HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Kitkat
|
4.4.4_r1
下载
查看原文件
收藏
根目录
external
clang
lib
Sema
TreeTransform.h
//===------- TreeTransform.h - Semantic Tree Transformation -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===// // // This file implements a semantic tree transformation that takes a given // AST and rebuilds it, possibly transforming some nodes in the process. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_SEMA_TREETRANSFORM_H #define LLVM_CLANG_SEMA_TREETRANSFORM_H #include "TypeLocBuilder.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtOpenMP.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Designator.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/ParsedTemplate.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaDiagnostic.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Support/ErrorHandling.h" #include
namespace clang { using namespace sema; /// \brief A semantic tree transformation that allows one to transform one /// abstract syntax tree into another. /// /// A new tree transformation is defined by creating a new subclass \c X of /// \c TreeTransform
and then overriding certain operations to provide /// behavior specific to that transformation. For example, template /// instantiation is implemented as a tree transformation where the /// transformation of TemplateTypeParmType nodes involves substituting the /// template arguments for their corresponding template parameters; a similar /// transformation is performed for non-type template parameters and /// template template parameters. /// /// This tree-transformation template uses static polymorphism to allow /// subclasses to customize any of its operations. Thus, a subclass can /// override any of the transformation or rebuild operators by providing an /// operation with the same signature as the default implementation. The /// overridding function should not be virtual. /// /// Semantic tree transformations are split into two stages, either of which /// can be replaced by a subclass. The "transform" step transforms an AST node /// or the parts of an AST node using the various transformation functions, /// then passes the pieces on to the "rebuild" step, which constructs a new AST /// node of the appropriate kind from the pieces. The default transformation /// routines recursively transform the operands to composite AST nodes (e.g., /// the pointee type of a PointerType node) and, if any of those operand nodes /// were changed by the transformation, invokes the rebuild operation to create /// a new AST node. /// /// Subclasses can customize the transformation at various levels. The /// most coarse-grained transformations involve replacing TransformType(), /// TransformExpr(), TransformDecl(), TransformNestedNameSpecifierLoc(), /// TransformTemplateName(), or TransformTemplateArgument() with entirely /// new implementations. /// /// For more fine-grained transformations, subclasses can replace any of the /// \c TransformXXX functions (where XXX is the name of an AST node, e.g., /// PointerType, StmtExpr) to alter the transformation. As mentioned previously, /// replacing TransformTemplateTypeParmType() allows template instantiation /// to substitute template arguments for their corresponding template /// parameters. Additionally, subclasses can override the \c RebuildXXX /// functions to control how AST nodes are rebuilt when their operands change. /// By default, \c TreeTransform will invoke semantic analysis to rebuild /// AST nodes. However, certain other tree transformations (e.g, cloning) may /// be able to use more efficient rebuild steps. /// /// There are a handful of other functions that can be overridden, allowing one /// to avoid traversing nodes that don't need any transformation /// (\c AlreadyTransformed()), force rebuilding AST nodes even when their /// operands have not changed (\c AlwaysRebuild()), and customize the /// default locations and entity names used for type-checking /// (\c getBaseLocation(), \c getBaseEntity()). template
class TreeTransform { /// \brief Private RAII object that helps us forget and then re-remember /// the template argument corresponding to a partially-substituted parameter /// pack. class ForgetPartiallySubstitutedPackRAII { Derived &Self; TemplateArgument Old; public: ForgetPartiallySubstitutedPackRAII(Derived &Self) : Self(Self) { Old = Self.ForgetPartiallySubstitutedPack(); } ~ForgetPartiallySubstitutedPackRAII() { Self.RememberPartiallySubstitutedPack(Old); } }; protected: Sema &SemaRef; /// \brief The set of local declarations that have been transformed, for /// cases where we are forced to build new declarations within the transformer /// rather than in the subclass (e.g., lambda closure types). llvm::DenseMap
TransformedLocalDecls; public: /// \brief Initializes a new tree transformer. TreeTransform(Sema &SemaRef) : SemaRef(SemaRef) { } /// \brief Retrieves a reference to the derived class. Derived &getDerived() { return static_cast
(*this); } /// \brief Retrieves a reference to the derived class. const Derived &getDerived() const { return static_cast
(*this); } static inline ExprResult Owned(Expr *E) { return E; } static inline StmtResult Owned(Stmt *S) { return S; } /// \brief Retrieves a reference to the semantic analysis object used for /// this tree transform. Sema &getSema() const { return SemaRef; } /// \brief Whether the transformation should always rebuild AST nodes, even /// if none of the children have changed. /// /// Subclasses may override this function to specify when the transformation /// should rebuild all AST nodes. bool AlwaysRebuild() { return false; } /// \brief Returns the location of the entity being transformed, if that /// information was not available elsewhere in the AST. /// /// By default, returns no source-location information. Subclasses can /// provide an alternative implementation that provides better location /// information. SourceLocation getBaseLocation() { return SourceLocation(); } /// \brief Returns the name of the entity being transformed, if that /// information was not available elsewhere in the AST. /// /// By default, returns an empty name. Subclasses can provide an alternative /// implementation with a more precise name. DeclarationName getBaseEntity() { return DeclarationName(); } /// \brief Sets the "base" location and entity when that /// information is known based on another transformation. /// /// By default, the source location and entity are ignored. Subclasses can /// override this function to provide a customized implementation. void setBase(SourceLocation Loc, DeclarationName Entity) { } /// \brief RAII object that temporarily sets the base location and entity /// used for reporting diagnostics in types. class TemporaryBase { TreeTransform &Self; SourceLocation OldLocation; DeclarationName OldEntity; public: TemporaryBase(TreeTransform &Self, SourceLocation Location, DeclarationName Entity) : Self(Self) { OldLocation = Self.getDerived().getBaseLocation(); OldEntity = Self.getDerived().getBaseEntity(); if (Location.isValid()) Self.getDerived().setBase(Location, Entity); } ~TemporaryBase() { Self.getDerived().setBase(OldLocation, OldEntity); } }; /// \brief Determine whether the given type \p T has already been /// transformed. /// /// Subclasses can provide an alternative implementation of this routine /// to short-circuit evaluation when it is known that a given type will /// not change. For example, template instantiation need not traverse /// non-dependent types. bool AlreadyTransformed(QualType T) { return T.isNull(); } /// \brief Determine whether the given call argument should be dropped, e.g., /// because it is a default argument. /// /// Subclasses can provide an alternative implementation of this routine to /// determine which kinds of call arguments get dropped. By default, /// CXXDefaultArgument nodes are dropped (prior to transformation). bool DropCallArgument(Expr *E) { return E->isDefaultArgument(); } /// \brief Determine whether we should expand a pack expansion with the /// given set of parameter packs into separate arguments by repeatedly /// transforming the pattern. /// /// By default, the transformer never tries to expand pack expansions. /// Subclasses can override this routine to provide different behavior. /// /// \param EllipsisLoc The location of the ellipsis that identifies the /// pack expansion. /// /// \param PatternRange The source range that covers the entire pattern of /// the pack expansion. /// /// \param Unexpanded The set of unexpanded parameter packs within the /// pattern. /// /// \param ShouldExpand Will be set to \c true if the transformer should /// expand the corresponding pack expansions into separate arguments. When /// set, \c NumExpansions must also be set. /// /// \param RetainExpansion Whether the caller should add an unexpanded /// pack expansion after all of the expanded arguments. This is used /// when extending explicitly-specified template argument packs per /// C++0x [temp.arg.explicit]p9. /// /// \param NumExpansions The number of separate arguments that will be in /// the expanded form of the corresponding pack expansion. This is both an /// input and an output parameter, which can be set by the caller if the /// number of expansions is known a priori (e.g., due to a prior substitution) /// and will be set by the callee when the number of expansions is known. /// The callee must set this value when \c ShouldExpand is \c true; it may /// set this value in other cases. /// /// \returns true if an error occurred (e.g., because the parameter packs /// are to be instantiated with arguments of different lengths), false /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions) /// must be set. bool TryExpandParameterPacks(SourceLocation EllipsisLoc, SourceRange PatternRange, ArrayRef
Unexpanded, bool &ShouldExpand, bool &RetainExpansion, Optional
&NumExpansions) { ShouldExpand = false; return false; } /// \brief "Forget" about the partially-substituted pack template argument, /// when performing an instantiation that must preserve the parameter pack /// use. /// /// This routine is meant to be overridden by the template instantiator. TemplateArgument ForgetPartiallySubstitutedPack() { return TemplateArgument(); } /// \brief "Remember" the partially-substituted pack template argument /// after performing an instantiation that must preserve the parameter pack /// use. /// /// This routine is meant to be overridden by the template instantiator. void RememberPartiallySubstitutedPack(TemplateArgument Arg) { } /// \brief Note to the derived class when a function parameter pack is /// being expanded. void ExpandingFunctionParameterPack(ParmVarDecl *Pack) { } /// \brief Transforms the given type into another type. /// /// By default, this routine transforms a type by creating a /// TypeSourceInfo for it and delegating to the appropriate /// function. This is expensive, but we don't mind, because /// this method is deprecated anyway; all users should be /// switched to storing TypeSourceInfos. /// /// \returns the transformed type. QualType TransformType(QualType T); /// \brief Transforms the given type-with-location into a new /// type-with-location. /// /// By default, this routine transforms a type by delegating to the /// appropriate TransformXXXType to build a new type. Subclasses /// may override this function (to take over all type /// transformations) or some set of the TransformXXXType functions /// to alter the transformation. TypeSourceInfo *TransformType(TypeSourceInfo *DI); /// \brief Transform the given type-with-location into a new /// type, collecting location information in the given builder /// as necessary. /// QualType TransformType(TypeLocBuilder &TLB, TypeLoc TL); /// \brief Transform the given statement. /// /// By default, this routine transforms a statement by delegating to the /// appropriate TransformXXXStmt function to transform a specific kind of /// statement or the TransformExpr() function to transform an expression. /// Subclasses may override this function to transform statements using some /// other mechanism. /// /// \returns the transformed statement. StmtResult TransformStmt(Stmt *S); /// \brief Transform the given statement. /// /// By default, this routine transforms a statement by delegating to the /// appropriate TransformOMPXXXClause function to transform a specific kind /// of clause. Subclasses may override this function to transform statements /// using some other mechanism. /// /// \returns the transformed OpenMP clause. OMPClause *TransformOMPClause(OMPClause *S); /// \brief Transform the given expression. /// /// By default, this routine transforms an expression by delegating to the /// appropriate TransformXXXExpr function to build a new expression. /// Subclasses may override this function to transform expressions using some /// other mechanism. /// /// \returns the transformed expression. ExprResult TransformExpr(Expr *E); /// \brief Transform the given initializer. /// /// By default, this routine transforms an initializer by stripping off the /// semantic nodes added by initialization, then passing the result to /// TransformExpr or TransformExprs. /// /// \returns the transformed initializer. ExprResult TransformInitializer(Expr *Init, bool CXXDirectInit); /// \brief Transform the given list of expressions. /// /// This routine transforms a list of expressions by invoking /// \c TransformExpr() for each subexpression. However, it also provides /// support for variadic templates by expanding any pack expansions (if the /// derived class permits such expansion) along the way. When pack expansions /// are present, the number of outputs may not equal the number of inputs. /// /// \param Inputs The set of expressions to be transformed. /// /// \param NumInputs The number of expressions in \c Inputs. /// /// \param IsCall If \c true, then this transform is being performed on /// function-call arguments, and any arguments that should be dropped, will /// be. /// /// \param Outputs The transformed input expressions will be added to this /// vector. /// /// \param ArgChanged If non-NULL, will be set \c true if any argument changed /// due to transformation. /// /// \returns true if an error occurred, false otherwise. bool TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall, SmallVectorImpl
&Outputs, bool *ArgChanged = 0); /// \brief Transform the given declaration, which is referenced from a type /// or expression. /// /// By default, acts as the identity function on declarations, unless the /// transformer has had to transform the declaration itself. Subclasses /// may override this function to provide alternate behavior. Decl *TransformDecl(SourceLocation Loc, Decl *D) { llvm::DenseMap
::iterator Known = TransformedLocalDecls.find(D); if (Known != TransformedLocalDecls.end()) return Known->second; return D; } /// \brief Transform the attributes associated with the given declaration and /// place them on the new declaration. /// /// By default, this operation does nothing. Subclasses may override this /// behavior to transform attributes. void transformAttrs(Decl *Old, Decl *New) { } /// \brief Note that a local declaration has been transformed by this /// transformer. /// /// Local declarations are typically transformed via a call to /// TransformDefinition. However, in some cases (e.g., lambda expressions), /// the transformer itself has to transform the declarations. This routine /// can be overridden by a subclass that keeps track of such mappings. void transformedLocalDecl(Decl *Old, Decl *New) { TransformedLocalDecls[Old] = New; } /// \brief Transform the definition of the given declaration. /// /// By default, invokes TransformDecl() to transform the declaration. /// Subclasses may override this function to provide alternate behavior. Decl *TransformDefinition(SourceLocation Loc, Decl *D) { return getDerived().TransformDecl(Loc, D); } /// \brief Transform the given declaration, which was the first part of a /// nested-name-specifier in a member access expression. /// /// This specific declaration transformation only applies to the first /// identifier in a nested-name-specifier of a member access expression, e.g., /// the \c T in \c x->T::member /// /// By default, invokes TransformDecl() to transform the declaration. /// Subclasses may override this function to provide alternate behavior. NamedDecl *TransformFirstQualifierInScope(NamedDecl *D, SourceLocation Loc) { return cast_or_null
