted HQ sampling
// but couldn't do it as a preprocess. Let's try to install
// the scanline version of the HQ sampler. If that process fails,
// downgrade to bilerp.
// NOTE: Might need to be careful here in the future when we want
// to have the platform proc have a shot at this; it's possible that
// the chooseBitmapFilterProc will fail to install a shader but a
// platform-specific one might succeed, so it might be premature here
// to fall back to bilerp. This needs thought.
if (!this->setBitmapFilterProcs()) {
fFilterLevel = SkPaint::kLow_FilterLevel;
}
}
if (SkPaint::kLow_FilterLevel == fFilterLevel) {
// Only try bilerp if the matrix is "interesting" and
// the image has a suitable size.
if (fInvType <= SkMatrix::kTranslate_Mask ||
!valid_for_filtering(fBitmap->width() | fBitmap->height())) {
fFilterLevel = SkPaint::kNone_FilterLevel;
}
}
// At this point, we know exactly what kind of sampling the per-scanline
// shader will perform.
fMatrixProc = this->chooseMatrixProc(trivialMatrix);
if (NULL == fMatrixProc) {
return false;
}
///////////////////////////////////////////////////////////////////////
// No need to do this if we're doing HQ sampling; if filter quality is
// still set to HQ by the time we get here, then we must have installed
// the shader procs above and can skip all this.
if (fFilterLevel < SkPaint::kHigh_FilterLevel) {
int index = 0;
if (fAlphaScale < 256) { // note: this distinction is not used for D16
index |= 1;
}
if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
index |= 2;
}
if (fFilterLevel > SkPaint::kNone_FilterLevel) {
index |= 4;
}
// bits 3,4,5 encoding the source bitmap format
switch (fBitmap->config()) {
case SkBitmap::kARGB_8888_Config:
index |= 0;
break;
case SkBitmap::kRGB_565_Config:
index |= 8;
break;
case SkBitmap::kIndex8_Config:
index |= 16;
break;
case SkBitmap::kARGB_4444_Config:
index |= 24;
break;
case SkBitmap::kA8_Config:
index |= 32;
fPaintPMColor = SkPreMultiplyColor(paint.getColor());
break;
default:
return false;
}
#if !SK_ARM_NEON_IS_ALWAYS
static const SampleProc32 gSkBitmapProcStateSample32[] = {
S32_opaque_D32_nofilter_DXDY,
S32_alpha_D32_nofilter_DXDY,
S32_opaque_D32_nofilter_DX,
S32_alpha_D32_nofilter_DX,
S32_opaque_D32_filter_DXDY,
S32_alpha_D32_filter_DXDY,
S32_opaque_D32_filter_DX,
S32_alpha_D32_filter_DX,
S16_opaque_D32_nofilter_DXDY,
S16_alpha_D32_nofilter_DXDY,
S16_opaque_D32_nofilter_DX,
S16_alpha_D32_nofilter_DX,
S16_opaque_D32_filter_DXDY,
S16_alpha_D32_filter_DXDY,
S16_opaque_D32_filter_DX,
S16_alpha_D32_filter_DX,
SI8_opaque_D32_nofilter_DXDY,
SI8_alpha_D32_nofilter_DXDY,
SI8_opaque_D32_nofilter_DX,
SI8_alpha_D32_nofilter_DX,
SI8_opaque_D32_filter_DXDY,
SI8_alpha_D32_filter_DXDY,
SI8_opaque_D32_filter_DX,
SI8_alpha_D32_filter_DX,
S4444_opaque_D32_nofilter_DXDY,
S4444_alpha_D32_nofilter_DXDY,
S4444_opaque_D32_nofilter_DX,
S4444_alpha_D32_nofilter_DX,
S4444_opaque_D32_filter_DXDY,
S4444_alpha_D32_filter_DXDY,
S4444_opaque_D32_filter_DX,
S4444_alpha_D32_filter_DX,
// A8 treats alpha/opaque the same (equally efficient)
SA8_alpha_D32_nofilter_DXDY,
SA8_alpha_D32_nofilter_DXDY,
SA8_alpha_D32_nofilter_DX,
SA8_alpha_D32_nofilter_DX,
SA8_alpha_D32_filter_DXDY,
SA8_alpha_D32_filter_DXDY,
SA8_alpha_D32_filter_DX,
SA8_alpha_D32_filter_DX
};
static const SampleProc16 gSkBitmapProcStateSample16[] = {
S32_D16_nofilter_DXDY,
S32_D16_nofilter_DX,
S32_D16_filter_DXDY,
S32_D16_filter_DX,
