/* ---- SYMMETRIC KEY STUFF -----
*
* We put each of the ciphers scheduled keys in their own structs then we put all of
* the key formats in one union. This makes the function prototypes easier to use.
*/
#ifdef BLOWFISH
struct blowfish_key {
ulong32 S[4][256];
ulong32 K[18];
};
#endif
#ifdef RC5
struct rc5_key {
int rounds;
ulong32 K[50];
};
#endif
#ifdef RC6
struct rc6_key {
ulong32 K[44];
};
#endif
#ifdef SAFERP
struct saferp_key {
unsigned char K[33][16];
long rounds;
};
#endif
#ifdef RIJNDAEL
struct rijndael_key {
ulong32 eK[60], dK[60];
int Nr;
};
#endif
#ifdef KSEED
struct kseed_key {
ulong32 K[32], dK[32];
};
#endif
#ifdef LTC_KASUMI
struct kasumi_key {
ulong32 KLi1[8], KLi2[8],
KOi1[8], KOi2[8], KOi3[8],
KIi1[8], KIi2[8], KIi3[8];
};
#endif
#ifdef XTEA
struct xtea_key {
unsigned long A[32], B[32];
};
#endif
#ifdef TWOFISH
#ifndef TWOFISH_SMALL
struct twofish_key {
ulong32 S[4][256], K[40];
};
#else
struct twofish_key {
ulong32 K[40];
unsigned char S[32], start;
};
#endif
#endif
#ifdef SAFER
#define SAFER_K64_DEFAULT_NOF_ROUNDS 6
#define SAFER_K128_DEFAULT_NOF_ROUNDS 10
#define SAFER_SK64_DEFAULT_NOF_ROUNDS 8
#define SAFER_SK128_DEFAULT_NOF_ROUNDS 10
#define SAFER_MAX_NOF_ROUNDS 13
#define SAFER_BLOCK_LEN 8
#define SAFER_KEY_LEN (1 + SAFER_BLOCK_LEN * (1 + 2 * SAFER_MAX_NOF_ROUNDS))
typedef unsigned char safer_block_t[SAFER_BLOCK_LEN];
typedef unsigned char safer_key_t[SAFER_KEY_LEN];
struct safer_key { safer_key_t key; };
#endif
#ifdef RC2
struct rc2_key { unsigned xkey[64]; };
#endif
#ifdef DES
struct des_key {
ulong32 ek[32], dk[32];
};
struct des3_key {
ulong32 ek[3][32], dk[3][32];
};
#endif
#ifdef CAST5
struct cast5_key {
ulong32 K[32], keylen;
};
#endif
#ifdef NOEKEON
struct noekeon_key {
ulong32 K[4], dK[4];
};
#endif
#ifdef SKIPJACK
struct skipjack_key {
unsigned char key[10];
};
#endif
#ifdef KHAZAD
struct khazad_key {
ulong64 roundKeyEnc[8 + 1];
ulong64 roundKeyDec[8 + 1];
};
#endif
#ifdef ANUBIS
struct anubis_key {
int keyBits;
int R;
ulong32 roundKeyEnc[18 + 1][4];
ulong32 roundKeyDec[18 + 1][4];
};
#endif
typedef union Symmetric_key {
#ifdef DES
struct des_key des;
struct des3_key des3;
#endif
#ifdef RC2
struct rc2_key rc2;
#endif
#ifdef SAFER
struct safer_key safer;
#endif
#ifdef TWOFISH
struct twofish_key twofish;
#endif
#ifdef BLOWFISH
struct blowfish_key blowfish;
#endif
#ifdef RC5
struct rc5_key rc5;
#endif
#ifdef RC6
struct rc6_key rc6;
#endif
#ifdef SAFERP
struct saferp_key saferp;
#endif
#ifdef RIJNDAEL
struct rijndael_key rijndael;
#endif
#ifdef XTEA
struct xtea_key xtea;
#endif
#ifdef CAST5
struct cast5_key cast5;
#endif
#ifdef NOEKEON
struct noekeon_key noekeon;
#endif
#ifdef SKIPJACK
struct skipjack_key skipjack;
#endif
#ifdef KHAZAD
struct khazad_key khazad;
#endif
#ifdef ANUBIS
struct anubis_key anubis;
#endif
#ifdef KSEED
struct kseed_key kseed;
#endif
#ifdef LTC_KASUMI
struct kasumi_key kasumi;
#endif
void *data;
} symmetric_key;
#ifdef LTC_ECB_MODE
/** A block cipher ECB structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen;
/** The scheduled key */
symmetric_key key;
} symmetric_ECB;
#endif
#ifdef LTC_CFB_MODE
/** A block cipher CFB structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE],
/** The pad used to encrypt/decrypt */
pad[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_CFB;
#endif
#ifdef LTC_OFB_MODE
/** A block cipher OFB structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_OFB;
#endif
#ifdef LTC_CBC_MODE
/** A block cipher CBC structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_CBC;
#endif
#ifdef LTC_CTR_MODE
/** A block cipher CTR structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen,
/** The mode (endianess) of the CTR, 0==little, 1==big */
mode;
/** The counter */
unsigned char ctr[MAXBLOCKSIZE],
/** The pad used to encrypt/decrypt */
pad[MAXBLOCKSIZE];
/** The scheduled key */
symmetric_key key;
} symmetric_CTR;
#endif
#ifdef LTC_LRW_MODE
/** A LRW structure */
typedef struct {
/** The index of the cipher chosen (must be a 128-bit block cipher) */
int cipher;
/** The current IV */
unsigned char IV[16],
/** the tweak key */
tweak[16],
/** The current pad, it's the product of the first 15 bytes against the tweak key */
pad[16];
/** The scheduled symmetric key */
symmetric_key key;
#ifdef LRW_TABLES