(getDerived().TransformDecl(Loc, D)); } /// \brief Transform the given nested-name-specifier with source-location /// information. /// /// By default, transforms all of the types and declarations within the /// nested-name-specifier. Subclasses may override this function to provide /// alternate behavior. NestedNameSpecifierLoc TransformNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS, QualType ObjectType = QualType(), NamedDecl *FirstQualifierInScope = 0); /// \brief Transform the given declaration name. /// /// By default, transforms the types of conversion function, constructor, /// and destructor names and then (if needed) rebuilds the declaration name. /// Identifiers and selectors are returned unmodified. Sublcasses may /// override this function to provide alternate behavior. DeclarationNameInfo TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo); /// \brief Transform the given template name. /// /// \param SS The nested-name-specifier that qualifies the template /// name. This nested-name-specifier must already have been transformed. /// /// \param Name The template name to transform. /// /// \param NameLoc The source location of the template name. /// /// \param ObjectType If we're translating a template name within a member /// access expression, this is the type of the object whose member template /// is being referenced. /// /// \param FirstQualifierInScope If the first part of a nested-name-specifier /// also refers to a name within the current (lexical) scope, this is the /// declaration it refers to. /// /// By default, transforms the template name by transforming the declarations /// and nested-name-specifiers that occur within the template name. /// Subclasses may override this function to provide alternate behavior. TemplateName TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, SourceLocation NameLoc, QualType ObjectType = QualType(), NamedDecl *FirstQualifierInScope = 0); /// \brief Transform the given template argument. /// /// By default, this operation transforms the type, expression, or /// declaration stored within the template argument and constructs a /// new template argument from the transformed result. Subclasses may /// override this function to provide alternate behavior. /// /// Returns true if there was an error. bool TransformTemplateArgument(const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output); /// \brief Transform the given set of template arguments. /// /// By default, this operation transforms all of the template arguments /// in the input set using \c TransformTemplateArgument(), and appends /// the transformed arguments to the output list. /// /// Note that this overload of \c TransformTemplateArguments() is merely /// a convenience function. Subclasses that wish to override this behavior /// should override the iterator-based member template version. /// /// \param Inputs The set of template arguments to be transformed. /// /// \param NumInputs The number of template arguments in \p Inputs. /// /// \param Outputs The set of transformed template arguments output by this /// routine. /// /// Returns true if an error occurred. bool TransformTemplateArguments(const TemplateArgumentLoc *Inputs, unsigned NumInputs, TemplateArgumentListInfo &Outputs) { return TransformTemplateArguments(Inputs, Inputs + NumInputs, Outputs); } /// \brief Transform the given set of template arguments. /// /// By default, this operation transforms all of the template arguments /// in the input set using \c TransformTemplateArgument(), and appends /// the transformed arguments to the output list. /// /// \param First An iterator to the first template argument. /// /// \param Last An iterator one step past the last template argument. /// /// \param Outputs The set of transformed template arguments output by this /// routine. /// /// Returns true if an error occurred. template
bool TransformTemplateArguments(InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs); /// \brief Fakes up a TemplateArgumentLoc for a given TemplateArgument. void InventTemplateArgumentLoc(const TemplateArgument &Arg, TemplateArgumentLoc &ArgLoc); /// \brief Fakes up a TypeSourceInfo for a type. TypeSourceInfo *InventTypeSourceInfo(QualType T) { return SemaRef.Context.getTrivialTypeSourceInfo(T, getDerived().getBaseLocation()); } #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ QualType Transform##CLASS##Type(TypeLocBuilder &TLB, CLASS##TypeLoc T); #include "clang/AST/TypeLocNodes.def" QualType TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, unsigned ThisTypeQuals); StmtResult TransformSEHHandler(Stmt *Handler); QualType TransformTemplateSpecializationType(TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL, TemplateName Template); QualType TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, TemplateName Template, CXXScopeSpec &SS); QualType TransformDependentTemplateSpecializationType(TypeLocBuilder &TLB, DependentTemplateSpecializationTypeLoc TL, NestedNameSpecifierLoc QualifierLoc); /// \brief Transforms the parameters of a function type into the /// given vectors. /// /// The result vectors should be kept in sync; null entries in the /// variables vector are acceptable. /// /// Return true on error. bool TransformFunctionTypeParams(SourceLocation Loc, ParmVarDecl **Params, unsigned NumParams, const QualType *ParamTypes, SmallVectorImpl
&PTypes, SmallVectorImpl
*PVars); /// \brief Transforms a single function-type parameter. Return null /// on error. /// /// \param indexAdjustment - A number to add to the parameter's /// scope index; can be negative ParmVarDecl *TransformFunctionTypeParam(ParmVarDecl *OldParm, int indexAdjustment, Optional
NumExpansions, bool ExpectParameterPack); QualType TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL); StmtResult TransformCompoundStmt(CompoundStmt *S, bool IsStmtExpr); ExprResult TransformCXXNamedCastExpr(CXXNamedCastExpr *E); /// \brief Transform the captures and body of a lambda expression. ExprResult TransformLambdaScope(LambdaExpr *E, CXXMethodDecl *CallOperator); ExprResult TransformAddressOfOperand(Expr *E); ExprResult TransformDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E, bool IsAddressOfOperand); #define STMT(Node, Parent) \ StmtResult Transform##Node(Node *S); #define EXPR(Node, Parent) \ ExprResult Transform##Node(Node *E); #define ABSTRACT_STMT(Stmt) #include "clang/AST/StmtNodes.inc" #define OPENMP_CLAUSE(Name, Class) \ OMPClause *Transform ## Class(Class *S); #include "clang/Basic/OpenMPKinds.def" /// \brief Build a new pointer type given its pointee type. /// /// By default, performs semantic analysis when building the pointer type. /// Subclasses may override this routine to provide different behavior. QualType RebuildPointerType(QualType PointeeType, SourceLocation Sigil); /// \brief Build a new block pointer type given its pointee type. /// /// By default, performs semantic analysis when building the block pointer /// type. Subclasses may override this routine to provide different behavior. QualType RebuildBlockPointerType(QualType PointeeType, SourceLocation Sigil); /// \brief Build a new reference type given the type it references. /// /// By default, performs semantic analysis when building the /// reference type. Subclasses may override this routine to provide /// different behavior. /// /// \param LValue whether the type was written with an lvalue sigil /// or an rvalue sigil. QualType RebuildReferenceType(QualType ReferentType, bool LValue, SourceLocation Sigil); /// \brief Build a new member pointer type given the pointee type and the /// class type it refers into. /// /// By default, performs semantic analysis when building the member pointer /// type. Subclasses may override this routine to provide different behavior. QualType RebuildMemberPointerType(QualType PointeeType, QualType ClassType, SourceLocation Sigil); /// \brief Build a new array type given the element type, size /// modifier, size of the array (if known), size expression, and index type /// qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. /// Also by default, all of the other Rebuild*Array QualType RebuildArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, const llvm::APInt *Size, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new constant array type given the element type, size /// modifier, (known) size of the array, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildConstantArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, const llvm::APInt &Size, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new incomplete array type given the element type, size /// modifier, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildIncompleteArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new variable-length array type given the element type, /// size modifier, size expression, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildVariableArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new dependent-sized array type given the element type, /// size modifier, size expression, and index type qualifiers. /// /// By default, performs semantic analysis when building the array type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDependentSizedArrayType(QualType ElementType, ArrayType::ArraySizeModifier SizeMod, Expr *SizeExpr, unsigned IndexTypeQuals, SourceRange BracketsRange); /// \brief Build a new vector type given the element type and /// number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildVectorType(QualType ElementType, unsigned NumElements, VectorType::VectorKind VecKind); /// \brief Build a new extended vector type given the element type and /// number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildExtVectorType(QualType ElementType, unsigned NumElements, SourceLocation AttributeLoc); /// \brief Build a new potentially dependently-sized extended vector type /// given the element type and number of elements. /// /// By default, performs semantic analysis when building the vector type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDependentSizedExtVectorType(QualType ElementType, Expr *SizeExpr, SourceLocation AttributeLoc); /// \brief Build a new function type. /// /// By default, performs semantic analysis when building the function type. /// Subclasses may override this routine to provide different behavior. QualType RebuildFunctionProtoType(QualType T, llvm::MutableArrayRef
ParamTypes, const FunctionProtoType::ExtProtoInfo &EPI); /// \brief Build a new unprototyped function type. QualType RebuildFunctionNoProtoType(QualType ResultType); /// \brief Rebuild an unresolved typename type, given the decl that /// the UnresolvedUsingTypenameDecl was transformed to. QualType RebuildUnresolvedUsingType(Decl *D); /// \brief Build a new typedef type. QualType RebuildTypedefType(TypedefNameDecl *Typedef) { return SemaRef.Context.getTypeDeclType(Typedef); } /// \brief Build a new class/struct/union type. QualType RebuildRecordType(RecordDecl *Record) { return SemaRef.Context.getTypeDeclType(Record); } /// \brief Build a new Enum type. QualType RebuildEnumType(EnumDecl *Enum) { return SemaRef.Context.getTypeDeclType(Enum); } /// \brief Build a new typeof(expr) type. /// /// By default, performs semantic analysis when building the typeof type. /// Subclasses may override this routine to provide different behavior. QualType RebuildTypeOfExprType(Expr *Underlying, SourceLocation Loc); /// \brief Build a new typeof(type) type. /// /// By default, builds a new TypeOfType with the given underlying type. QualType RebuildTypeOfType(QualType Underlying); /// \brief Build a new unary transform type. QualType RebuildUnaryTransformType(QualType BaseType, UnaryTransformType::UTTKind UKind, SourceLocation Loc); /// \brief Build a new C++11 decltype type. /// /// By default, performs semantic analysis when building the decltype type. /// Subclasses may override this routine to provide different behavior. QualType RebuildDecltypeType(Expr *Underlying, SourceLocation Loc); /// \brief Build a new C++11 auto type. /// /// By default, builds a new AutoType with the given deduced type. QualType RebuildAutoType(QualType Deduced, bool IsDecltypeAuto) { // Note, IsDependent is always false here: we implicitly convert an 'auto' // which has been deduced to a dependent type into an undeduced 'auto', so // that we'll retry deduction after the transformation. return SemaRef.Context.getAutoType(Deduced, IsDecltypeAuto); } /// \brief Build a new template specialization type. /// /// By default, performs semantic analysis when building the template /// specialization type. Subclasses may override this routine to provide /// different behavior. QualType RebuildTemplateSpecializationType(TemplateName Template, SourceLocation TemplateLoc, TemplateArgumentListInfo &Args); /// \brief Build a new parenthesized type. /// /// By default, builds a new ParenType type from the inner type. /// Subclasses may override this routine to provide different behavior. QualType RebuildParenType(QualType InnerType) { return SemaRef.Context.getParenType(InnerType); } /// \brief Build a new qualified name type. /// /// By default, builds a new ElaboratedType type from the keyword, /// the nested-name-specifier and the named type. /// Subclasses may override this routine to provide different behavior. QualType RebuildElaboratedType(SourceLocation KeywordLoc, ElaboratedTypeKeyword Keyword, NestedNameSpecifierLoc QualifierLoc, QualType Named) { return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), Named); } /// \brief Build a new typename type that refers to a template-id. /// /// By default, builds a new DependentNameType type from the /// nested-name-specifier and the given type. Subclasses may override /// this routine to provide different behavior. QualType RebuildDependentTemplateSpecializationType( ElaboratedTypeKeyword Keyword, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo *Name, SourceLocation NameLoc, TemplateArgumentListInfo &Args) { // Rebuild the template name. // TODO: avoid TemplateName abstraction CXXScopeSpec SS; SS.Adopt(QualifierLoc); TemplateName InstName = getDerived().RebuildTemplateName(SS, *Name, NameLoc, QualType(), 0); if (InstName.isNull()) return QualType(); // If it's still dependent, make a dependent specialization. if (InstName.getAsDependentTemplateName()) return SemaRef.Context.getDependentTemplateSpecializationType(Keyword, QualifierLoc.getNestedNameSpecifier(), Name, Args); // Otherwise, make an elaborated type wrapping a non-dependent // specialization. QualType T = getDerived().RebuildTemplateSpecializationType(InstName, NameLoc, Args); if (T.isNull()) return QualType(); if (Keyword == ETK_None && QualifierLoc.getNestedNameSpecifier() == 0) return T; return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), T); } /// \brief Build a new typename type that refers to an identifier. /// /// By default, performs semantic analysis when building the typename type /// (or elaborated type). Subclasses may override this routine to provide /// different behavior. QualType RebuildDependentNameType(ElaboratedTypeKeyword Keyword, SourceLocation KeywordLoc, NestedNameSpecifierLoc QualifierLoc, const IdentifierInfo *Id, SourceLocation IdLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (QualifierLoc.getNestedNameSpecifier()->isDependent()) { // If the name is still dependent, just build a new dependent name type. if (!SemaRef.computeDeclContext(SS)) return SemaRef.Context.getDependentNameType(Keyword, QualifierLoc.getNestedNameSpecifier(), Id); } if (Keyword == ETK_None || Keyword == ETK_Typename) return SemaRef.CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, *Id, IdLoc); TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForKeyword(Keyword); // We had a dependent elaborated-type-specifier that has been transformed // into a non-dependent elaborated-type-specifier. Find the tag we're // referring to. LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); DeclContext *DC = SemaRef.computeDeclContext(SS, false); if (!DC) return QualType(); if (SemaRef.RequireCompleteDeclContext(SS, DC)) return QualType(); TagDecl *Tag = 0; SemaRef.LookupQualifiedName(Result, DC); switch (Result.getResultKind()) { case LookupResult::NotFound: case LookupResult::NotFoundInCurrentInstantiation: break; case LookupResult::Found: Tag = Result.getAsSingle