S16_D16_nofilter_DXDY,
S16_D16_nofilter_DX,
S16_D16_filter_DXDY,
S16_D16_filter_DX,
SI8_D16_nofilter_DXDY,
SI8_D16_nofilter_DX,
SI8_D16_filter_DXDY,
SI8_D16_filter_DX,
// Don't support 4444 -> 565
NULL, NULL, NULL, NULL,
// Don't support A8 -> 565
NULL, NULL, NULL, NULL
};
#endif
fSampleProc32 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample32)[index];
index >>= 1; // shift away any opaque/alpha distinction
fSampleProc16 = SK_ARM_NEON_WRAP(gSkBitmapProcStateSample16)[index];
// our special-case shaderprocs
if (SK_ARM_NEON_WRAP(S16_D16_filter_DX) == fSampleProc16) {
if (clampClamp) {
fShaderProc16 = SK_ARM_NEON_WRAP(Clamp_S16_D16_filter_DX_shaderproc);
} else if (SkShader::kRepeat_TileMode == fTileModeX &&
SkShader::kRepeat_TileMode == fTileModeY) {
fShaderProc16 = SK_ARM_NEON_WRAP(Repeat_S16_D16_filter_DX_shaderproc);
}
} else if (SK_ARM_NEON_WRAP(SI8_opaque_D32_filter_DX) == fSampleProc32 && clampClamp) {
fShaderProc32 = SK_ARM_NEON_WRAP(Clamp_SI8_opaque_D32_filter_DX_shaderproc);
}
if (NULL == fShaderProc32) {
fShaderProc32 = this->chooseShaderProc32();
}
}
// see if our platform has any accelerated overrides
this->platformProcs();
return true;
}
static void Clamp_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s,
int x, int y,
SkPMColor* SK_RESTRICT colors,
int count) {
SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
SkASSERT(count > 0 && colors != NULL);
SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel);
const int maxX = s.fBitmap->width() - 1;
const int maxY = s.fBitmap->height() - 1;
int ix = s.fFilterOneX + x;
int iy = SkClampMax(s.fFilterOneY + y, maxY);
#ifdef SK_DEBUG
{
SkPoint pt;
s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &pt);
int iy2 = SkClampMax(SkScalarFloorToInt(pt.fY), maxY);
int ix2 = SkScalarFloorToInt(pt.fX);
SkASSERT(iy == iy2);
SkASSERT(ix == ix2);
}
#endif
const SkPMColor* row = s.fBitmap->getAddr32(0, iy);
// clamp to the left
if (ix < 0) {
int n = SkMin32(-ix, count);
sk_memset32(colors, row[0], n);
count -= n;
if (0 == count) {
return;
}
colors += n;
SkASSERT(-ix == n);
ix = 0;
}
// copy the middle
if (ix <= maxX) {
int n = SkMin32(maxX - ix + 1, count);
memcpy(colors, row + ix, n * sizeof(SkPMColor));
count -= n;
if (0 == count) {
return;
}
colors += n;
}
SkASSERT(count > 0);
// clamp to the right
sk_memset32(colors, row[maxX], count);
}
static inline int sk_int_mod(int x, int n) {
SkASSERT(n > 0);
if ((unsigned)x >= (unsigned)n) {
if (x < 0) {
x = n + ~(~x % n);
} else {
x = x % n;
}
}
return x;
}
static inline int sk_int_mirror(int x, int n) {
x = sk_int_mod(x, 2 * n);
if (x >= n) {
x = n + ~(x - n);
}
return x;
}
static void Repeat_S32_D32_nofilter_trans_shaderproc(const SkBitmapProcState& s,
int x, int y,
SkPMColor* SK_RESTRICT colors,
int count) {
SkASSERT(((s.fInvType & ~SkMatrix::kTranslate_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
SkASSERT(count > 0 && colors != NULL);
SkASSERT(SkPaint::kNone_FilterLevel == s.fFilterLevel);
const int stopX = s.fBitmap->width();
const int stopY = s.fBitmap->height();
int ix = s.fFilterOneX + x;
int iy = sk_int_mod(s.fFilterOneY + y, stopY);
#ifdef SK_DEBUG
{
SkPoint pt;
s.fInvProc(s.fInvMatrix, SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf, &pt);
int iy2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY);
int ix2 = SkScalarFloorToInt(pt.fX);
SkASSERT(iy == iy2);
SkASSERT(ix == ix2);
}
#endif