/** The pre-computed multiplication table */
unsigned char PC[16][256][16];
#endif
} symmetric_LRW;
#endif
#ifdef LTC_F8_MODE
/** A block cipher F8 structure */
typedef struct {
/** The index of the cipher chosen */
int cipher,
/** The block size of the given cipher */
blocklen,
/** The padding offset */
padlen;
/** The current IV */
unsigned char IV[MAXBLOCKSIZE],
MIV[MAXBLOCKSIZE];
/** Current block count */
ulong32 blockcnt;
/** The scheduled key */
symmetric_key key;
} symmetric_F8;
#endif
/** cipher descriptor table, last entry has "name == NULL" to mark the end of table */
extern struct ltc_cipher_descriptor {
/** name of cipher */
char *name;
/** internal ID */
unsigned char ID;
/** min keysize (octets) */
int min_key_length,
/** max keysize (octets) */
max_key_length,
/** block size (octets) */
block_length,
/** default number of rounds */
default_rounds;
/** Setup the cipher
@param key The input symmetric key
@param keylen The length of the input key (octets)
@param num_rounds The requested number of rounds (0==default)
@param skey [out] The destination of the scheduled key
@return CRYPT_OK if successful
*/
int (*setup)(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
/** Encrypt a block
@param pt The plaintext
@param ct [out] The ciphertext
@param skey The scheduled key
@return CRYPT_OK if successful
*/
int (*ecb_encrypt)(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
/** Decrypt a block
@param ct The ciphertext
@param pt [out] The plaintext
@param skey The scheduled key
@return CRYPT_OK if successful
*/
int (*ecb_decrypt)(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
/** Test the block cipher
@return CRYPT_OK if successful, CRYPT_NOP if self-testing has been disabled
*/
int (*test)(void);
/** Terminate the context
@param skey The scheduled key
*/
void (*done)(symmetric_key *skey);
/** Determine a key size
@param keysize [in/out] The size of the key desired and the suggested size
@return CRYPT_OK if successful
*/
int (*keysize)(int *keysize);
/** Accelerators **/
/** Accelerated ECB encryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_ecb_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, symmetric_key *skey);
/** Accelerated ECB decryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_ecb_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, symmetric_key *skey);
/** Accelerated CBC encryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_cbc_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, symmetric_key *skey);
/** Accelerated CBC decryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_cbc_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, unsigned char *IV, symmetric_key *skey);
/** Accelerated CTR encryption
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param mode little or big endian counter (mode=0 or mode=1)
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_ctr_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, int mode, symmetric_key *skey);
/** Accelerated LRW
@param pt Plaintext
@param ct Ciphertext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param tweak The LRW tweak
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_lrw_encrypt)(const unsigned char *pt, unsigned char *ct, unsigned long blocks, unsigned char *IV, const unsigned char *tweak, symmetric_key *skey);
/** Accelerated LRW
@param ct Ciphertext
@param pt Plaintext
@param blocks The number of complete blocks to process
@param IV The initial value (input/output)
@param tweak The LRW tweak
@param skey The scheduled key context
@return CRYPT_OK if successful
*/
int (*accel_lrw_decrypt)(const unsigned char *ct, unsigned char *pt, unsigned long blocks, unsigned char *IV, const unsigned char *tweak, symmetric_key *skey);
/** Accelerated CCM packet (one-shot)
@param key The secret key to use
@param keylen The length of the secret key (octets)
@param uskey A previously scheduled key [optional can be NULL]
@param nonce The session nonce [use once]
@param noncelen The length of the nonce
@param header The header for the session
@param headerlen The length of the header (octets)
@param pt [out] The plaintext
@param ptlen The length of the plaintext (octets)
@param ct [out] The ciphertext
@param tag [out] The destination tag
@param taglen [in/out] The max size and resulting size of the authentication tag