(); break; case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: llvm_unreachable("Tag lookup cannot find non-tags"); case LookupResult::Ambiguous: // Let the LookupResult structure handle ambiguities. return QualType(); } if (!Tag) { // Check where the name exists but isn't a tag type and use that to emit // better diagnostics. LookupResult Result(SemaRef, Id, IdLoc, Sema::LookupTagName); SemaRef.LookupQualifiedName(Result, DC); switch (Result.getResultKind()) { case LookupResult::Found: case LookupResult::FoundOverloaded: case LookupResult::FoundUnresolvedValue: { NamedDecl *SomeDecl = Result.getRepresentativeDecl(); unsigned Kind = 0; if (isa
(SomeDecl)) Kind = 1; else if (isa
(SomeDecl)) Kind = 2; else if (isa
(SomeDecl)) Kind = 3; SemaRef.Diag(IdLoc, diag::err_tag_reference_non_tag) << Kind; SemaRef.Diag(SomeDecl->getLocation(), diag::note_declared_at); break; } default: // FIXME: Would be nice to highlight just the source range. SemaRef.Diag(IdLoc, diag::err_not_tag_in_scope) << Kind << Id << DC; break; } return QualType(); } if (!SemaRef.isAcceptableTagRedeclaration(Tag, Kind, /*isDefinition*/false, IdLoc, *Id)) { SemaRef.Diag(KeywordLoc, diag::err_use_with_wrong_tag) << Id; SemaRef.Diag(Tag->getLocation(), diag::note_previous_use); return QualType(); } // Build the elaborated-type-specifier type. QualType T = SemaRef.Context.getTypeDeclType(Tag); return SemaRef.Context.getElaboratedType(Keyword, QualifierLoc.getNestedNameSpecifier(), T); } /// \brief Build a new pack expansion type. /// /// By default, builds a new PackExpansionType type from the given pattern. /// Subclasses may override this routine to provide different behavior. QualType RebuildPackExpansionType(QualType Pattern, SourceRange PatternRange, SourceLocation EllipsisLoc, Optional
NumExpansions) { return getSema().CheckPackExpansion(Pattern, PatternRange, EllipsisLoc, NumExpansions); } /// \brief Build a new atomic type given its value type. /// /// By default, performs semantic analysis when building the atomic type. /// Subclasses may override this routine to provide different behavior. QualType RebuildAtomicType(QualType ValueType, SourceLocation KWLoc); /// \brief Build a new template name given a nested name specifier, a flag /// indicating whether the "template" keyword was provided, and the template /// that the template name refers to. /// /// By default, builds the new template name directly. Subclasses may override /// this routine to provide different behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, bool TemplateKW, TemplateDecl *Template); /// \brief Build a new template name given a nested name specifier and the /// name that is referred to as a template. /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, const IdentifierInfo &Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope); /// \brief Build a new template name given a nested name specifier and the /// overloaded operator name that is referred to as a template. /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(CXXScopeSpec &SS, OverloadedOperatorKind Operator, SourceLocation NameLoc, QualType ObjectType); /// \brief Build a new template name given a template template parameter pack /// and the /// /// By default, performs semantic analysis to determine whether the name can /// be resolved to a specific template, then builds the appropriate kind of /// template name. Subclasses may override this routine to provide different /// behavior. TemplateName RebuildTemplateName(TemplateTemplateParmDecl *Param, const TemplateArgument &ArgPack) { return getSema().Context.getSubstTemplateTemplateParmPack(Param, ArgPack); } /// \brief Build a new compound statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCompoundStmt(SourceLocation LBraceLoc, MultiStmtArg Statements, SourceLocation RBraceLoc, bool IsStmtExpr) { return getSema().ActOnCompoundStmt(LBraceLoc, RBraceLoc, Statements, IsStmtExpr); } /// \brief Build a new case statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCaseStmt(SourceLocation CaseLoc, Expr *LHS, SourceLocation EllipsisLoc, Expr *RHS, SourceLocation ColonLoc) { return getSema().ActOnCaseStmt(CaseLoc, LHS, EllipsisLoc, RHS, ColonLoc); } /// \brief Attach the body to a new case statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCaseStmtBody(Stmt *S, Stmt *Body) { getSema().ActOnCaseStmtBody(S, Body); return S; } /// \brief Build a new default statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc, Stmt *SubStmt) { return getSema().ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt, /*CurScope=*/0); } /// \brief Build a new label statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildLabelStmt(SourceLocation IdentLoc, LabelDecl *L, SourceLocation ColonLoc, Stmt *SubStmt) { return SemaRef.ActOnLabelStmt(IdentLoc, L, ColonLoc, SubStmt); } /// \brief Build a new label statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildAttributedStmt(SourceLocation AttrLoc, ArrayRef
Attrs, Stmt *SubStmt) { return SemaRef.ActOnAttributedStmt(AttrLoc, Attrs, SubStmt); } /// \brief Build a new "if" statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildIfStmt(SourceLocation IfLoc, Sema::FullExprArg Cond, VarDecl *CondVar, Stmt *Then, SourceLocation ElseLoc, Stmt *Else) { return getSema().ActOnIfStmt(IfLoc, Cond, CondVar, Then, ElseLoc, Else); } /// \brief Start building a new switch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildSwitchStmtStart(SourceLocation SwitchLoc, Expr *Cond, VarDecl *CondVar) { return getSema().ActOnStartOfSwitchStmt(SwitchLoc, Cond, CondVar); } /// \brief Attach the body to the switch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildSwitchStmtBody(SourceLocation SwitchLoc, Stmt *Switch, Stmt *Body) { return getSema().ActOnFinishSwitchStmt(SwitchLoc, Switch, Body); } /// \brief Build a new while statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildWhileStmt(SourceLocation WhileLoc, Sema::FullExprArg Cond, VarDecl *CondVar, Stmt *Body) { return getSema().ActOnWhileStmt(WhileLoc, Cond, CondVar, Body); } /// \brief Build a new do-while statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDoStmt(SourceLocation DoLoc, Stmt *Body, SourceLocation WhileLoc, SourceLocation LParenLoc, Expr *Cond, SourceLocation RParenLoc) { return getSema().ActOnDoStmt(DoLoc, Body, WhileLoc, LParenLoc, Cond, RParenLoc); } /// \brief Build a new for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildForStmt(SourceLocation ForLoc, SourceLocation LParenLoc, Stmt *Init, Sema::FullExprArg Cond, VarDecl *CondVar, Sema::FullExprArg Inc, SourceLocation RParenLoc, Stmt *Body) { return getSema().ActOnForStmt(ForLoc, LParenLoc, Init, Cond, CondVar, Inc, RParenLoc, Body); } /// \brief Build a new goto statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc, LabelDecl *Label) { return getSema().ActOnGotoStmt(GotoLoc, LabelLoc, Label); } /// \brief Build a new indirect goto statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc, Expr *Target) { return getSema().ActOnIndirectGotoStmt(GotoLoc, StarLoc, Target); } /// \brief Build a new return statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildReturnStmt(SourceLocation ReturnLoc, Expr *Result) { return getSema().ActOnReturnStmt(ReturnLoc, Result); } /// \brief Build a new declaration statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildDeclStmt(llvm::MutableArrayRef
Decls, SourceLocation StartLoc, SourceLocation EndLoc) { Sema::DeclGroupPtrTy DG = getSema().BuildDeclaratorGroup(Decls); return getSema().ActOnDeclStmt(DG, StartLoc, EndLoc); } /// \brief Build a new inline asm statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple, bool IsVolatile, unsigned NumOutputs, unsigned NumInputs, IdentifierInfo **Names, MultiExprArg Constraints, MultiExprArg Exprs, Expr *AsmString, MultiExprArg Clobbers, SourceLocation RParenLoc) { return getSema().ActOnGCCAsmStmt(AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs, Names, Constraints, Exprs, AsmString, Clobbers, RParenLoc); } /// \brief Build a new MS style inline asm statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc, ArrayRef
AsmToks, StringRef AsmString, unsigned NumOutputs, unsigned NumInputs, ArrayRef
Constraints, ArrayRef
Clobbers, ArrayRef
Exprs, SourceLocation EndLoc) { return getSema().ActOnMSAsmStmt(AsmLoc, LBraceLoc, AsmToks, AsmString, NumOutputs, NumInputs, Constraints, Clobbers, Exprs, EndLoc); } /// \brief Build a new Objective-C \@try statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtTryStmt(SourceLocation AtLoc, Stmt *TryBody, MultiStmtArg CatchStmts, Stmt *Finally) { return getSema().ActOnObjCAtTryStmt(AtLoc, TryBody, CatchStmts, Finally); } /// \brief Rebuild an Objective-C exception declaration. /// /// By default, performs semantic analysis to build the new declaration. /// Subclasses may override this routine to provide different behavior. VarDecl *RebuildObjCExceptionDecl(VarDecl *ExceptionDecl, TypeSourceInfo *TInfo, QualType T) { return getSema().BuildObjCExceptionDecl(TInfo, T, ExceptionDecl->getInnerLocStart(), ExceptionDecl->getLocation(), ExceptionDecl->getIdentifier()); } /// \brief Build a new Objective-C \@catch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParenLoc, VarDecl *Var, Stmt *Body) { return getSema().ActOnObjCAtCatchStmt(AtLoc, RParenLoc, Var, Body); } /// \brief Build a new Objective-C \@finally statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) { return getSema().ActOnObjCAtFinallyStmt(AtLoc, Body); } /// \brief Build a new Objective-C \@throw statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Operand) { return getSema().BuildObjCAtThrowStmt(AtLoc, Operand); } /// \brief Build a new OpenMP parallel directive. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildOMPParallelDirective(ArrayRef
Clauses, Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPParallelDirective(Clauses, AStmt, StartLoc, EndLoc); } /// \brief Build a new OpenMP 'default' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPDefaultClause(OpenMPDefaultClauseKind Kind, SourceLocation KindKwLoc, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPDefaultClause(Kind, KindKwLoc, StartLoc, LParenLoc, EndLoc); } /// \brief Build a new OpenMP 'private' clause. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. OMPClause *RebuildOMPPrivateClause(ArrayRef
VarList, SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc) { return getSema().ActOnOpenMPPrivateClause(VarList, StartLoc, LParenLoc, EndLoc); } /// \brief Rebuild the operand to an Objective-C \@synchronized statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *object) { return getSema().ActOnObjCAtSynchronizedOperand(atLoc, object); } /// \brief Build a new Objective-C \@synchronized statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *Object, Stmt *Body) { return getSema().ActOnObjCAtSynchronizedStmt(AtLoc, Object, Body); } /// \brief Build a new Objective-C \@autoreleasepool statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) { return getSema().ActOnObjCAutoreleasePoolStmt(AtLoc, Body); } /// \brief Build a new Objective-C fast enumeration statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildObjCForCollectionStmt(SourceLocation ForLoc, Stmt *Element, Expr *Collection, SourceLocation RParenLoc, Stmt *Body) { StmtResult ForEachStmt = getSema().ActOnObjCForCollectionStmt(ForLoc, Element, Collection, RParenLoc); if (ForEachStmt.isInvalid()) return StmtError(); return getSema().FinishObjCForCollectionStmt(ForEachStmt.take(), Body); } /// \brief Build a new C++ exception declaration. /// /// By default, performs semantic analysis to build the new decaration. /// Subclasses may override this routine to provide different behavior. VarDecl *RebuildExceptionDecl(VarDecl *ExceptionDecl, TypeSourceInfo *Declarator, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id) { VarDecl *Var = getSema().BuildExceptionDeclaration(0, Declarator, StartLoc, IdLoc, Id); if (Var) getSema().CurContext->addDecl(Var); return Var; } /// \brief Build a new C++ catch statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXCatchStmt(SourceLocation CatchLoc, VarDecl *ExceptionDecl, Stmt *Handler) { return Owned(new (getSema().Context) CXXCatchStmt(CatchLoc, ExceptionDecl, Handler)); } /// \brief Build a new C++ try statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXTryStmt(SourceLocation TryLoc, Stmt *TryBlock, MultiStmtArg Handlers) { return getSema().ActOnCXXTryBlock(TryLoc, TryBlock, Handlers); } /// \brief Build a new C++0x range-based for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc, Stmt *Range, Stmt *BeginEnd, Expr *Cond, Expr *Inc, Stmt *LoopVar, SourceLocation RParenLoc) { // If we've just learned that the range is actually an Objective-C // collection, treat this as an Objective-C fast enumeration loop. if (DeclStmt *RangeStmt = dyn_cast
(Range)) { if (RangeStmt->isSingleDecl()) { if (VarDecl *RangeVar = dyn_cast
(RangeStmt->getSingleDecl())) { if (RangeVar->isInvalidDecl()) return StmtError(); Expr *RangeExpr = RangeVar->getInit(); if (!RangeExpr->isTypeDependent() && RangeExpr->getType()->isObjCObjectPointerType()) return getSema().ActOnObjCForCollectionStmt(ForLoc, LoopVar, RangeExpr, RParenLoc); } } } return getSema().BuildCXXForRangeStmt(ForLoc, ColonLoc, Range, BeginEnd, Cond, Inc, LoopVar, RParenLoc, Sema::BFRK_Rebuild); } /// \brief Build a new C++0x range-based for statement. /// /// By default, performs semantic analysis to build the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult RebuildMSDependentExistsStmt(SourceLocation KeywordLoc, bool IsIfExists, NestedNameSpecifierLoc QualifierLoc, DeclarationNameInfo NameInfo, Stmt *Nested) { return getSema().BuildMSDependentExistsStmt(KeywordLoc, IsIfExists, QualifierLoc, NameInfo, Nested); } /// \brief Attach body to a C++0x range-based for statement. /// /// By default, performs semantic analysis to finish the new statement. /// Subclasses may override this routine to provide different behavior. StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body) { return getSema().FinishCXXForRangeStmt(ForRange, Body); } StmtResult RebuildSEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) { return getSema().ActOnSEHTryBlock(IsCXXTry,TryLoc,TryBlock,Handler); } StmtResult RebuildSEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, Stmt *Block) { return getSema().ActOnSEHExceptBlock(Loc,FilterExpr,Block); } StmtResult RebuildSEHFinallyStmt(SourceLocation Loc, Stmt *Block) { return getSema().ActOnSEHFinallyBlock(Loc,Block); } /// \brief Build a new expression that references a declaration. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDeclarationNameExpr(const CXXScopeSpec &SS, LookupResult &R, bool RequiresADL) { return getSema().BuildDeclarationNameExpr(SS, R, RequiresADL); } /// \brief Build a new expression that references a declaration. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDeclRefExpr(NestedNameSpecifierLoc QualifierLoc, ValueDecl *VD, const DeclarationNameInfo &NameInfo, TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); // FIXME: loses template args. return getSema().BuildDeclarationNameExpr(SS, NameInfo, VD); } /// \brief Build a new expression in parentheses. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildParenExpr(Expr *SubExpr, SourceLocation LParen, SourceLocation RParen) { return getSema().ActOnParenExpr(LParen, RParen, SubExpr); } /// \brief Build a new pseudo-destructor expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXPseudoDestructorExpr(Expr *Base, SourceLocation OperatorLoc, bool isArrow, CXXScopeSpec &SS, TypeSourceInfo *ScopeType, SourceLocation CCLoc, SourceLocation TildeLoc, PseudoDestructorTypeStorage Destroyed); /// \brief Build a new unary operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryOperator(SourceLocation OpLoc, UnaryOperatorKind Opc, Expr *SubExpr) { return getSema().BuildUnaryOp(/*Scope=*/0, OpLoc, Opc, SubExpr); } /// \brief Build a new builtin offsetof expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildOffsetOfExpr(SourceLocation OperatorLoc, TypeSourceInfo *Type, Sema::OffsetOfComponent *Components, unsigned NumComponents, SourceLocation RParenLoc) { return getSema().BuildBuiltinOffsetOf(OperatorLoc, Type, Components, NumComponents, RParenLoc); } /// \brief Build a new sizeof, alignof or vec_step expression with a /// type argument. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryExprOrTypeTrait(TypeSourceInfo *TInfo, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R) { return getSema().CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R); } /// \brief Build a new sizeof, alignof or vec step expression with an /// expression argument. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryExprOrTypeTrait(Expr *SubExpr, SourceLocation OpLoc, UnaryExprOrTypeTrait ExprKind, SourceRange R) { ExprResult Result = getSema().CreateUnaryExprOrTypeTraitExpr(SubExpr, OpLoc, ExprKind); if (Result.isInvalid()) return ExprError(); return Result; } /// \brief Build a new array subscript expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildArraySubscriptExpr(Expr *LHS, SourceLocation LBracketLoc, Expr *RHS, SourceLocation RBracketLoc) { return getSema().ActOnArraySubscriptExpr(/*Scope=*/0, LHS, LBracketLoc, RHS, RBracketLoc); } /// \brief Build a new call expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc, Expr *ExecConfig = 0) { return getSema().ActOnCallExpr(/*Scope=*/0, Callee, LParenLoc, Args, RParenLoc, ExecConfig); } /// \brief Build a new member access expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildMemberExpr(Expr *Base, SourceLocation OpLoc, bool isArrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &MemberNameInfo, ValueDecl *Member, NamedDecl *FoundDecl, const TemplateArgumentListInfo *ExplicitTemplateArgs, NamedDecl *FirstQualifierInScope) { ExprResult BaseResult = getSema().PerformMemberExprBaseConversion(Base, isArrow); if (!Member->getDeclName()) { // We have a reference to an unnamed field. This is always the // base of an anonymous struct/union member access, i.e. the // field is always of record type. assert(!QualifierLoc && "Can't have an unnamed field with a qualifier!"); assert(Member->getType()->isRecordType() && "unnamed member not of record type?"); BaseResult = getSema().PerformObjectMemberConversion(BaseResult.take(), QualifierLoc.getNestedNameSpecifier(), FoundDecl, Member); if (BaseResult.isInvalid()) return ExprError(); Base = BaseResult.take(); ExprValueKind VK = isArrow ? VK_LValue : Base->getValueKind(); MemberExpr *ME = new (getSema().Context) MemberExpr(Base, isArrow, Member, MemberNameInfo, cast
(Member)->getType(), VK, OK_Ordinary); return getSema().Owned(ME); } CXXScopeSpec SS; SS.Adopt(QualifierLoc); Base = BaseResult.take(); QualType BaseType = Base->getType(); // FIXME: this involves duplicating earlier analysis in a lot of // cases; we should avoid this when possible. LookupResult R(getSema(), MemberNameInfo, Sema::LookupMemberName); R.addDecl(FoundDecl); R.resolveKind(); return getSema().BuildMemberReferenceExpr(Base, BaseType, OpLoc, isArrow, SS, TemplateKWLoc, FirstQualifierInScope, R, ExplicitTemplateArgs); } /// \brief Build a new binary operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildBinaryOperator(SourceLocation OpLoc, BinaryOperatorKind Opc, Expr *LHS, Expr *RHS) { return getSema().BuildBinOp(/*Scope=*/0, OpLoc, Opc, LHS, RHS); } /// \brief Build a new conditional operator expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildConditionalOperator(Expr *Cond, SourceLocation QuestionLoc, Expr *LHS, SourceLocation ColonLoc, Expr *RHS) { return getSema().ActOnConditionalOp(QuestionLoc, ColonLoc, Cond, LHS, RHS); } /// \brief Build a new C-style cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCStyleCastExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *SubExpr) { return getSema().BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, SubExpr); } /// \brief Build a new compound literal expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, SourceLocation RParenLoc, Expr *Init) { return getSema().BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, Init); } /// \brief Build a new extended vector element access expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildExtVectorElementExpr(Expr *Base, SourceLocation OpLoc, SourceLocation AccessorLoc, IdentifierInfo &Accessor) { CXXScopeSpec SS; DeclarationNameInfo NameInfo(&Accessor, AccessorLoc); return getSema().BuildMemberReferenceExpr(Base, Base->getType(), OpLoc, /*IsArrow*/ false, SS, SourceLocation(), /*FirstQualifierInScope*/ 0, NameInfo, /* TemplateArgs */ 0); } /// \brief Build a new initializer list expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildInitList(SourceLocation LBraceLoc, MultiExprArg Inits, SourceLocation RBraceLoc, QualType ResultTy) { ExprResult Result = SemaRef.ActOnInitList(LBraceLoc, Inits, RBraceLoc); if (Result.isInvalid() || ResultTy->isDependentType()) return Result; // Patch in the result type we were given, which may have been computed // when the initial InitListExpr was built. InitListExpr *ILE = cast
((Expr *)Result.get()); ILE->setType(ResultTy); return Result; } /// \brief Build a new designated initializer expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDesignatedInitExpr(Designation &Desig, MultiExprArg ArrayExprs, SourceLocation EqualOrColonLoc, bool GNUSyntax, Expr *Init) { ExprResult Result = SemaRef.ActOnDesignatedInitializer(Desig, EqualOrColonLoc, GNUSyntax, Init); if (Result.isInvalid()) return ExprError(); return Result; } /// \brief Build a new value-initialized expression. /// /// By default, builds the implicit value initialization without performing /// any semantic analysis. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildImplicitValueInitExpr(QualType T) { return SemaRef.Owned(new (SemaRef.Context) ImplicitValueInitExpr(T)); } /// \brief Build a new \c va_arg expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildVAArgExpr(SourceLocation BuiltinLoc, Expr *SubExpr, TypeSourceInfo *TInfo, SourceLocation RParenLoc) { return getSema().BuildVAArgExpr(BuiltinLoc, SubExpr, TInfo, RParenLoc); } /// \brief Build a new expression list in parentheses. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildParenListExpr(SourceLocation LParenLoc, MultiExprArg SubExprs, SourceLocation RParenLoc) { return getSema().ActOnParenListExpr(LParenLoc, RParenLoc, SubExprs); } /// \brief Build a new address-of-label expression. /// /// By default, performs semantic analysis, using the name of the label /// rather than attempting to map the label statement itself. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildAddrLabelExpr(SourceLocation AmpAmpLoc, SourceLocation LabelLoc, LabelDecl *Label) { return getSema().ActOnAddrLabel(AmpAmpLoc, LabelLoc, Label); } /// \brief Build a new GNU statement expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildStmtExpr(SourceLocation LParenLoc, Stmt *SubStmt, SourceLocation RParenLoc) { return getSema().ActOnStmtExpr(LParenLoc, SubStmt, RParenLoc); } /// \brief Build a new __builtin_choose_expr expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildChooseExpr(SourceLocation BuiltinLoc, Expr *Cond, Expr *LHS, Expr *RHS, SourceLocation RParenLoc) { return SemaRef.ActOnChooseExpr(BuiltinLoc, Cond, LHS, RHS, RParenLoc); } /// \brief Build a new generic selection expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildGenericSelectionExpr(SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc, Expr *ControllingExpr, ArrayRef
Types, ArrayRef
Exprs) { return getSema().CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, ControllingExpr, Types, Exprs); } /// \brief Build a new overloaded operator call expression. /// /// By default, performs semantic analysis to build the new expression. /// The semantic analysis provides the behavior of template instantiation, /// copying with transformations that turn what looks like an overloaded /// operator call into a use of a builtin operator, performing /// argument-dependent lookup, etc. Subclasses may override this routine to /// provide different behavior. ExprResult RebuildCXXOperatorCallExpr(OverloadedOperatorKind Op, SourceLocation OpLoc, Expr *Callee, Expr *First, Expr *Second); /// \brief Build a new C++ "named" cast expression, such as static_cast or /// reinterpret_cast. /// /// By default, this routine dispatches to one of the more-specific routines /// for a particular named case, e.g., RebuildCXXStaticCastExpr(). /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNamedCastExpr(SourceLocation OpLoc, Stmt::StmtClass Class, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { switch (Class) { case Stmt::CXXStaticCastExprClass: return getDerived().RebuildCXXStaticCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXDynamicCastExprClass: return getDerived().RebuildCXXDynamicCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXReinterpretCastExprClass: return getDerived().RebuildCXXReinterpretCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); case Stmt::CXXConstCastExprClass: return getDerived().RebuildCXXConstCastExpr(OpLoc, LAngleLoc, TInfo, RAngleLoc, LParenLoc, SubExpr, RParenLoc); default: llvm_unreachable("Invalid C++ named cast"); } } /// \brief Build a new C++ static_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXStaticCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_static_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ dynamic_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDynamicCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_dynamic_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ reinterpret_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXReinterpretCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_reinterpret_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ const_cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXConstCastExpr(SourceLocation OpLoc, SourceLocation LAngleLoc, TypeSourceInfo *TInfo, SourceLocation RAngleLoc, SourceLocation LParenLoc, Expr *SubExpr, SourceLocation RParenLoc) { return getSema().BuildCXXNamedCast(OpLoc, tok::kw_const_cast, TInfo, SubExpr, SourceRange(LAngleLoc, RAngleLoc), SourceRange(LParenLoc, RParenLoc)); } /// \brief Build a new C++ functional-style cast expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, SourceLocation LParenLoc, Expr *Sub, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TInfo, LParenLoc, MultiExprArg(&Sub, 1), RParenLoc); } /// \brief Build a new C++ typeid(type) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ typeid(expr) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTypeidExpr(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXTypeId(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ __uuidof(type) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType, SourceLocation TypeidLoc, TypeSourceInfo *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ __uuidof(expr) expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUuidofExpr(QualType TypeInfoType, SourceLocation TypeidLoc, Expr *Operand, SourceLocation RParenLoc) { return getSema().BuildCXXUuidof(TypeInfoType, TypeidLoc, Operand, RParenLoc); } /// \brief Build a new C++ "this" expression. /// /// By default, builds a new "this" expression without performing any /// semantic analysis. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildCXXThisExpr(SourceLocation ThisLoc, QualType ThisType, bool isImplicit) { getSema().CheckCXXThisCapture(ThisLoc); return getSema().Owned( new (getSema().Context) CXXThisExpr(ThisLoc, ThisType, isImplicit)); } /// \brief Build a new C++ throw expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXThrowExpr(SourceLocation ThrowLoc, Expr *Sub, bool IsThrownVariableInScope) { return getSema().BuildCXXThrow(ThrowLoc, Sub, IsThrownVariableInScope); } /// \brief Build a new C++ default-argument expression. /// /// By default, builds a new default-argument expression, which does not /// require any semantic analysis. Subclasses may override this routine to /// provide different behavior. ExprResult RebuildCXXDefaultArgExpr(SourceLocation Loc, ParmVarDecl *Param) { return getSema().Owned(CXXDefaultArgExpr::Create(getSema().Context, Loc, Param)); } /// \brief Build a new C++11 default-initialization expression. /// /// By default, builds a new default field initialization expression, which /// does not require any semantic analysis. Subclasses may override this /// routine to provide different behavior. ExprResult RebuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) { return getSema().Owned(CXXDefaultInitExpr::Create(getSema().Context, Loc, Field)); } /// \brief Build a new C++ zero-initialization expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXScalarValueInitExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, None, RParenLoc); } /// \brief Build a new C++ "new" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNewExpr(SourceLocation StartLoc, bool UseGlobal, SourceLocation PlacementLParen, MultiExprArg PlacementArgs, SourceLocation PlacementRParen, SourceRange TypeIdParens, QualType AllocatedType, TypeSourceInfo *AllocatedTypeInfo, Expr *ArraySize, SourceRange DirectInitRange, Expr *Initializer) { return getSema().BuildCXXNew(StartLoc, UseGlobal, PlacementLParen, PlacementArgs, PlacementRParen, TypeIdParens, AllocatedType, AllocatedTypeInfo, ArraySize, DirectInitRange, Initializer); } /// \brief Build a new C++ "delete" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDeleteExpr(SourceLocation StartLoc, bool IsGlobalDelete, bool IsArrayForm, Expr *Operand) { return getSema().ActOnCXXDelete(StartLoc, IsGlobalDelete, IsArrayForm, Operand); } /// \brief Build a new unary type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnaryTypeTrait(UnaryTypeTrait Trait, SourceLocation StartLoc, TypeSourceInfo *T, SourceLocation RParenLoc) { return getSema().BuildUnaryTypeTrait(Trait, StartLoc, T, RParenLoc); } /// \brief Build a new binary type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildBinaryTypeTrait(BinaryTypeTrait Trait, SourceLocation StartLoc, TypeSourceInfo *LhsT, TypeSourceInfo *RhsT, SourceLocation RParenLoc) { return getSema().BuildBinaryTypeTrait(Trait, StartLoc, LhsT, RhsT, RParenLoc); } /// \brief Build a new type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildTypeTrait(TypeTrait Trait, SourceLocation StartLoc, ArrayRef
Args, SourceLocation RParenLoc) { return getSema().BuildTypeTrait(Trait, StartLoc, Args, RParenLoc); } /// \brief Build a new array type trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildArrayTypeTrait(ArrayTypeTrait Trait, SourceLocation StartLoc, TypeSourceInfo *TSInfo, Expr *DimExpr, SourceLocation RParenLoc) { return getSema().BuildArrayTypeTrait(Trait, StartLoc, TSInfo, DimExpr, RParenLoc); } /// \brief Build a new expression trait expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildExpressionTrait(ExpressionTrait Trait, SourceLocation StartLoc, Expr *Queried, SourceLocation RParenLoc) { return getSema().BuildExpressionTrait(Trait, StartLoc, Queried, RParenLoc); } /// \brief Build a new (previously unresolved) declaration reference /// expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildDependentScopeDeclRefExpr( NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, const DeclarationNameInfo &NameInfo, const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (TemplateArgs || TemplateKWLoc.isValid()) return getSema().BuildQualifiedTemplateIdExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); return getSema().BuildQualifiedDeclarationNameExpr(SS, NameInfo, IsAddressOfOperand); } /// \brief Build a new template-id expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildTemplateIdExpr(const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R, bool RequiresADL, const TemplateArgumentListInfo *TemplateArgs) { return getSema().BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL, TemplateArgs); } /// \brief Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXConstructExpr(QualType T, SourceLocation Loc, CXXConstructorDecl *Constructor, bool IsElidable, MultiExprArg Args, bool HadMultipleCandidates, bool ListInitialization, bool RequiresZeroInit, CXXConstructExpr::ConstructionKind ConstructKind, SourceRange ParenRange) { SmallVector