const SkPMColor* row = s.fBitmap->getAddr32(0, iy);
ix = sk_int_mod(ix, stopX);
for (;;) {
int n = SkMin32(stopX - ix, count);
memcpy(colors, row + ix, n * sizeof(SkPMColor));
count -= n;
if (0 == count) {
return;
}
colors += n;
ix = 0;
}
}
static void S32_D32_constX_shaderproc(const SkBitmapProcState& s,
int x, int y,
SkPMColor* SK_RESTRICT colors,
int count) {
SkASSERT((s.fInvType & ~(SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) == 0);
SkASSERT(s.fInvKy == 0);
SkASSERT(count > 0 && colors != NULL);
SkASSERT(1 == s.fBitmap->width());
int iY0;
int iY1 SK_INIT_TO_AVOID_WARNING;
int iSubY SK_INIT_TO_AVOID_WARNING;
if (SkPaint::kNone_FilterLevel != s.fFilterLevel) {
SkBitmapProcState::MatrixProc mproc = s.getMatrixProc();
uint32_t xy[2];
mproc(s, xy, 1, x, y);
iY0 = xy[0] >> 18;
iY1 = xy[0] & 0x3FFF;
iSubY = (xy[0] >> 14) & 0xF;
} else {
int yTemp;
if (s.fInvType > SkMatrix::kTranslate_Mask) {
SkPoint pt;
s.fInvProc(s.fInvMatrix,
SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf,
&pt);
// When the matrix has a scale component the setup code in
// chooseProcs multiples the inverse matrix by the inverse of the
// bitmap's width and height. Since this method is going to do
// its own tiling and sampling we need to undo that here.
if (SkShader::kClamp_TileMode != s.fTileModeX ||
SkShader::kClamp_TileMode != s.fTileModeY) {
yTemp = SkScalarFloorToInt(pt.fY * s.fBitmap->height());
} else {
yTemp = SkScalarFloorToInt(pt.fY);
}
} else {
yTemp = s.fFilterOneY + y;
}
const int stopY = s.fBitmap->height();
switch (s.fTileModeY) {
case SkShader::kClamp_TileMode:
iY0 = SkClampMax(yTemp, stopY-1);
break;
case SkShader::kRepeat_TileMode:
iY0 = sk_int_mod(yTemp, stopY);
break;
case SkShader::kMirror_TileMode:
default:
iY0 = sk_int_mirror(yTemp, stopY);
break;
}
#ifdef SK_DEBUG
{
SkPoint pt;
s.fInvProc(s.fInvMatrix,
SkIntToScalar(x) + SK_ScalarHalf,
SkIntToScalar(y) + SK_ScalarHalf,
&pt);
if (s.fInvType > SkMatrix::kTranslate_Mask &&
(SkShader::kClamp_TileMode != s.fTileModeX ||
SkShader::kClamp_TileMode != s.fTileModeY)) {
pt.fY *= s.fBitmap->height();
}
int iY2;
switch (s.fTileModeY) {
case SkShader::kClamp_TileMode:
iY2 = SkClampMax(SkScalarFloorToInt(pt.fY), stopY-1);
break;
case SkShader::kRepeat_TileMode:
iY2 = sk_int_mod(SkScalarFloorToInt(pt.fY), stopY);
break;
case SkShader::kMirror_TileMode:
default:
iY2 = sk_int_mirror(SkScalarFloorToInt(pt.fY), stopY);
break;
}
SkASSERT(iY0 == iY2);
}
#endif
}
const SkPMColor* row0 = s.fBitmap->getAddr32(0, iY0);
SkPMColor color;
if (SkPaint::kNone_FilterLevel != s.fFilterLevel) {
const SkPMColor* row1 = s.fBitmap->getAddr32(0, iY1);
if (s.fAlphaScale < 256) {
Filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale);
} else {
Filter_32_opaque(iSubY, *row0, *row1, &color);
}
} else {
if (s.fAlphaScale < 256) {
color = SkAlphaMulQ(*row0, s.fAlphaScale);
} else {
color = *row0;
}
}
sk_memset32(colors, color, count);
}
static void DoNothing_shaderproc(const SkBitmapProcState&, int x, int y,
SkPMColor* SK_RESTRICT colors, int count) {
// if we get called, the matrix is too tricky, so we just draw nothing
sk_memset32(colors, 0, count);
}
bool SkBitmapProcState::setupForTranslate() {
SkPoint pt;
fInvProc(fInvMatrix, SK_ScalarHalf, SK_ScalarHalf, &pt);
/*
* if the translate is larger than our ints, we can get random results, or
* worse, we might get 0x80000000, which wreaks havoc on us, since we can't
* negate it.
