// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/MatrixFunctions>
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
struct generateTestMatrix;
// for real matrices, make sure none of the eigenvalues are negative
template <typename MatrixType>
struct generateTestMatrix<MatrixType,0>
{
static void run(MatrixType& result, typename MatrixType::Index size)
{
MatrixType mat = MatrixType::Random(size, size);
EigenSolver<MatrixType> es(mat);
typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();
for (typename MatrixType::Index i = 0; i < size; ++i) {
if (eivals(i).imag() == 0 && eivals(i).real() < 0)
eivals(i) = -eivals(i);
}
result = (es.eigenvectors() * eivals.asDiagonal() * es.eigenvectors().inverse()).real();
}
};
// for complex matrices, any matrix is fine
template <typename MatrixType>
struct generateTestMatrix<MatrixType,1>
{
static void run(MatrixType& result, typename MatrixType::Index size)
{
result = MatrixType::Random(size, size);
}
};
template<typename MatrixType>
void testMatrixSqrt(const MatrixType& m)
{
MatrixType A;
generateTestMatrix<MatrixType>::run(A, m.rows());
MatrixType sqrtA = A.sqrt();
VERIFY_IS_APPROX(sqrtA * sqrtA, A);
}
void test_matrix_square_root()
{
for (int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(testMatrixSqrt(Matrix3cf()));
CALL_SUBTEST_2(testMatrixSqrt(MatrixXcd(12,12)));
CALL_SUBTEST_3(testMatrixSqrt(Matrix4f()));
CALL_SUBTEST_4(testMatrixSqrt(Matrix<double,Dynamic,Dynamic,RowMajor>(9, 9)));
CALL_SUBTEST_5(testMatrixSqrt(Matrix<float,1,1>()));
CALL_SUBTEST_5(testMatrixSqrt(Matrix<std::complex<float>,1,1>()));
}
}