ConvertedArgs; if (getSema().CompleteConstructorCall(Constructor, Args, Loc, ConvertedArgs)) return ExprError(); return getSema().BuildCXXConstructExpr(Loc, T, Constructor, IsElidable, ConvertedArgs, HadMultipleCandidates, ListInitialization, RequiresZeroInit, ConstructKind, ParenRange); } /// \brief Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXTemporaryObjectExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args, RParenLoc); } /// \brief Build a new object-construction expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXUnresolvedConstructExpr(TypeSourceInfo *TSInfo, SourceLocation LParenLoc, MultiExprArg Args, SourceLocation RParenLoc) { return getSema().BuildCXXTypeConstructExpr(TSInfo, LParenLoc, Args, RParenLoc); } /// \brief Build a new member reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXDependentScopeMemberExpr(Expr *BaseE, QualType BaseType, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &MemberNameInfo, const TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, OperatorLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, MemberNameInfo, TemplateArgs); } /// \brief Build a new member reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildUnresolvedMemberExpr(Expr *BaseE, QualType BaseType, SourceLocation OperatorLoc, bool IsArrow, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, NamedDecl *FirstQualifierInScope, LookupResult &R, const TemplateArgumentListInfo *TemplateArgs) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); return SemaRef.BuildMemberReferenceExpr(BaseE, BaseType, OperatorLoc, IsArrow, SS, TemplateKWLoc, FirstQualifierInScope, R, TemplateArgs); } /// \brief Build a new noexcept expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildCXXNoexceptExpr(SourceRange Range, Expr *Arg) { return SemaRef.BuildCXXNoexceptExpr(Range.getBegin(), Arg, Range.getEnd()); } /// \brief Build a new expression to compute the length of a parameter pack. ExprResult RebuildSizeOfPackExpr(SourceLocation OperatorLoc, NamedDecl *Pack, SourceLocation PackLoc, SourceLocation RParenLoc, Optional
Length) { if (Length) return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(), OperatorLoc, Pack, PackLoc, RParenLoc, *Length); return new (SemaRef.Context) SizeOfPackExpr(SemaRef.Context.getSizeType(), OperatorLoc, Pack, PackLoc, RParenLoc); } /// \brief Build a new Objective-C boxed expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr) { return getSema().BuildObjCBoxedExpr(SR, ValueExpr); } /// \brief Build a new Objective-C array literal. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCArrayLiteral(SourceRange Range, Expr **Elements, unsigned NumElements) { return getSema().BuildObjCArrayLiteral(Range, MultiExprArg(Elements, NumElements)); } ExprResult RebuildObjCSubscriptRefExpr(SourceLocation RB, Expr *Base, Expr *Key, ObjCMethodDecl *getterMethod, ObjCMethodDecl *setterMethod) { return getSema().BuildObjCSubscriptExpression(RB, Base, Key, getterMethod, setterMethod); } /// \brief Build a new Objective-C dictionary literal. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCDictionaryLiteral(SourceRange Range, ObjCDictionaryElement *Elements, unsigned NumElements) { return getSema().BuildObjCDictionaryLiteral(Range, Elements, NumElements); } /// \brief Build a new Objective-C \@encode expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCEncodeExpr(SourceLocation AtLoc, TypeSourceInfo *EncodeTypeInfo, SourceLocation RParenLoc) { return SemaRef.Owned(SemaRef.BuildObjCEncodeExpression(AtLoc, EncodeTypeInfo, RParenLoc)); } /// \brief Build a new Objective-C class message. ExprResult RebuildObjCMessageExpr(TypeSourceInfo *ReceiverTypeInfo, Selector Sel, ArrayRef
SelectorLocs, ObjCMethodDecl *Method, SourceLocation LBracLoc, MultiExprArg Args, SourceLocation RBracLoc) { return SemaRef.BuildClassMessage(ReceiverTypeInfo, ReceiverTypeInfo->getType(), /*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args); } /// \brief Build a new Objective-C instance message. ExprResult RebuildObjCMessageExpr(Expr *Receiver, Selector Sel, ArrayRef
SelectorLocs, ObjCMethodDecl *Method, SourceLocation LBracLoc, MultiExprArg Args, SourceLocation RBracLoc) { return SemaRef.BuildInstanceMessage(Receiver, Receiver->getType(), /*SuperLoc=*/SourceLocation(), Sel, Method, LBracLoc, SelectorLocs, RBracLoc, Args); } /// \brief Build a new Objective-C ivar reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCIvarRefExpr(Expr *BaseArg, ObjCIvarDecl *Ivar, SourceLocation IvarLoc, bool IsArrow, bool IsFreeIvar) { // FIXME: We lose track of the IsFreeIvar bit. CXXScopeSpec SS; ExprResult Base = getSema().Owned(BaseArg); LookupResult R(getSema(), Ivar->getDeclName(), IvarLoc, Sema::LookupMemberName); ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow, /*FIME:*/IvarLoc, SS, 0, false); if (Result.isInvalid() || Base.isInvalid()) return ExprError(); if (Result.get()) return Result; return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(), /*FIXME:*/IvarLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope=*/0, R, /*TemplateArgs=*/0); } /// \brief Build a new Objective-C property reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCPropertyRefExpr(Expr *BaseArg, ObjCPropertyDecl *Property, SourceLocation PropertyLoc) { CXXScopeSpec SS; ExprResult Base = getSema().Owned(BaseArg); LookupResult R(getSema(), Property->getDeclName(), PropertyLoc, Sema::LookupMemberName); bool IsArrow = false; ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow, /*FIME:*/PropertyLoc, SS, 0, false); if (Result.isInvalid() || Base.isInvalid()) return ExprError(); if (Result.get()) return Result; return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(), /*FIXME:*/PropertyLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope=*/0, R, /*TemplateArgs=*/0); } /// \brief Build a new Objective-C property reference expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCPropertyRefExpr(Expr *Base, QualType T, ObjCMethodDecl *Getter, ObjCMethodDecl *Setter, SourceLocation PropertyLoc) { // Since these expressions can only be value-dependent, we do not // need to perform semantic analysis again. return Owned( new (getSema().Context) ObjCPropertyRefExpr(Getter, Setter, T, VK_LValue, OK_ObjCProperty, PropertyLoc, Base)); } /// \brief Build a new Objective-C "isa" expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildObjCIsaExpr(Expr *BaseArg, SourceLocation IsaLoc, SourceLocation OpLoc, bool IsArrow) { CXXScopeSpec SS; ExprResult Base = getSema().Owned(BaseArg); LookupResult R(getSema(), &getSema().Context.Idents.get("isa"), IsaLoc, Sema::LookupMemberName); ExprResult Result = getSema().LookupMemberExpr(R, Base, IsArrow, OpLoc, SS, 0, false); if (Result.isInvalid() || Base.isInvalid()) return ExprError(); if (Result.get()) return Result; return getSema().BuildMemberReferenceExpr(Base.get(), Base.get()->getType(), OpLoc, IsArrow, SS, SourceLocation(), /*FirstQualifierInScope=*/0, R, /*TemplateArgs=*/0); } /// \brief Build a new shuffle vector expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildShuffleVectorExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, SourceLocation RParenLoc) { // Find the declaration for __builtin_shufflevector const IdentifierInfo &Name = SemaRef.Context.Idents.get("__builtin_shufflevector"); TranslationUnitDecl *TUDecl = SemaRef.Context.getTranslationUnitDecl(); DeclContext::lookup_result Lookup = TUDecl->lookup(DeclarationName(&Name)); assert(!Lookup.empty() && "No __builtin_shufflevector?"); // Build a reference to the __builtin_shufflevector builtin FunctionDecl *Builtin = cast
(Lookup.front()); Expr *Callee = new (SemaRef.Context) DeclRefExpr(Builtin, false, SemaRef.Context.BuiltinFnTy, VK_RValue, BuiltinLoc); QualType CalleePtrTy = SemaRef.Context.getPointerType(Builtin->getType()); Callee = SemaRef.ImpCastExprToType(Callee, CalleePtrTy, CK_BuiltinFnToFnPtr).take(); // Build the CallExpr ExprResult TheCall = SemaRef.Owned( new (SemaRef.Context) CallExpr(SemaRef.Context, Callee, SubExprs, Builtin->getCallResultType(), Expr::getValueKindForType(Builtin->getResultType()), RParenLoc)); // Type-check the __builtin_shufflevector expression. return SemaRef.SemaBuiltinShuffleVector(cast
(TheCall.take())); } /// \brief Build a new template argument pack expansion. /// /// By default, performs semantic analysis to build a new pack expansion /// for a template argument. Subclasses may override this routine to provide /// different behavior. TemplateArgumentLoc RebuildPackExpansion(TemplateArgumentLoc Pattern, SourceLocation EllipsisLoc, Optional
NumExpansions) { switch (Pattern.getArgument().getKind()) { case TemplateArgument::Expression: { ExprResult Result = getSema().CheckPackExpansion(Pattern.getSourceExpression(), EllipsisLoc, NumExpansions); if (Result.isInvalid()) return TemplateArgumentLoc(); return TemplateArgumentLoc(Result.get(), Result.get()); } case TemplateArgument::Template: return TemplateArgumentLoc(TemplateArgument( Pattern.getArgument().getAsTemplate(), NumExpansions), Pattern.getTemplateQualifierLoc(), Pattern.getTemplateNameLoc(), EllipsisLoc); case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Declaration: case TemplateArgument::Pack: case TemplateArgument::TemplateExpansion: case TemplateArgument::NullPtr: llvm_unreachable("Pack expansion pattern has no parameter packs"); case TemplateArgument::Type: if (TypeSourceInfo *Expansion = getSema().CheckPackExpansion(Pattern.getTypeSourceInfo(), EllipsisLoc, NumExpansions)) return TemplateArgumentLoc(TemplateArgument(Expansion->getType()), Expansion); break; } return TemplateArgumentLoc(); } /// \brief Build a new expression pack expansion. /// /// By default, performs semantic analysis to build a new pack expansion /// for an expression. Subclasses may override this routine to provide /// different behavior. ExprResult RebuildPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc, Optional
NumExpansions) { return getSema().CheckPackExpansion(Pattern, EllipsisLoc, NumExpansions); } /// \brief Build a new atomic operation expression. /// /// By default, performs semantic analysis to build the new expression. /// Subclasses may override this routine to provide different behavior. ExprResult RebuildAtomicExpr(SourceLocation BuiltinLoc, MultiExprArg SubExprs, QualType RetTy, AtomicExpr::AtomicOp Op, SourceLocation RParenLoc) { // Just create the expression; there is not any interesting semantic // analysis here because we can't actually build an AtomicExpr until // we are sure it is semantically sound. return new (SemaRef.Context) AtomicExpr(BuiltinLoc, SubExprs, RetTy, Op, RParenLoc); } private: TypeLoc TransformTypeInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); TypeSourceInfo *TransformTypeInObjectScope(TypeSourceInfo *TSInfo, QualType ObjectType, NamedDecl *FirstQualifierInScope, CXXScopeSpec &SS); }; template
StmtResult TreeTransform
::TransformStmt(Stmt *S) { if (!S) return SemaRef.Owned(S); switch (S->getStmtClass()) { case Stmt::NoStmtClass: break; // Transform individual statement nodes #define STMT(Node, Parent) \ case Stmt::Node##Class: return getDerived().Transform##Node(cast
(S)); #define ABSTRACT_STMT(Node) #define EXPR(Node, Parent) #include "clang/AST/StmtNodes.inc" // Transform expressions by calling TransformExpr. #define STMT(Node, Parent) #define ABSTRACT_STMT(Stmt) #define EXPR(Node, Parent) case Stmt::Node##Class: #include "clang/AST/StmtNodes.inc" { ExprResult E = getDerived().TransformExpr(cast
(S)); if (E.isInvalid()) return StmtError(); return getSema().ActOnExprStmt(E); } } return SemaRef.Owned(S); } template
OMPClause *TreeTransform
::TransformOMPClause(OMPClause *S) { if (!S) return S; switch (S->getClauseKind()) { default: break; // Transform individual clause nodes #define OPENMP_CLAUSE(Name, Class) \ case OMPC_ ## Name : \ return getDerived().Transform ## Class(cast
(S)); #include "clang/Basic/OpenMPKinds.def" } return S; } template
ExprResult TreeTransform
::TransformExpr(Expr *E) { if (!E) return SemaRef.Owned(E); switch (E->getStmtClass()) { case Stmt::NoStmtClass: break; #define STMT(Node, Parent) case Stmt::Node##Class: break; #define ABSTRACT_STMT(Stmt) #define EXPR(Node, Parent) \ case Stmt::Node##Class: return getDerived().Transform##Node(cast
(E)); #include "clang/AST/StmtNodes.inc" } return SemaRef.Owned(E); } template
ExprResult TreeTransform
::TransformInitializer(Expr *Init, bool CXXDirectInit) { // Initializers are instantiated like expressions, except that various outer // layers are stripped. if (!Init) return SemaRef.Owned(Init); if (ExprWithCleanups *ExprTemp = dyn_cast
(Init)) Init = ExprTemp->getSubExpr(); if (MaterializeTemporaryExpr *MTE = dyn_cast
(Init)) Init = MTE->GetTemporaryExpr(); while (CXXBindTemporaryExpr *Binder = dyn_cast
(Init)) Init = Binder->getSubExpr(); if (ImplicitCastExpr *ICE = dyn_cast
(Init)) Init = ICE->getSubExprAsWritten(); if (CXXStdInitializerListExpr *ILE = dyn_cast
(Init)) return TransformInitializer(ILE->getSubExpr(), CXXDirectInit); // If this is not a direct-initializer, we only need to reconstruct // InitListExprs. Other forms of copy-initialization will be a no-op if // the initializer is already the right type. CXXConstructExpr *Construct = dyn_cast
(Init); if (!CXXDirectInit && !(Construct && Construct->isListInitialization())) return getDerived().TransformExpr(Init); // Revert value-initialization back to empty parens. if (CXXScalarValueInitExpr *VIE = dyn_cast
(Init)) { SourceRange Parens = VIE->getSourceRange(); return getDerived().RebuildParenListExpr(Parens.getBegin(), None, Parens.getEnd()); } // FIXME: We shouldn't build ImplicitValueInitExprs for direct-initialization. if (isa
(Init)) return getDerived().RebuildParenListExpr(SourceLocation(), None, SourceLocation()); // Revert initialization by constructor back to a parenthesized or braced list // of expressions. Any other form of initializer can just be reused directly. if (!Construct || isa
(Construct)) return getDerived().TransformExpr(Init); SmallVector
NewArgs; bool ArgChanged = false; if (getDerived().TransformExprs(Construct->getArgs(), Construct->getNumArgs(), /*IsCall*/true, NewArgs, &ArgChanged)) return ExprError(); // If this was list initialization, revert to list form. if (Construct->isListInitialization()) return getDerived().RebuildInitList(Construct->getLocStart(), NewArgs, Construct->getLocEnd(), Construct->getType()); // Build a ParenListExpr to represent anything else. SourceRange Parens = Construct->getParenRange(); return getDerived().RebuildParenListExpr(Parens.getBegin(), NewArgs, Parens.getEnd()); } template
bool TreeTransform
::TransformExprs(Expr **Inputs, unsigned NumInputs, bool IsCall, SmallVectorImpl
&Outputs, bool *ArgChanged) { for (unsigned I = 0; I != NumInputs; ++I) { // If requested, drop call arguments that need to be dropped. if (IsCall && getDerived().DropCallArgument(Inputs[I])) { if (ArgChanged) *ArgChanged = true; break; } if (PackExpansionExpr *Expansion = dyn_cast
(Inputs[I])) { Expr *Pattern = Expansion->getPattern(); SmallVector
Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional
OrigNumExpansions = Expansion->getNumExpansions(); Optional
NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(Expansion->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); ExprResult OutPattern = getDerived().TransformExpr(Pattern); if (OutPattern.isInvalid()) return true; ExprResult Out = getDerived().RebuildPackExpansion(OutPattern.get(), Expansion->getEllipsisLoc(), NumExpansions); if (Out.isInvalid()) return true; if (ArgChanged) *ArgChanged = true; Outputs.push_back(Out.get()); continue; } // Record right away that the argument was changed. This needs // to happen even if the array expands to nothing. if (ArgChanged) *ArgChanged = true; // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ExprResult Out = getDerived().TransformExpr(Pattern); if (Out.isInvalid()) return true; if (Out.get()->containsUnexpandedParameterPack()) { Out = RebuildPackExpansion(Out.get(), Expansion->getEllipsisLoc(), OrigNumExpansions); if (Out.isInvalid()) return true; } Outputs.push_back(Out.get()); } continue; } ExprResult Result = IsCall ? getDerived().TransformInitializer(Inputs[I], /*DirectInit*/false) : getDerived().TransformExpr(Inputs[I]); if (Result.isInvalid()) return true; if (Result.get() != Inputs[I] && ArgChanged) *ArgChanged = true; Outputs.push_back(Result.get()); } return false; } template
NestedNameSpecifierLoc TreeTransform