*/
const SkScalar too_big = SkIntToScalar(1 << 30);
if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) {
return false;
}
// Since we know we're not filtered, we re-purpose these fields allow
// us to go from device -> src coordinates w/ just an integer add,
// rather than running through the inverse-matrix
fFilterOneX = SkScalarFloorToInt(pt.fX);
fFilterOneY = SkScalarFloorToInt(pt.fY);
return true;
}
SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() {
if (SkBitmap::kARGB_8888_Config != fBitmap->config()) {
return NULL;
}
static const unsigned kMask = SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask;
if (1 == fBitmap->width() && 0 == (fInvType & ~kMask)) {
if (SkPaint::kNone_FilterLevel == fFilterLevel &&
fInvType <= SkMatrix::kTranslate_Mask &&
!this->setupForTranslate()) {
return DoNothing_shaderproc;
}
return S32_D32_constX_shaderproc;
}
if (fAlphaScale < 256) {
return NULL;
}
if (fInvType > SkMatrix::kTranslate_Mask) {
return NULL;
}
if (SkPaint::kNone_FilterLevel != fFilterLevel) {
return NULL;
}
SkShader::TileMode tx = (SkShader::TileMode)fTileModeX;
SkShader::TileMode ty = (SkShader::TileMode)fTileModeY;
if (SkShader::kClamp_TileMode == tx && SkShader::kClamp_TileMode == ty) {
if (this->setupForTranslate()) {
return Clamp_S32_D32_nofilter_trans_shaderproc;
}
return DoNothing_shaderproc;
}
if (SkShader::kRepeat_TileMode == tx && SkShader::kRepeat_TileMode == ty) {
if (this->setupForTranslate()) {
return Repeat_S32_D32_nofilter_trans_shaderproc;
}
return DoNothing_shaderproc;
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
static void check_scale_nofilter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
unsigned y = *bitmapXY++;
SkASSERT(y < my);
const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY);
for (int i = 0; i < count; ++i) {
SkASSERT(xptr[i] < mx);
}
}
static void check_scale_filter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
for (int i = 0; i < count; ++i) {
uint32_t XX = bitmapXY[i];
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
static void check_affine_nofilter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t XY = bitmapXY[i];
unsigned x = XY & 0xFFFF;
unsigned y = XY >> 16;
SkASSERT(x < mx);
SkASSERT(y < my);
}
}
static void check_affine_filter(uint32_t bitmapXY[], int count,
unsigned mx, unsigned my) {
for (int i = 0; i < count; ++i) {
uint32_t YY = *bitmapXY++;
unsigned y0 = YY >> 18;
unsigned y1 = YY & 0x3FFF;
SkASSERT(y0 < my);
SkASSERT(y1 < my);
uint32_t XX = *bitmapXY++;
unsigned x0 = XX >> 18;
unsigned x1 = XX & 0x3FFF;
SkASSERT(x0 < mx);
SkASSERT(x1 < mx);
}
}
void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state,
uint32_t bitmapXY[], int count,
int x, int y) {
SkASSERT(bitmapXY);
SkASSERT(count > 0);
state.fMatrixProc(state, bitmapXY, count, x, y);
void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my);
// There are four formats possible:
// scale -vs- affine
// filter -vs- nofilter
if (state.fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_scale_filter : check_scale_nofilter;
} else {
proc = state.fFilterLevel != SkPaint::kNone_FilterLevel ? check_affine_filter : check_affine_nofilter;
}
proc(bitmapXY, count, state.fBitmap->width(), state.fBitmap->height());
}
SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const {
return DebugMatrixProc;
}
#endif
///////////////////////////////////////////////////////////////////////////////
/*
The storage requirements for the different matrix procs are as follows,
where each X or Y is 2 bytes, and N is the number of pixels/elements:
scale/translate nofilter Y(4bytes) + N * X
affine/perspective nofilter N * (X Y)
scale/translate filter Y Y + N * (X X)
affine/perspective filter N * (Y Y X X)
*/
int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const {
int32_t size = static_cast<int32_t>(bufferSize);
size &= ~3; // only care about 4-byte aligned chunks
if (fInvType <= (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask)) {
size -= 4; // the shared Y (or YY) coordinate
if (size < 0) {
size = 0;
}
size >>= 1;
} else {
size >>= 2;
}
if (fFilterLevel != SkPaint::kNone_FilterLevel) {
size >>= 1;
}
return size;
}