/*
******************************************************************************
*
* Copyright (C) 2002-2012, International Business Machines
* Corporation and others. All Rights Reserved.
*
******************************************************************************
*
* File cmemory.c ICU Heap allocation.
* All ICU heap allocation, both for C and C++ new of ICU
* class types, comes through these functions.
*
* If you have a need to replace ICU allocation, this is the
* place to do it.
*
* Note that uprv_malloc(0) returns a non-NULL pointer, and
* that a subsequent free of that pointer value is a NOP.
*
******************************************************************************
*/
#include "unicode/uclean.h"
#include "cmemory.h"
#include "putilimp.h"
#include "uassert.h"
#include <stdlib.h>
/* uprv_malloc(0) returns a pointer to this read-only data. */
static const int32_t zeroMem[] = {0, 0, 0, 0, 0, 0};
/* Function Pointers for user-supplied heap functions */
static const void *pContext;
static UMemAllocFn *pAlloc;
static UMemReallocFn *pRealloc;
static UMemFreeFn *pFree;
/* Flag indicating whether any heap allocations have happened.
* Used to prevent changing out the heap functions after allocations have been made */
static UBool gHeapInUse;
#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
#include <stdio.h>
static int n=0;
static long b=0;
#endif
#if U_DEBUG
static char gValidMemorySink = 0;
U_CAPI void uprv_checkValidMemory(const void *p, size_t n) {
/*
* Access the memory to ensure that it's all valid.
* Load and save a computed value to try to ensure that the compiler
* does not throw away the whole loop.
* A thread analyzer might complain about un-mutexed access to gValidMemorySink
* which is true but harmless because no one ever uses the value in gValidMemorySink.
*/
const char *s = (const char *)p;
char c = gValidMemorySink;
size_t i;
U_ASSERT(p != NULL);
for(i = 0; i < n; ++i) {
c ^= s[i];
}
gValidMemorySink = c;
}
#endif /* U_DEBUG */
U_CAPI void * U_EXPORT2
uprv_malloc(size_t s) {
#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
#if 1
putchar('>');
fflush(stdout);
#else
fprintf(stderr,"MALLOC\t#%d\t%ul bytes\t%ul total\n", ++n,s,(b+=s)); fflush(stderr);
#endif
#endif
if (s > 0) {
gHeapInUse = TRUE;
if (pAlloc) {
return (*pAlloc)(pContext, s);
} else {
return uprv_default_malloc(s);
}
} else {
return (void *)zeroMem;
}
}
U_CAPI void * U_EXPORT2
uprv_realloc(void * buffer, size_t size) {
#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
putchar('~');
fflush(stdout);
#endif
if (buffer == zeroMem) {
return uprv_malloc(size);
} else if (size == 0) {
if (pFree) {
(*pFree)(pContext, buffer);
} else {
uprv_default_free(buffer);
}
return (void *)zeroMem;
} else {
gHeapInUse = TRUE;
if (pRealloc) {
return (*pRealloc)(pContext, buffer, size);
} else {
return uprv_default_realloc(buffer, size);
}
}
}
U_CAPI void U_EXPORT2
uprv_free(void *buffer) {
#if U_DEBUG && defined(UPRV_MALLOC_COUNT)
putchar('<');
fflush(stdout);
#endif
if (buffer != zeroMem) {
if (pFree) {
(*pFree)(pContext, buffer);
} else {
uprv_default_free(buffer);
}
}
}
U_CAPI void * U_EXPORT2
uprv_calloc(size_t num, size_t size) {
void *mem = NULL;
size *= num;
mem = uprv_malloc(size);
if (mem) {
uprv_memset(mem, 0, size);
}
return mem;
}
U_CAPI void U_EXPORT2
u_setMemoryFunctions(const void *context, UMemAllocFn *a, UMemReallocFn *r, UMemFreeFn *f, UErrorCode *status)
{
if (U_FAILURE(*status)) {
return;
}
if (a==NULL || r==NULL || f==NULL) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
if (gHeapInUse) {
*status = U_INVALID_STATE_ERROR;
return;
}
pContext = context;
pAlloc = a;
pRealloc = r;
pFree = f;
}
U_CFUNC UBool cmemory_cleanup(void) {
pContext = NULL;
pAlloc = NULL;
pRealloc = NULL;
pFree = NULL;
gHeapInUse = FALSE;
return TRUE;
}
/*
* gHeapInUse
* Return True if ICU has allocated any memory.
* Used by u_SetMutexFunctions() and similar to verify that ICU has not
* been used, that it is in a pristine initial state.
*/
U_CFUNC UBool cmemory_inUse() {
return gHeapInUse;
}