::TransformNestedNameSpecifierLoc( NestedNameSpecifierLoc NNS, QualType ObjectType, NamedDecl *FirstQualifierInScope) { SmallVector
Qualifiers; for (NestedNameSpecifierLoc Qualifier = NNS; Qualifier; Qualifier = Qualifier.getPrefix()) Qualifiers.push_back(Qualifier); CXXScopeSpec SS; while (!Qualifiers.empty()) { NestedNameSpecifierLoc Q = Qualifiers.pop_back_val(); NestedNameSpecifier *QNNS = Q.getNestedNameSpecifier(); switch (QNNS->getKind()) { case NestedNameSpecifier::Identifier: if (SemaRef.BuildCXXNestedNameSpecifier(/*Scope=*/0, *QNNS->getAsIdentifier(), Q.getLocalBeginLoc(), Q.getLocalEndLoc(), ObjectType, false, SS, FirstQualifierInScope, false)) return NestedNameSpecifierLoc(); break; case NestedNameSpecifier::Namespace: { NamespaceDecl *NS = cast_or_null
( getDerived().TransformDecl( Q.getLocalBeginLoc(), QNNS->getAsNamespace())); SS.Extend(SemaRef.Context, NS, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); break; } case NestedNameSpecifier::NamespaceAlias: { NamespaceAliasDecl *Alias = cast_or_null
( getDerived().TransformDecl(Q.getLocalBeginLoc(), QNNS->getAsNamespaceAlias())); SS.Extend(SemaRef.Context, Alias, Q.getLocalBeginLoc(), Q.getLocalEndLoc()); break; } case NestedNameSpecifier::Global: // There is no meaningful transformation that one could perform on the // global scope. SS.MakeGlobal(SemaRef.Context, Q.getBeginLoc()); break; case NestedNameSpecifier::TypeSpecWithTemplate: case NestedNameSpecifier::TypeSpec: { TypeLoc TL = TransformTypeInObjectScope(Q.getTypeLoc(), ObjectType, FirstQualifierInScope, SS); if (!TL) return NestedNameSpecifierLoc(); if (TL.getType()->isDependentType() || TL.getType()->isRecordType() || (SemaRef.getLangOpts().CPlusPlus11 && TL.getType()->isEnumeralType())) { assert(!TL.getType().hasLocalQualifiers() && "Can't get cv-qualifiers here"); if (TL.getType()->isEnumeralType()) SemaRef.Diag(TL.getBeginLoc(), diag::warn_cxx98_compat_enum_nested_name_spec); SS.Extend(SemaRef.Context, /*FIXME:*/SourceLocation(), TL, Q.getLocalEndLoc()); break; } // If the nested-name-specifier is an invalid type def, don't emit an // error because a previous error should have already been emitted. TypedefTypeLoc TTL = TL.getAs
(); if (!TTL || !TTL.getTypedefNameDecl()->isInvalidDecl()) { SemaRef.Diag(TL.getBeginLoc(), diag::err_nested_name_spec_non_tag) << TL.getType() << SS.getRange(); } return NestedNameSpecifierLoc(); } } // The qualifier-in-scope and object type only apply to the leftmost entity. FirstQualifierInScope = 0; ObjectType = QualType(); } // Don't rebuild the nested-name-specifier if we don't have to. if (SS.getScopeRep() == NNS.getNestedNameSpecifier() && !getDerived().AlwaysRebuild()) return NNS; // If we can re-use the source-location data from the original // nested-name-specifier, do so. if (SS.location_size() == NNS.getDataLength() && memcmp(SS.location_data(), NNS.getOpaqueData(), SS.location_size()) == 0) return NestedNameSpecifierLoc(SS.getScopeRep(), NNS.getOpaqueData()); // Allocate new nested-name-specifier location information. return SS.getWithLocInContext(SemaRef.Context); } template
DeclarationNameInfo TreeTransform
::TransformDeclarationNameInfo(const DeclarationNameInfo &NameInfo) { DeclarationName Name = NameInfo.getName(); if (!Name) return DeclarationNameInfo(); switch (Name.getNameKind()) { case DeclarationName::Identifier: case DeclarationName::ObjCZeroArgSelector: case DeclarationName::ObjCOneArgSelector: case DeclarationName::ObjCMultiArgSelector: case DeclarationName::CXXOperatorName: case DeclarationName::CXXLiteralOperatorName: case DeclarationName::CXXUsingDirective: return NameInfo; case DeclarationName::CXXConstructorName: case DeclarationName::CXXDestructorName: case DeclarationName::CXXConversionFunctionName: { TypeSourceInfo *NewTInfo; CanQualType NewCanTy; if (TypeSourceInfo *OldTInfo = NameInfo.getNamedTypeInfo()) { NewTInfo = getDerived().TransformType(OldTInfo); if (!NewTInfo) return DeclarationNameInfo(); NewCanTy = SemaRef.Context.getCanonicalType(NewTInfo->getType()); } else { NewTInfo = 0; TemporaryBase Rebase(*this, NameInfo.getLoc(), Name); QualType NewT = getDerived().TransformType(Name.getCXXNameType()); if (NewT.isNull()) return DeclarationNameInfo(); NewCanTy = SemaRef.Context.getCanonicalType(NewT); } DeclarationName NewName = SemaRef.Context.DeclarationNames.getCXXSpecialName(Name.getNameKind(), NewCanTy); DeclarationNameInfo NewNameInfo(NameInfo); NewNameInfo.setName(NewName); NewNameInfo.setNamedTypeInfo(NewTInfo); return NewNameInfo; } } llvm_unreachable("Unknown name kind."); } template
TemplateName TreeTransform
::TransformTemplateName(CXXScopeSpec &SS, TemplateName Name, SourceLocation NameLoc, QualType ObjectType, NamedDecl *FirstQualifierInScope) { if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) { TemplateDecl *Template = QTN->getTemplateDecl(); assert(Template && "qualified template name must refer to a template"); TemplateDecl *TransTemplate = cast_or_null
(getDerived().TransformDecl(NameLoc, Template)); if (!TransTemplate) return TemplateName(); if (!getDerived().AlwaysRebuild() && SS.getScopeRep() == QTN->getQualifier() && TransTemplate == Template) return Name; return getDerived().RebuildTemplateName(SS, QTN->hasTemplateKeyword(), TransTemplate); } if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) { if (SS.getScopeRep()) { // These apply to the scope specifier, not the template. ObjectType = QualType(); FirstQualifierInScope = 0; } if (!getDerived().AlwaysRebuild() && SS.getScopeRep() == DTN->getQualifier() && ObjectType.isNull()) return Name; if (DTN->isIdentifier()) { return getDerived().RebuildTemplateName(SS, *DTN->getIdentifier(), NameLoc, ObjectType, FirstQualifierInScope); } return getDerived().RebuildTemplateName(SS, DTN->getOperator(), NameLoc, ObjectType); } if (TemplateDecl *Template = Name.getAsTemplateDecl()) { TemplateDecl *TransTemplate = cast_or_null
(getDerived().TransformDecl(NameLoc, Template)); if (!TransTemplate) return TemplateName(); if (!getDerived().AlwaysRebuild() && TransTemplate == Template) return Name; return TemplateName(TransTemplate); } if (SubstTemplateTemplateParmPackStorage *SubstPack = Name.getAsSubstTemplateTemplateParmPack()) { TemplateTemplateParmDecl *TransParam = cast_or_null
( getDerived().TransformDecl(NameLoc, SubstPack->getParameterPack())); if (!TransParam) return TemplateName(); if (!getDerived().AlwaysRebuild() && TransParam == SubstPack->getParameterPack()) return Name; return getDerived().RebuildTemplateName(TransParam, SubstPack->getArgumentPack()); } // These should be getting filtered out before they reach the AST. llvm_unreachable("overloaded function decl survived to here"); } template
void TreeTransform
::InventTemplateArgumentLoc( const TemplateArgument &Arg, TemplateArgumentLoc &Output) { SourceLocation Loc = getDerived().getBaseLocation(); switch (Arg.getKind()) { case TemplateArgument::Null: llvm_unreachable("null template argument in TreeTransform"); break; case TemplateArgument::Type: Output = TemplateArgumentLoc(Arg, SemaRef.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); break; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: { NestedNameSpecifierLocBuilder Builder; TemplateName Template = Arg.getAsTemplate(); if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) Builder.MakeTrivial(SemaRef.Context, DTN->getQualifier(), Loc); else if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) Builder.MakeTrivial(SemaRef.Context, QTN->getQualifier(), Loc); if (Arg.getKind() == TemplateArgument::Template) Output = TemplateArgumentLoc(Arg, Builder.getWithLocInContext(SemaRef.Context), Loc); else Output = TemplateArgumentLoc(Arg, Builder.getWithLocInContext(SemaRef.Context), Loc, Loc); break; } case TemplateArgument::Expression: Output = TemplateArgumentLoc(Arg, Arg.getAsExpr()); break; case TemplateArgument::Declaration: case TemplateArgument::Integral: case TemplateArgument::Pack: case TemplateArgument::NullPtr: Output = TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); break; } } template
bool TreeTransform
::TransformTemplateArgument( const TemplateArgumentLoc &Input, TemplateArgumentLoc &Output) { const TemplateArgument &Arg = Input.getArgument(); switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Pack: case TemplateArgument::Declaration: case TemplateArgument::NullPtr: llvm_unreachable("Unexpected TemplateArgument"); case TemplateArgument::Type: { TypeSourceInfo *DI = Input.getTypeSourceInfo(); if (DI == NULL) DI = InventTypeSourceInfo(Input.getArgument().getAsType()); DI = getDerived().TransformType(DI); if (!DI) return true; Output = TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); return false; } case TemplateArgument::Template: { NestedNameSpecifierLoc QualifierLoc = Input.getTemplateQualifierLoc(); if (QualifierLoc) { QualifierLoc = getDerived().TransformNestedNameSpecifierLoc(QualifierLoc); if (!QualifierLoc) return true; } CXXScopeSpec SS; SS.Adopt(QualifierLoc); TemplateName Template = getDerived().TransformTemplateName(SS, Arg.getAsTemplate(), Input.getTemplateNameLoc()); if (Template.isNull()) return true; Output = TemplateArgumentLoc(TemplateArgument(Template), QualifierLoc, Input.getTemplateNameLoc()); return false; } case TemplateArgument::TemplateExpansion: llvm_unreachable("Caller should expand pack expansions"); case TemplateArgument::Expression: { // Template argument expressions are constant expressions. EnterExpressionEvaluationContext Unevaluated(getSema(), Sema::ConstantEvaluated); Expr *InputExpr = Input.getSourceExpression(); if (!InputExpr) InputExpr = Input.getArgument().getAsExpr(); ExprResult E = getDerived().TransformExpr(InputExpr); E = SemaRef.ActOnConstantExpression(E); if (E.isInvalid()) return true; Output = TemplateArgumentLoc(TemplateArgument(E.take()), E.take()); return false; } } // Work around bogus GCC warning return true; } /// \brief Iterator adaptor that invents template argument location information /// for each of the template arguments in its underlying iterator. template
class TemplateArgumentLocInventIterator { TreeTransform
&Self; InputIterator Iter; public: typedef TemplateArgumentLoc value_type; typedef TemplateArgumentLoc reference; typedef typename std::iterator_traits
::difference_type difference_type; typedef std::input_iterator_tag iterator_category; class pointer { TemplateArgumentLoc Arg; public: explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } const TemplateArgumentLoc *operator->() const { return &Arg; } }; TemplateArgumentLocInventIterator() { } explicit TemplateArgumentLocInventIterator(TreeTransform
&Self, InputIterator Iter) : Self(Self), Iter(Iter) { } TemplateArgumentLocInventIterator &operator++() { ++Iter; return *this; } TemplateArgumentLocInventIterator operator++(int) { TemplateArgumentLocInventIterator Old(*this); ++(*this); return Old; } reference operator*() const { TemplateArgumentLoc Result; Self.InventTemplateArgumentLoc(*Iter, Result); return Result; } pointer operator->() const { return pointer(**this); } friend bool operator==(const TemplateArgumentLocInventIterator &X, const TemplateArgumentLocInventIterator &Y) { return X.Iter == Y.Iter; } friend bool operator!=(const TemplateArgumentLocInventIterator &X, const TemplateArgumentLocInventIterator &Y) { return X.Iter != Y.Iter; } }; template
template
bool TreeTransform
::TransformTemplateArguments(InputIterator First, InputIterator Last, TemplateArgumentListInfo &Outputs) { for (; First != Last; ++First) { TemplateArgumentLoc Out; TemplateArgumentLoc In = *First; if (In.getArgument().getKind() == TemplateArgument::Pack) { // Unpack argument packs, which we translate them into separate // arguments. // FIXME: We could do much better if we could guarantee that the // TemplateArgumentLocInfo for the pack expansion would be usable for // all of the template arguments in the argument pack. typedef TemplateArgumentLocInventIterator
PackLocIterator; if (TransformTemplateArguments(PackLocIterator(*this, In.getArgument().pack_begin()), PackLocIterator(*this, In.getArgument().pack_end()), Outputs)) return true; continue; } if (In.getArgument().isPackExpansion()) { // We have a pack expansion, for which we will be substituting into // the pattern. SourceLocation Ellipsis; Optional
OrigNumExpansions; TemplateArgumentLoc Pattern = getSema().getTemplateArgumentPackExpansionPattern( In, Ellipsis, OrigNumExpansions); SmallVector
Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional
NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(Ellipsis, Pattern.getSourceRange(), Unexpanded, Expand, RetainExpansion, NumExpansions)) return true; if (!Expand) { // The transform has determined that we should perform a simple // transformation on the pack expansion, producing another pack // expansion. TemplateArgumentLoc OutPattern; Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); if (getDerived().TransformTemplateArgument(Pattern, OutPattern)) return true; Out = getDerived().RebuildPackExpansion(OutPattern, Ellipsis, NumExpansions); if (Out.getArgument().isNull()) return true; Outputs.addArgument(Out); continue; } // The transform has determined that we should perform an elementwise // expansion of the pattern. Do so. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); if (getDerived().TransformTemplateArgument(Pattern, Out)) return true; if (Out.getArgument().containsUnexpandedParameterPack()) { Out = getDerived().RebuildPackExpansion(Out, Ellipsis, OrigNumExpansions); if (Out.getArgument().isNull()) return true; } Outputs.addArgument(Out); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); if (getDerived().TransformTemplateArgument(Pattern, Out)) return true; Out = getDerived().RebuildPackExpansion(Out, Ellipsis, OrigNumExpansions); if (Out.getArgument().isNull()) return true; Outputs.addArgument(Out); } continue; } // The simple case: if (getDerived().TransformTemplateArgument(In, Out)) return true; Outputs.addArgument(Out); } return false; } //===----------------------------------------------------------------------===// // Type transformation //===----------------------------------------------------------------------===// template
QualType TreeTransform
::TransformType(QualType T) { if (getDerived().AlreadyTransformed(T)) return T; // Temporary workaround. All of these transformations should // eventually turn into transformations on TypeLocs. TypeSourceInfo *DI = getSema().Context.getTrivialTypeSourceInfo(T, getDerived().getBaseLocation()); TypeSourceInfo *NewDI = getDerived().TransformType(DI); if (!NewDI) return QualType(); return NewDI->getType(); } template
TypeSourceInfo *TreeTransform
::TransformType(TypeSourceInfo *DI) { // Refine the base location to the type's location. TemporaryBase Rebase(*this, DI->getTypeLoc().getBeginLoc(), getDerived().getBaseEntity()); if (getDerived().AlreadyTransformed(DI->getType())) return DI; TypeLocBuilder TLB; TypeLoc TL = DI->getTypeLoc(); TLB.reserve(TL.getFullDataSize()); QualType Result = getDerived().TransformType(TLB, TL); if (Result.isNull()) return 0; return TLB.getTypeSourceInfo(SemaRef.Context, Result); } template
QualType TreeTransform
::TransformType(TypeLocBuilder &TLB, TypeLoc T) { switch (T.getTypeLocClass()) { #define ABSTRACT_TYPELOC(CLASS, PARENT) #define TYPELOC(CLASS, PARENT) \ case TypeLoc::CLASS: \ return getDerived().Transform##CLASS##Type(TLB, \ T.castAs
()); #include "clang/AST/TypeLocNodes.def" } llvm_unreachable("unhandled type loc!"); } /// FIXME: By default, this routine adds type qualifiers only to types /// that can have qualifiers, and silently suppresses those qualifiers /// that are not permitted (e.g., qualifiers on reference or function /// types). This is the right thing for template instantiation, but /// probably not for other clients. template
QualType TreeTransform
::TransformQualifiedType(TypeLocBuilder &TLB, QualifiedTypeLoc T) { Qualifiers Quals = T.getType().getLocalQualifiers(); QualType Result = getDerived().TransformType(TLB, T.getUnqualifiedLoc()); if (Result.isNull()) return QualType(); // Silently suppress qualifiers if the result type can't be qualified. // FIXME: this is the right thing for template instantiation, but // probably not for other clients. if (Result->isFunctionType() || Result->isReferenceType()) return Result; // Suppress Objective-C lifetime qualifiers if they don't make sense for the // resulting type. if (Quals.hasObjCLifetime()) { if (!Result->isObjCLifetimeType() && !Result->isDependentType()) Quals.removeObjCLifetime(); else if (Result.getObjCLifetime()) { // Objective-C ARC: // A lifetime qualifier applied to a substituted template parameter // overrides the lifetime qualifier from the template argument. const AutoType *AutoTy; if (const SubstTemplateTypeParmType *SubstTypeParam = dyn_cast