@param direction Encrypt or Decrypt direction (0 or 1)
@return CRYPT_OK if successful
*/
int (*accel_ccm_memory)(
const unsigned char *key, unsigned long keylen,
symmetric_key *uskey,
const unsigned char *nonce, unsigned long noncelen,
const unsigned char *header, unsigned long headerlen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
/** Accelerated GCM packet (one shot)
@param key The secret key
@param keylen The length of the secret key
@param IV The initial vector
@param IVlen The length of the initial vector
@param adata The additional authentication data (header)
@param adatalen The length of the adata
@param pt The plaintext
@param ptlen The length of the plaintext (ciphertext length is the same)
@param ct The ciphertext
@param tag [out] The MAC tag
@param taglen [in/out] The MAC tag length
@param direction Encrypt or Decrypt mode (GCM_ENCRYPT or GCM_DECRYPT)
@return CRYPT_OK on success
*/
int (*accel_gcm_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *IV, unsigned long IVlen,
const unsigned char *adata, unsigned long adatalen,
unsigned char *pt, unsigned long ptlen,
unsigned char *ct,
unsigned char *tag, unsigned long *taglen,
int direction);
/** Accelerated one shot OMAC
@param key The secret key
@param keylen The key length (octets)
@param in The message
@param inlen Length of message (octets)
@param out [out] Destination for tag
@param outlen [in/out] Initial and final size of out
@return CRYPT_OK on success
*/
int (*omac_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
/** Accelerated one shot XCBC
@param key The secret key
@param keylen The key length (octets)
@param in The message
@param inlen Length of message (octets)
@param out [out] Destination for tag
@param outlen [in/out] Initial and final size of out
@return CRYPT_OK on success
*/
int (*xcbc_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
/** Accelerated one shot F9
@param key The secret key
@param keylen The key length (octets)
@param in The message
@param inlen Length of message (octets)
@param out [out] Destination for tag
@param outlen [in/out] Initial and final size of out
@return CRYPT_OK on success
@remark Requires manual padding
*/
int (*f9_memory)(
const unsigned char *key, unsigned long keylen,
const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen);
} cipher_descriptor[];
#ifdef BLOWFISH
int blowfish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int blowfish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int blowfish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int blowfish_test(void);
void blowfish_done(symmetric_key *skey);
int blowfish_keysize(int *keysize);
extern const struct ltc_cipher_descriptor blowfish_desc;
#endif
#ifdef RC5
int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rc5_test(void);
void rc5_done(symmetric_key *skey);
int rc5_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rc5_desc;
#endif
#ifdef RC6
int rc6_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rc6_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rc6_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rc6_test(void);
void rc6_done(symmetric_key *skey);
int rc6_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rc6_desc;
#endif
#ifdef RC2
int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rc2_test(void);
void rc2_done(symmetric_key *skey);
int rc2_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rc2_desc;
#endif
#ifdef SAFERP
int saferp_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int saferp_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int saferp_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int saferp_test(void);
void saferp_done(symmetric_key *skey);
int saferp_keysize(int *keysize);
extern const struct ltc_cipher_descriptor saferp_desc;
#endif
#ifdef SAFER
int safer_k64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_sk64_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_k128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_sk128_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int safer_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *key);
int safer_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *key);
int safer_k64_test(void);
int safer_sk64_test(void);
int safer_sk128_test(void);