(Result)) { QualType Replacement = SubstTypeParam->getReplacementType(); Qualifiers Qs = Replacement.getQualifiers(); Qs.removeObjCLifetime(); Replacement = SemaRef.Context.getQualifiedType(Replacement.getUnqualifiedType(), Qs); Result = SemaRef.Context.getSubstTemplateTypeParmType( SubstTypeParam->getReplacedParameter(), Replacement); TLB.TypeWasModifiedSafely(Result); } else if ((AutoTy = dyn_cast
(Result)) && AutoTy->isDeduced()) { // 'auto' types behave the same way as template parameters. QualType Deduced = AutoTy->getDeducedType(); Qualifiers Qs = Deduced.getQualifiers(); Qs.removeObjCLifetime(); Deduced = SemaRef.Context.getQualifiedType(Deduced.getUnqualifiedType(), Qs); Result = SemaRef.Context.getAutoType(Deduced, AutoTy->isDecltypeAuto()); TLB.TypeWasModifiedSafely(Result); } else { // Otherwise, complain about the addition of a qualifier to an // already-qualified type. SourceRange R = T.getUnqualifiedLoc().getSourceRange(); SemaRef.Diag(R.getBegin(), diag::err_attr_objc_ownership_redundant) << Result << R; Quals.removeObjCLifetime(); } } } if (!Quals.empty()) { Result = SemaRef.BuildQualifiedType(Result, T.getBeginLoc(), Quals); // BuildQualifiedType might not add qualifiers if they are invalid. if (Result.hasLocalQualifiers()) TLB.push
(Result); // No location information to preserve. } return Result; } template
TypeLoc TreeTransform
::TransformTypeInObjectScope(TypeLoc TL, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { QualType T = TL.getType(); if (getDerived().AlreadyTransformed(T)) return TL; TypeLocBuilder TLB; QualType Result; if (isa
(T)) { TemplateSpecializationTypeLoc SpecTL = TL.castAs
(); TemplateName Template = getDerived().TransformTemplateName(SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup); if (Template.isNull()) return TypeLoc(); Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, Template); } else if (isa
(T)) { DependentTemplateSpecializationTypeLoc SpecTL = TL.castAs
(); TemplateName Template = getDerived().RebuildTemplateName(SS, *SpecTL.getTypePtr()->getIdentifier(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup); if (Template.isNull()) return TypeLoc(); Result = getDerived().TransformDependentTemplateSpecializationType(TLB, SpecTL, Template, SS); } else { // Nothing special needs to be done for these. Result = getDerived().TransformType(TLB, TL); } if (Result.isNull()) return TypeLoc(); return TLB.getTypeSourceInfo(SemaRef.Context, Result)->getTypeLoc(); } template
TypeSourceInfo * TreeTransform
::TransformTypeInObjectScope(TypeSourceInfo *TSInfo, QualType ObjectType, NamedDecl *UnqualLookup, CXXScopeSpec &SS) { // FIXME: Painfully copy-paste from the above! QualType T = TSInfo->getType(); if (getDerived().AlreadyTransformed(T)) return TSInfo; TypeLocBuilder TLB; QualType Result; TypeLoc TL = TSInfo->getTypeLoc(); if (isa
(T)) { TemplateSpecializationTypeLoc SpecTL = TL.castAs
(); TemplateName Template = getDerived().TransformTemplateName(SS, SpecTL.getTypePtr()->getTemplateName(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup); if (Template.isNull()) return 0; Result = getDerived().TransformTemplateSpecializationType(TLB, SpecTL, Template); } else if (isa
(T)) { DependentTemplateSpecializationTypeLoc SpecTL = TL.castAs
(); TemplateName Template = getDerived().RebuildTemplateName(SS, *SpecTL.getTypePtr()->getIdentifier(), SpecTL.getTemplateNameLoc(), ObjectType, UnqualLookup); if (Template.isNull()) return 0; Result = getDerived().TransformDependentTemplateSpecializationType(TLB, SpecTL, Template, SS); } else { // Nothing special needs to be done for these. Result = getDerived().TransformType(TLB, TL); } if (Result.isNull()) return 0; return TLB.getTypeSourceInfo(SemaRef.Context, Result); } template
static inline QualType TransformTypeSpecType(TypeLocBuilder &TLB, TyLoc T) { TyLoc NewT = TLB.push
(T.getType()); NewT.setNameLoc(T.getNameLoc()); return T.getType(); } template
QualType TreeTransform
::TransformBuiltinType(TypeLocBuilder &TLB, BuiltinTypeLoc T) { BuiltinTypeLoc NewT = TLB.push
(T.getType()); NewT.setBuiltinLoc(T.getBuiltinLoc()); if (T.needsExtraLocalData()) NewT.getWrittenBuiltinSpecs() = T.getWrittenBuiltinSpecs(); return T.getType(); } template
QualType TreeTransform
::TransformComplexType(TypeLocBuilder &TLB, ComplexTypeLoc T) { // FIXME: recurse? return TransformTypeSpecType(TLB, T); } template
QualType TreeTransform
::TransformDecayedType(TypeLocBuilder &TLB, DecayedTypeLoc TL) { QualType OriginalType = getDerived().TransformType(TLB, TL.getOriginalLoc()); if (OriginalType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || OriginalType != TL.getOriginalLoc().getType()) Result = SemaRef.Context.getDecayedType(OriginalType); TLB.push
(Result); // Nothing to set for DecayedTypeLoc. return Result; } template
QualType TreeTransform
::TransformPointerType(TypeLocBuilder &TLB, PointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (PointeeType->getAs
()) { // A dependent pointer type 'T *' has is being transformed such // that an Objective-C class type is being replaced for 'T'. The // resulting pointer type is an ObjCObjectPointerType, not a // PointerType. Result = SemaRef.Context.getObjCObjectPointerType(PointeeType); ObjCObjectPointerTypeLoc NewT = TLB.push
(Result); NewT.setStarLoc(TL.getStarLoc()); return Result; } if (getDerived().AlwaysRebuild() || PointeeType != TL.getPointeeLoc().getType()) { Result = getDerived().RebuildPointerType(PointeeType, TL.getSigilLoc()); if (Result.isNull()) return QualType(); } // Objective-C ARC can add lifetime qualifiers to the type that we're // pointing to. TLB.TypeWasModifiedSafely(Result->getPointeeType()); PointerTypeLoc NewT = TLB.push
(Result); NewT.setSigilLoc(TL.getSigilLoc()); return Result; } template
QualType TreeTransform
::TransformBlockPointerType(TypeLocBuilder &TLB, BlockPointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != TL.getPointeeLoc().getType()) { Result = getDerived().RebuildBlockPointerType(PointeeType, TL.getSigilLoc()); if (Result.isNull()) return QualType(); } BlockPointerTypeLoc NewT = TLB.push
(Result); NewT.setSigilLoc(TL.getSigilLoc()); return Result; } /// Transforms a reference type. Note that somewhat paradoxically we /// don't care whether the type itself is an l-value type or an r-value /// type; we only care if the type was *written* as an l-value type /// or an r-value type. template
QualType TreeTransform
::TransformReferenceType(TypeLocBuilder &TLB, ReferenceTypeLoc TL) { const ReferenceType *T = TL.getTypePtr(); // Note that this works with the pointee-as-written. QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != T->getPointeeTypeAsWritten()) { Result = getDerived().RebuildReferenceType(PointeeType, T->isSpelledAsLValue(), TL.getSigilLoc()); if (Result.isNull()) return QualType(); } // Objective-C ARC can add lifetime qualifiers to the type that we're // referring to. TLB.TypeWasModifiedSafely( Result->getAs
()->getPointeeTypeAsWritten()); // r-value references can be rebuilt as l-value references. ReferenceTypeLoc NewTL; if (isa
(Result)) NewTL = TLB.push
(Result); else NewTL = TLB.push
(Result); NewTL.setSigilLoc(TL.getSigilLoc()); return Result; } template
QualType TreeTransform
::TransformLValueReferenceType(TypeLocBuilder &TLB, LValueReferenceTypeLoc TL) { return TransformReferenceType(TLB, TL); } template
QualType TreeTransform
::TransformRValueReferenceType(TypeLocBuilder &TLB, RValueReferenceTypeLoc TL) { return TransformReferenceType(TLB, TL); } template
QualType TreeTransform
::TransformMemberPointerType(TypeLocBuilder &TLB, MemberPointerTypeLoc TL) { QualType PointeeType = getDerived().TransformType(TLB, TL.getPointeeLoc()); if (PointeeType.isNull()) return QualType(); TypeSourceInfo* OldClsTInfo = TL.getClassTInfo(); TypeSourceInfo* NewClsTInfo = 0; if (OldClsTInfo) { NewClsTInfo = getDerived().TransformType(OldClsTInfo); if (!NewClsTInfo) return QualType(); } const MemberPointerType *T = TL.getTypePtr(); QualType OldClsType = QualType(T->getClass(), 0); QualType NewClsType; if (NewClsTInfo) NewClsType = NewClsTInfo->getType(); else { NewClsType = getDerived().TransformType(OldClsType); if (NewClsType.isNull()) return QualType(); } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || PointeeType != T->getPointeeType() || NewClsType != OldClsType) { Result = getDerived().RebuildMemberPointerType(PointeeType, NewClsType, TL.getStarLoc()); if (Result.isNull()) return QualType(); } MemberPointerTypeLoc NewTL = TLB.push
(Result); NewTL.setSigilLoc(TL.getSigilLoc()); NewTL.setClassTInfo(NewClsTInfo); return Result; } template
QualType TreeTransform
::TransformConstantArrayType(TypeLocBuilder &TLB, ConstantArrayTypeLoc TL) { const ConstantArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildConstantArrayType(ElementType, T->getSizeModifier(), T->getSize(), T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have either a ConstantArrayType or a VariableArrayType now: // a ConstantArrayType is allowed to have an element type which is a // VariableArrayType if the type is dependent. Fortunately, all array // types have the same location layout. ArrayTypeLoc NewTL = TLB.push
(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); Expr *Size = TL.getSizeExpr(); if (Size) { EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); Size = getDerived().TransformExpr(Size).template takeAs
(); Size = SemaRef.ActOnConstantExpression(Size).take(); } NewTL.setSizeExpr(Size); return Result; } template
QualType TreeTransform
::TransformIncompleteArrayType( TypeLocBuilder &TLB, IncompleteArrayTypeLoc TL) { const IncompleteArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildIncompleteArrayType(ElementType, T->getSizeModifier(), T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } IncompleteArrayTypeLoc NewTL = TLB.push
(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(0); return Result; } template
QualType TreeTransform
::TransformVariableArrayType(TypeLocBuilder &TLB, VariableArrayTypeLoc TL) { const VariableArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); ExprResult SizeResult = getDerived().TransformExpr(T->getSizeExpr()); if (SizeResult.isInvalid()) return QualType(); Expr *Size = SizeResult.take(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || Size != T->getSizeExpr()) { Result = getDerived().RebuildVariableArrayType(ElementType, T->getSizeModifier(), Size, T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } VariableArrayTypeLoc NewTL = TLB.push
(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(Size); return Result; } template
QualType TreeTransform
::TransformDependentSizedArrayType(TypeLocBuilder &TLB, DependentSizedArrayTypeLoc TL) { const DependentSizedArrayType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(TLB, TL.getElementLoc()); if (ElementType.isNull()) return QualType(); // Array bounds are constant expressions. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); // Prefer the expression from the TypeLoc; the other may have been uniqued. Expr *origSize = TL.getSizeExpr(); if (!origSize) origSize = T->getSizeExpr(); ExprResult sizeResult = getDerived().TransformExpr(origSize); sizeResult = SemaRef.ActOnConstantExpression(sizeResult); if (sizeResult.isInvalid()) return QualType(); Expr *size = sizeResult.get(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || size != origSize) { Result = getDerived().RebuildDependentSizedArrayType(ElementType, T->getSizeModifier(), size, T->getIndexTypeCVRQualifiers(), TL.getBracketsRange()); if (Result.isNull()) return QualType(); } // We might have any sort of array type now, but fortunately they // all have the same location layout. ArrayTypeLoc NewTL = TLB.push
(Result); NewTL.setLBracketLoc(TL.getLBracketLoc()); NewTL.setRBracketLoc(TL.getRBracketLoc()); NewTL.setSizeExpr(size); return Result; } template
QualType TreeTransform
::TransformDependentSizedExtVectorType( TypeLocBuilder &TLB, DependentSizedExtVectorTypeLoc TL) { const DependentSizedExtVectorType *T = TL.getTypePtr(); // FIXME: ext vector locs should be nested QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) return QualType(); // Vector sizes are constant expressions. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); ExprResult Size = getDerived().TransformExpr(T->getSizeExpr()); Size = SemaRef.ActOnConstantExpression(Size); if (Size.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType() || Size.get() != T->getSizeExpr()) { Result = getDerived().RebuildDependentSizedExtVectorType(ElementType, Size.take(), T->getAttributeLoc()); if (Result.isNull()) return QualType(); } // Result might be dependent or not. if (isa
(Result)) { DependentSizedExtVectorTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); } else { ExtVectorTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); } return Result; } template
QualType TreeTransform
::TransformVectorType(TypeLocBuilder &TLB, VectorTypeLoc TL) { const VectorType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildVectorType(ElementType, T->getNumElements(), T->getVectorKind()); if (Result.isNull()) return QualType(); } VectorTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformExtVectorType(TypeLocBuilder &TLB, ExtVectorTypeLoc TL) { const VectorType *T = TL.getTypePtr(); QualType ElementType = getDerived().TransformType(T->getElementType()); if (ElementType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ElementType != T->getElementType()) { Result = getDerived().RebuildExtVectorType(ElementType, T->getNumElements(), /*FIXME*/ SourceLocation()); if (Result.isNull()) return QualType(); } ExtVectorTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
ParmVarDecl *TreeTransform
::TransformFunctionTypeParam( ParmVarDecl *OldParm, int indexAdjustment, Optional
NumExpansions, bool ExpectParameterPack) { TypeSourceInfo *OldDI = OldParm->getTypeSourceInfo(); TypeSourceInfo *NewDI = 0; if (NumExpansions && isa
(OldDI->getType())) { // If we're substituting into a pack expansion type and we know the // length we want to expand to, just substitute for the pattern. TypeLoc OldTL = OldDI->getTypeLoc(); PackExpansionTypeLoc OldExpansionTL = OldTL.castAs
(); TypeLocBuilder TLB; TypeLoc NewTL = OldDI->getTypeLoc(); TLB.reserve(NewTL.getFullDataSize()); QualType Result = getDerived().TransformType(TLB, OldExpansionTL.getPatternLoc()); if (Result.isNull()) return 0; Result = RebuildPackExpansionType(Result, OldExpansionTL.getPatternLoc().getSourceRange(), OldExpansionTL.getEllipsisLoc(), NumExpansions); if (Result.isNull()) return 0; PackExpansionTypeLoc NewExpansionTL = TLB.push
(Result); NewExpansionTL.setEllipsisLoc(OldExpansionTL.getEllipsisLoc()); NewDI = TLB.getTypeSourceInfo(SemaRef.Context, Result); } else NewDI = getDerived().TransformType(OldDI); if (!NewDI) return 0; if (NewDI == OldDI && indexAdjustment == 0) return OldParm; ParmVarDecl *newParm = ParmVarDecl::Create(SemaRef.Context, OldParm->getDeclContext(), OldParm->getInnerLocStart(), OldParm->getLocation(), OldParm->getIdentifier(), NewDI->getType(), NewDI, OldParm->getStorageClass(), /* DefArg */ NULL); newParm->setScopeInfo(OldParm->getFunctionScopeDepth(), OldParm->getFunctionScopeIndex() + indexAdjustment); return newParm; } template
bool TreeTransform
:: TransformFunctionTypeParams(SourceLocation Loc, ParmVarDecl **Params, unsigned NumParams, const QualType *ParamTypes, SmallVectorImpl
&OutParamTypes, SmallVectorImpl
*PVars) { int indexAdjustment = 0; for (unsigned i = 0; i != NumParams; ++i) { if (ParmVarDecl *OldParm = Params[i]) { assert(OldParm->getFunctionScopeIndex() == i); Optional
NumExpansions; ParmVarDecl *NewParm = 0; if (OldParm->isParameterPack()) { // We have a function parameter pack that may need to be expanded. SmallVector
Unexpanded; // Find the parameter packs that could be expanded. TypeLoc TL = OldParm->getTypeSourceInfo()->getTypeLoc(); PackExpansionTypeLoc ExpansionTL = TL.castAs
(); TypeLoc Pattern = ExpansionTL.getPatternLoc(); SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); assert(Unexpanded.size() > 0 && "Could not find parameter packs!"); // Determine whether we should expand the parameter packs. bool ShouldExpand = false; bool RetainExpansion = false; Optional
OrigNumExpansions = ExpansionTL.getTypePtr()->getNumExpansions(); NumExpansions = OrigNumExpansions; if (getDerived().TryExpandParameterPacks(ExpansionTL.getEllipsisLoc(), Pattern.getSourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { return true; } if (ShouldExpand) { // Expand the function parameter pack into multiple, separate // parameters. getDerived().ExpandingFunctionParameterPack(OldParm); for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); ParmVarDecl *NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment++, OrigNumExpansions, /*ExpectParameterPack=*/false); if (!NewParm) return true; OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); ParmVarDecl *NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment++, OrigNumExpansions, /*ExpectParameterPack=*/false); if (!NewParm) return true; OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); } // The next parameter should have the same adjustment as the // last thing we pushed, but we post-incremented indexAdjustment // on every push. Also, if we push nothing, the adjustment should // go down by one. indexAdjustment--; // We're done with the pack expansion. continue; } // We'll substitute the parameter now without expanding the pack // expansion. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); NewParm = getDerived().TransformFunctionTypeParam(OldParm, indexAdjustment, NumExpansions, /*ExpectParameterPack=*/true); } else { NewParm = getDerived().TransformFunctionTypeParam( OldParm, indexAdjustment, None, /*ExpectParameterPack=*/ false); } if (!NewParm) return true; OutParamTypes.push_back(NewParm->getType()); if (PVars) PVars->push_back(NewParm); continue; } // Deal with the possibility that we don't have a parameter // declaration for this parameter. QualType OldType = ParamTypes[i]; bool IsPackExpansion = false; Optional
NumExpansions; QualType NewType; if (const PackExpansionType *Expansion = dyn_cast
(OldType)) { // We have a function parameter pack that may need to be expanded. QualType Pattern = Expansion->getPattern(); SmallVector
Unexpanded; getSema().collectUnexpandedParameterPacks(Pattern, Unexpanded); // Determine whether we should expand the parameter packs. bool ShouldExpand = false; bool RetainExpansion = false; if (getDerived().TryExpandParameterPacks(Loc, SourceRange(), Unexpanded, ShouldExpand, RetainExpansion, NumExpansions)) { return true; } if (ShouldExpand) { // Expand the function parameter pack into multiple, separate // parameters. for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), I); QualType NewType = getDerived().TransformType(Pattern); if (NewType.isNull()) return true; OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(0); } // We're done with the pack expansion. continue; } // If we're supposed to retain a pack expansion, do so by temporarily // forgetting the partially-substituted parameter pack. if (RetainExpansion) { ForgetPartiallySubstitutedPackRAII Forget(getDerived()); QualType NewType = getDerived().TransformType(Pattern); if (NewType.isNull()) return true; OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(0); } // We'll substitute the parameter now without expanding the pack // expansion. OldType = Expansion->getPattern(); IsPackExpansion = true; Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(getSema(), -1); NewType = getDerived().TransformType(OldType); } else { NewType = getDerived().TransformType(OldType); } if (NewType.isNull()) return true; if (IsPackExpansion) NewType = getSema().Context.getPackExpansionType(NewType, NumExpansions); OutParamTypes.push_back(NewType); if (PVars) PVars->push_back(0); } #ifndef NDEBUG if (PVars) { for (unsigned i = 0, e = PVars->size(); i != e; ++i) if (ParmVarDecl *parm = (*PVars)[i]) assert(parm->getFunctionScopeIndex() == i); } #endif return false; } template
QualType TreeTransform
::TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL) { return getDerived().TransformFunctionProtoType(TLB, TL, 0, 0); } template
QualType TreeTransform
::TransformFunctionProtoType(TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, CXXRecordDecl *ThisContext, unsigned ThisTypeQuals) { // Transform the parameters and return type. // // We are required to instantiate the params and return type in source order. // When the function has a trailing return type, we instantiate the // parameters before the return type, since the return type can then refer // to the parameters themselves (via decltype, sizeof, etc.). // SmallVector
ParamTypes; SmallVector
ParamDecls; const FunctionProtoType *T = TL.getTypePtr(); QualType ResultType; if (T->hasTrailingReturn()) { if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(), TL.getParmArray(), TL.getNumArgs(), TL.getTypePtr()->arg_type_begin(), ParamTypes, &ParamDecls)) return QualType(); { // C++11 [expr.prim.general]p3: // If a declaration declares a member function or member function // template of a class X, the expression this is a prvalue of type // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq // and the end of the function-definition, member-declarator, or // declarator. Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, ThisTypeQuals); ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); if (ResultType.isNull()) return QualType(); } } else { ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); if (ResultType.isNull()) return QualType(); if (getDerived().TransformFunctionTypeParams(TL.getBeginLoc(), TL.getParmArray(), TL.getNumArgs(), TL.getTypePtr()->arg_type_begin(), ParamTypes, &ParamDecls)) return QualType(); } // FIXME: Need to transform the exception-specification too. QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ResultType != T->getResultType() || T->getNumArgs() != ParamTypes.size() || !std::equal(T->arg_type_begin(), T->arg_type_end(), ParamTypes.begin())) { Result = getDerived().RebuildFunctionProtoType(ResultType, ParamTypes, T->getExtProtoInfo()); if (Result.isNull()) return QualType(); } FunctionProtoTypeLoc NewTL = TLB.push
(Result); NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); for (unsigned i = 0, e = NewTL.getNumArgs(); i != e; ++i) NewTL.setArg(i, ParamDecls[i]); return Result; } template
QualType TreeTransform
::TransformFunctionNoProtoType( TypeLocBuilder &TLB, FunctionNoProtoTypeLoc TL) { const FunctionNoProtoType *T = TL.getTypePtr(); QualType ResultType = getDerived().TransformType(TLB, TL.getResultLoc()); if (ResultType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ResultType != T->getResultType()) Result = getDerived().RebuildFunctionNoProtoType(ResultType); FunctionNoProtoTypeLoc NewTL = TLB.push
(Result); NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); return Result; } template
QualType TreeTransform
::TransformUnresolvedUsingType(TypeLocBuilder &TLB, UnresolvedUsingTypeLoc TL) { const UnresolvedUsingType *T = TL.getTypePtr(); Decl *D = getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()); if (!D) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || D != T->getDecl()) { Result = getDerived().RebuildUnresolvedUsingType(D); if (Result.isNull()) return QualType(); } // We might get an arbitrary type spec type back. We should at // least always get a type spec type, though. TypeSpecTypeLoc NewTL = TLB.pushTypeSpec(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) { const TypedefType *T = TL.getTypePtr(); TypedefNameDecl *Typedef = cast_or_null
(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Typedef) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Typedef != T->getDecl()) { Result = getDerived().RebuildTypedefType(Typedef); if (Result.isNull()) return QualType(); } TypedefTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformTypeOfExprType(TypeLocBuilder &TLB, TypeOfExprTypeLoc TL) { // typeof expressions are not potentially evaluated contexts EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, Sema::ReuseLambdaContextDecl); ExprResult E = getDerived().TransformExpr(TL.getUnderlyingExpr()); if (E.isInvalid()) return QualType(); E = SemaRef.HandleExprEvaluationContextForTypeof(E.get()); if (E.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || E.get() != TL.getUnderlyingExpr()) { Result = getDerived().RebuildTypeOfExprType(E.get(), TL.getTypeofLoc()); if (Result.isNull()) return QualType(); } else E.take(); TypeOfExprTypeLoc NewTL = TLB.push
(Result); NewTL.setTypeofLoc(TL.getTypeofLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } template
QualType TreeTransform
::TransformTypeOfType(TypeLocBuilder &TLB, TypeOfTypeLoc TL) { TypeSourceInfo* Old_Under_TI = TL.getUnderlyingTInfo(); TypeSourceInfo* New_Under_TI = getDerived().TransformType(Old_Under_TI); if (!New_Under_TI) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || New_Under_TI != Old_Under_TI) { Result = getDerived().RebuildTypeOfType(New_Under_TI->getType()); if (Result.isNull()) return QualType(); } TypeOfTypeLoc NewTL = TLB.push
(Result); NewTL.setTypeofLoc(TL.getTypeofLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); NewTL.setUnderlyingTInfo(New_Under_TI); return Result; } template
QualType TreeTransform
::TransformDecltypeType(TypeLocBuilder &TLB, DecltypeTypeLoc TL) { const DecltypeType *T = TL.getTypePtr(); // decltype expressions are not potentially evaluated contexts EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::Unevaluated, 0, /*IsDecltype=*/ true); ExprResult E = getDerived().TransformExpr(T->getUnderlyingExpr()); if (E.isInvalid()) return QualType(); E = getSema().ActOnDecltypeExpression(E.take()); if (E.isInvalid()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || E.get() != T->getUnderlyingExpr()) { Result = getDerived().RebuildDecltypeType(E.get(), TL.getNameLoc()); if (Result.isNull()) return QualType(); } else E.take(); DecltypeTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformUnaryTransformType( TypeLocBuilder &TLB, UnaryTransformTypeLoc TL) { QualType Result = TL.getType(); if (Result->isDependentType()) { const UnaryTransformType *T = TL.getTypePtr(); QualType NewBase = getDerived().TransformType(TL.getUnderlyingTInfo())->getType(); Result = getDerived().RebuildUnaryTransformType(NewBase, T->getUTTKind(), TL.getKWLoc()); if (Result.isNull()) return QualType(); } UnaryTransformTypeLoc NewTL = TLB.push
(Result); NewTL.setKWLoc(TL.getKWLoc()); NewTL.setParensRange(TL.getParensRange()); NewTL.setUnderlyingTInfo(TL.getUnderlyingTInfo()); return Result; } template
QualType TreeTransform
::TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { const AutoType *T = TL.getTypePtr(); QualType OldDeduced = T->getDeducedType(); QualType NewDeduced; if (!OldDeduced.isNull()) { NewDeduced = getDerived().TransformType(OldDeduced); if (NewDeduced.isNull()) return QualType(); } QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || NewDeduced != OldDeduced || T->isDependentType()) { Result = getDerived().RebuildAutoType(NewDeduced, T->isDecltypeAuto()); if (Result.isNull()) return QualType(); } AutoTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) { const RecordType *T = TL.getTypePtr(); RecordDecl *Record = cast_or_null
(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Record) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Record != T->getDecl()) { Result = getDerived().RebuildRecordType(Record); if (Result.isNull()) return QualType(); } RecordTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformEnumType(TypeLocBuilder &TLB, EnumTypeLoc TL) { const EnumType *T = TL.getTypePtr(); EnumDecl *Enum = cast_or_null
(getDerived().TransformDecl(TL.getNameLoc(), T->getDecl())); if (!Enum) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || Enum != T->getDecl()) { Result = getDerived().RebuildEnumType(Enum); if (Result.isNull()) return QualType(); } EnumTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformInjectedClassNameType( TypeLocBuilder &TLB, InjectedClassNameTypeLoc TL) { Decl *D = getDerived().TransformDecl(TL.getNameLoc(), TL.getTypePtr()->getDecl()); if (!D) return QualType(); QualType T = SemaRef.Context.getTypeDeclType(cast
(D)); TLB.pushTypeSpec(T).setNameLoc(TL.getNameLoc()); return T; } template
QualType TreeTransform
::TransformTemplateTypeParmType( TypeLocBuilder &TLB, TemplateTypeParmTypeLoc TL) { return TransformTypeSpecType(TLB, TL); } template
QualType TreeTransform
::TransformSubstTemplateTypeParmType( TypeLocBuilder &TLB, SubstTemplateTypeParmTypeLoc TL) { const SubstTemplateTypeParmType *T = TL.getTypePtr(); // Substitute into the replacement type, which itself might involve something // that needs to be transformed. This only tends to occur with default // template arguments of template template parameters. TemporaryBase Rebase(*this, TL.getNameLoc(), DeclarationName()); QualType Replacement = getDerived().TransformType(T->getReplacementType()); if (Replacement.isNull()) return QualType(); // Always canonicalize the replacement type. Replacement = SemaRef.Context.getCanonicalType(Replacement); QualType Result = SemaRef.Context.getSubstTemplateTypeParmType(T->getReplacedParameter(), Replacement); // Propagate type-source information. SubstTemplateTypeParmTypeLoc NewTL = TLB.push
(Result); NewTL.setNameLoc(TL.getNameLoc()); return Result; } template
QualType TreeTransform
::TransformSubstTemplateTypeParmPackType( TypeLocBuilder &TLB, SubstTemplateTypeParmPackTypeLoc TL) { return TransformTypeSpecType(TLB, TL); } template
QualType TreeTransform
::TransformTemplateSpecializationType( TypeLocBuilder &TLB, TemplateSpecializationTypeLoc TL) { const TemplateSpecializationType *T = TL.getTypePtr(); // The nested-name-specifier never matters in a TemplateSpecializationType, // because we can't have a dependent nested-name-specifier anyway. CXXScopeSpec SS; TemplateName Template = getDerived().TransformTemplateName(SS, T->getTemplateName(), TL.getTemplateNameLoc()); if (Template.isNull()) return QualType(); return getDerived().TransformTemplateSpecializationType(TLB, TL, Template); } template
QualType TreeTransform
::TransformAtomicType(TypeLocBuilder &TLB, AtomicTypeLoc TL) { QualType ValueType = getDerived().TransformType(TLB, TL.getValueLoc()); if (ValueType.isNull()) return QualType(); QualType Result = TL.getType(); if (getDerived().AlwaysRebuild() || ValueType != TL.getValueLoc().getType()) { Result = getDerived().RebuildAtomicType(ValueType, TL.getKWLoc()); if (Result.isNull()) return QualType(); } AtomicTypeLoc NewTL = TLB.push
(Result); NewTL.setKWLoc(TL.getKWLoc()); NewTL.setLParenLoc(TL.getLParenLoc()); NewTL.setRParenLoc(TL.getRParenLoc()); return Result; } /// \brief Simple iterator that traverses the template arguments in a /// container that provides a \c getArgLoc() member function. /// /// This iterator is intended to be used with the iterator form of /// \c TreeTransform
::TransformTemplateArguments(). template
class TemplateArgumentLocContainerIterator { ArgLocContainer *Container; unsigned Index; public: typedef TemplateArgumentLoc value_type; typedef TemplateArgumentLoc reference; typedef int difference_type; typedef std::input_iterator_tag iterator_category; class pointer { TemplateArgumentLoc Arg; public: explicit pointer(TemplateArgumentLoc Arg) : Arg(Arg) { } const TemplateArgumentLoc *operator->() const { return &Arg; } }; TemplateArgumentLocContainerIterator() {} TemplateArgumentLocContainerIterator(ArgLocContainer &Container, unsigned Index) : Container(&Container), Index(Index) { } TemplateArgumentLocContainerIterator &operator++() { ++Index; return *this; } TemplateArgumentLocContainerIterator operator++(int) { TemplateArgumentLocContainerIterator Old(*this); ++(*this); return Old; } TemplateArgumentLoc operator*() const { return Container->getArgLoc(Index); } pointer operator->() const { return pointer(Container->getArgLoc(Index)); } friend bool operator==(const TemplateArgumentLocContainerIterator &X, const TemplateArgumentLocContainerIterator &Y) { return X.Container == Y.Container && X.Index == Y.Index; } friend bool operator!=(const TemplateArgumentLocContainerIterator &X, const TemplateArgumentLocContainerIterator &Y) { return !(X == Y); } }; template