void safer_done(symmetric_key *skey);
int safer_64_keysize(int *keysize);
int safer_128_keysize(int *keysize);
extern const struct ltc_cipher_descriptor safer_k64_desc, safer_k128_desc, safer_sk64_desc, safer_sk128_desc;
#endif
#ifdef RIJNDAEL
/* make aes an alias */
#define aes_setup rijndael_setup
#define aes_ecb_encrypt rijndael_ecb_encrypt
#define aes_ecb_decrypt rijndael_ecb_decrypt
#define aes_test rijndael_test
#define aes_done rijndael_done
#define aes_keysize rijndael_keysize
#define aes_enc_setup rijndael_enc_setup
#define aes_enc_ecb_encrypt rijndael_enc_ecb_encrypt
#define aes_enc_keysize rijndael_enc_keysize
int rijndael_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int rijndael_test(void);
void rijndael_done(symmetric_key *skey);
int rijndael_keysize(int *keysize);
int rijndael_enc_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int rijndael_enc_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
void rijndael_enc_done(symmetric_key *skey);
int rijndael_enc_keysize(int *keysize);
extern const struct ltc_cipher_descriptor rijndael_desc, aes_desc;
extern const struct ltc_cipher_descriptor rijndael_enc_desc, aes_enc_desc;
#endif
#ifdef XTEA
int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int xtea_test(void);
void xtea_done(symmetric_key *skey);
int xtea_keysize(int *keysize);
extern const struct ltc_cipher_descriptor xtea_desc;
#endif
#ifdef TWOFISH
int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int twofish_test(void);
void twofish_done(symmetric_key *skey);
int twofish_keysize(int *keysize);
extern const struct ltc_cipher_descriptor twofish_desc;
#endif
#ifdef DES
int des_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int des_test(void);
void des_done(symmetric_key *skey);
int des_keysize(int *keysize);
int des3_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int des3_test(void);
void des3_done(symmetric_key *skey);
int des3_keysize(int *keysize);
extern const struct ltc_cipher_descriptor des_desc, des3_desc;
#endif
#ifdef CAST5
int cast5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int cast5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int cast5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int cast5_test(void);
void cast5_done(symmetric_key *skey);
int cast5_keysize(int *keysize);
extern const struct ltc_cipher_descriptor cast5_desc;
#endif
#ifdef NOEKEON
int noekeon_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int noekeon_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int noekeon_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int noekeon_test(void);
void noekeon_done(symmetric_key *skey);
int noekeon_keysize(int *keysize);
extern const struct ltc_cipher_descriptor noekeon_desc;
#endif
#ifdef SKIPJACK
int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int skipjack_test(void);
void skipjack_done(symmetric_key *skey);
int skipjack_keysize(int *keysize);
extern const struct ltc_cipher_descriptor skipjack_desc;
#endif
#ifdef KHAZAD
int khazad_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int khazad_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int khazad_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int khazad_test(void);
void khazad_done(symmetric_key *skey);
int khazad_keysize(int *keysize);
extern const struct ltc_cipher_descriptor khazad_desc;
#endif
#ifdef ANUBIS
int anubis_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int anubis_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int anubis_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int anubis_test(void);
void anubis_done(symmetric_key *skey);
int anubis_keysize(int *keysize);
extern const struct ltc_cipher_descriptor anubis_desc;
#endif
#ifdef KSEED
int kseed_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int kseed_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int kseed_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int kseed_test(void);
void kseed_done(symmetric_key *skey);
int kseed_keysize(int *keysize);
extern const struct ltc_cipher_descriptor kseed_desc;
#endif
#ifdef LTC_KASUMI
int kasumi_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey);
int kasumi_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey);
int kasumi_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey);
int kasumi_test(void);
void kasumi_done(symmetric_key *skey);
int kasumi_keysize(int *keysize);
extern const struct ltc_cipher_descriptor kasumi_desc;
#endif
#ifdef LTC_ECB_MODE
int ecb_start(int cipher, const unsigned char *key,
int keylen, int num_rounds, symmetric_ECB *ecb);
int ecb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_ECB *ecb);
int ecb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_ECB *ecb);
int ecb_done(symmetric_ECB *ecb);
#endif
#ifdef LTC_CFB_MODE
int cfb_start(int cipher, const unsigned char *IV, const unsigned char *key,
int keylen, int num_rounds, symmetric_CFB *cfb);
int cfb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CFB *cfb);
int cfb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CFB *cfb);
int cfb_getiv(unsigned char *IV, unsigned long *len, symmetric_CFB *cfb);
int cfb_setiv(const unsigned char *IV, unsigned long len, symmetric_CFB *cfb);
int cfb_done(symmetric_CFB *cfb);
#endif
#ifdef LTC_OFB_MODE
int ofb_start(int cipher, const unsigned char *IV, const unsigned char *key,
int keylen, int num_rounds, symmetric_OFB *ofb);
int ofb_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_OFB *ofb);
int ofb_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_OFB *ofb);
int ofb_getiv(unsigned char *IV, unsigned long *len, symmetric_OFB *ofb);
int ofb_setiv(const unsigned char *IV, unsigned long len, symmetric_OFB *ofb);
int ofb_done(symmetric_OFB *ofb);
#endif
#ifdef LTC_CBC_MODE
int cbc_start(int cipher, const unsigned char *IV, const unsigned char *key,
int keylen, int num_rounds, symmetric_CBC *cbc);
int cbc_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CBC *cbc);
int cbc_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CBC *cbc);
int cbc_getiv(unsigned char *IV, unsigned long *len, symmetric_CBC *cbc);
int cbc_setiv(const unsigned char *IV, unsigned long len, symmetric_CBC *cbc);
int cbc_done(symmetric_CBC *cbc);
#endif
#ifdef LTC_CTR_MODE
#define CTR_COUNTER_LITTLE_ENDIAN 0
#define CTR_COUNTER_BIG_ENDIAN 1
#define LTC_CTR_RFC3686 2
int ctr_start( int cipher,
const unsigned char *IV,
const unsigned char *key, int keylen,
int num_rounds, int ctr_mode,
symmetric_CTR *ctr);
int ctr_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_CTR *ctr);
int ctr_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_CTR *ctr);
int ctr_getiv(unsigned char *IV, unsigned long *len, symmetric_CTR *ctr);
int ctr_setiv(const unsigned char *IV, unsigned long len, symmetric_CTR *ctr);
int ctr_done(symmetric_CTR *ctr);
int ctr_test(void);
#endif
#ifdef LTC_LRW_MODE
#define LRW_ENCRYPT 0
#define LRW_DECRYPT 1
int lrw_start( int cipher,
const unsigned char *IV,
const unsigned char *key, int keylen,
const unsigned char *tweak,
int num_rounds,
symmetric_LRW *lrw);
int lrw_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_LRW *lrw);
int lrw_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_LRW *lrw);
int lrw_getiv(unsigned char *IV, unsigned long *len, symmetric_LRW *lrw);
int lrw_setiv(const unsigned char *IV, unsigned long len, symmetric_LRW *lrw);
int lrw_done(symmetric_LRW *lrw);
int lrw_test(void);
/* don't call */
int lrw_process(const unsigned char *pt, unsigned char *ct, unsigned long len, int mode, symmetric_LRW *lrw);
#endif
#ifdef LTC_F8_MODE
int f8_start( int cipher, const unsigned char *IV,
const unsigned char *key, int keylen,
const unsigned char *salt_key, int skeylen,
int num_rounds, symmetric_F8 *f8);
int f8_encrypt(const unsigned char *pt, unsigned char *ct, unsigned long len, symmetric_F8 *f8);
int f8_decrypt(const unsigned char *ct, unsigned char *pt, unsigned long len, symmetric_F8 *f8);
int f8_getiv(unsigned char *IV, unsigned long *len, symmetric_F8 *f8);
int f8_setiv(const unsigned char *IV, unsigned long len, symmetric_F8 *f8);
int f8_done(symmetric_F8 *f8);
int f8_test_mode(void);
#endif
int find_cipher(const char *name);
int find_cipher_any(const char *name, int blocklen, int keylen);
int find_cipher_id(unsigned char ID);
int register_cipher(const struct ltc_cipher_descriptor *cipher);
int unregister_cipher(const struct ltc_cipher_descriptor *cipher);
int cipher_is_valid(int idx);
LTC_MUTEX_PROTO(ltc_cipher_mutex)
/* $Source: /cvs/libtom/libtomcrypt/src/headers/tomcrypt_cipher.h,v $ */
/* $Revision: 1.46 $ */
/* $Date: 2006/11/13 23:09:38 $ */