// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "bootstrapper.h"
#include "deoptimizer.h"
#include "execution.h"
#include "global-handles.h"
#include "ic-inl.h"
#include "natives.h"
#include "platform.h"
#include "runtime.h"
#include "serialize.h"
#include "snapshot.h"
#include "stub-cache.h"
#include "v8threads.h"
namespace v8 {
namespace internal {
// -----------------------------------------------------------------------------
// Coding of external references.
// The encoding of an external reference. The type is in the high word.
// The id is in the low word.
static uint32_t EncodeExternal(TypeCode type, uint16_t id) {
return static_cast<uint32_t>(type) << 16 | id;
}
static int* GetInternalPointer(StatsCounter* counter) {
// All counters refer to dummy_counter, if deserializing happens without
// setting up counters.
static int dummy_counter = 0;
return counter->Enabled() ? counter->GetInternalPointer() : &dummy_counter;
}
ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
ExternalReferenceTable* external_reference_table =
isolate->external_reference_table();
if (external_reference_table == NULL) {
external_reference_table = new ExternalReferenceTable(isolate);
isolate->set_external_reference_table(external_reference_table);
}
return external_reference_table;
}
void ExternalReferenceTable::AddFromId(TypeCode type,
uint16_t id,
const char* name,
Isolate* isolate) {
Address address;
switch (type) {
case C_BUILTIN: {
ExternalReference ref(static_cast<Builtins::CFunctionId>(id), isolate);
address = ref.address();
break;
}
case BUILTIN: {
ExternalReference ref(static_cast<Builtins::Name>(id), isolate);
address = ref.address();
break;
}
case RUNTIME_FUNCTION: {
ExternalReference ref(static_cast<Runtime::FunctionId>(id), isolate);
address = ref.address();
break;
}
case IC_UTILITY: {
ExternalReference ref(IC_Utility(static_cast<IC::UtilityId>(id)),
isolate);
address = ref.address();
break;
}
default:
UNREACHABLE();
return;
}
Add(address, type, id, name);
}
void ExternalReferenceTable::Add(Address address,
TypeCode type,
uint16_t id,
const char* name) {
ASSERT_NE(NULL, address);
ExternalReferenceEntry entry;
entry.address = address;
entry.code = EncodeExternal(type, id);
entry.name = name;
ASSERT_NE(0, entry.code);
refs_.Add(entry);
if (id > max_id_[type]) max_id_[type] = id;
}
void ExternalReferenceTable::PopulateTable(Isolate* isolate) {
for (int type_code = 0; type_code < kTypeCodeCount; type_code++) {
max_id_[type_code] = 0;
}
// The following populates all of the different type of external references
// into the ExternalReferenceTable.
//
// NOTE: This function was originally 100k of code. It has since been
// rewritten to be mostly table driven, as the callback macro style tends to
// very easily cause code bloat. Please be careful in the future when adding
// new references.
struct RefTableEntry {
TypeCode type;
uint16_t id;
const char* name;
};
static const RefTableEntry ref_table[] = {
// Builtins
#define DEF_ENTRY_C(name, ignored) \
{ C_BUILTIN, \
Builtins::c_##name, \
"Builtins::" #name },
BUILTIN_LIST_C(DEF_ENTRY_C)
#undef DEF_ENTRY_C
#define DEF_ENTRY_C(name, ignored) \
{ BUILTIN, \
Builtins::k##name, \
"Builtins::" #name },
#define DEF_ENTRY_A(name, kind, state, extra) DEF_ENTRY_C(name, ignored)
BUILTIN_LIST_C(DEF_ENTRY_C)
BUILTIN_LIST_A(DEF_ENTRY_A)
BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
#undef DEF_ENTRY_C
#undef DEF_ENTRY_A
// Runtime functions
#define RUNTIME_ENTRY(name, nargs, ressize) \
{ RUNTIME_FUNCTION, \
Runtime::k##name, \
"Runtime::" #name },
RUNTIME_FUNCTION_LIST(RUNTIME_ENTRY)
#undef RUNTIME_ENTRY
// IC utilities
#define IC_ENTRY(name) \
{ IC_UTILITY, \
IC::k##name, \
"IC::" #name },
IC_UTIL_LIST(IC_ENTRY)
#undef IC_ENTRY
}; // end of ref_table[].
for (size_t i = 0; i < ARRAY_SIZE(ref_table); ++i) {
AddFromId(ref_table[i].type,
ref_table[i].id,
ref_table[i].name,
isolate);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
// Debug addresses
Add(Debug_Address(Debug::k_after_break_target_address).address(isolate),
DEBUG_ADDRESS,
Debug::k_after_break_target_address << kDebugIdShift,
"Debug::after_break_target_address()");
Add(Debug_Address(Debug::k_debug_break_slot_address).address(isolate),
DEBUG_ADDRESS,
Debug::k_debug_break_slot_address << kDebugIdShift,
"Debug::debug_break_slot_address()");
Add(Debug_Address(Debug::k_debug_break_return_address).address(isolate),
DEBUG_ADDRESS,
Debug::k_debug_break_return_address << kDebugIdShift,
"Debug::debug_break_return_address()");
Add(Debug_Address(Debug::k_restarter_frame_function_pointer).address(isolate),
DEBUG_ADDRESS,
Debug::k_restarter_frame_function_pointer << kDebugIdShift,
"Debug::restarter_frame_function_pointer_address()");
#endif
// Stat counters
struct StatsRefTableEntry {
StatsCounter* (Counters::*counter)();
uint16_t id;
const char* name;
};
const StatsRefTableEntry stats_ref_table[] = {
#define COUNTER_ENTRY(name, caption) \
{ &Counters::name, \
Counters::k_##name, \
"Counters::" #name },
STATS_COUNTER_LIST_1(COUNTER_ENTRY)
STATS_COUNTER_LIST_2(COUNTER_ENTRY)
#undef COUNTER_ENTRY
}; // end of stats_ref_table[].
Counters* counters = isolate->counters();
for (size_t i = 0; i < ARRAY_SIZE(stats_ref_table); ++i) {
Add(reinterpret_cast<Address>(GetInternalPointer(
(counters->*(stats_ref_table[i].counter))())),
STATS_COUNTER,
stats_ref_table[i].id,
stats_ref_table[i].name);
}
// Top addresses
const char* AddressNames[] = {
#define BUILD_NAME_LITERAL(CamelName, hacker_name) \
"Isolate::" #hacker_name "_address",
FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL)
NULL
#undef BUILD_NAME_LITERAL
};
for (uint16_t i = 0; i < Isolate::kIsolateAddressCount; ++i) {
Add(isolate->get_address_from_id((Isolate::AddressId)i),
TOP_ADDRESS, i, AddressNames[i]);
}
// Accessors
#define ACCESSOR_DESCRIPTOR_DECLARATION(name) \
Add((Address)&Accessors::name, \
ACCESSOR, \
Accessors::k##name, \
"Accessors::" #name);
ACCESSOR_DESCRIPTOR_LIST(ACCESSOR_DESCRIPTOR_DECLARATION)
#undef ACCESSOR_DESCRIPTOR_DECLARATION
StubCache* stub_cache = isolate->stub_cache();
// Stub cache tables
Add(stub_cache->key_reference(StubCache::kPrimary).address(),
STUB_CACHE_TABLE,
1,
"StubCache::primary_->key");
Add(stub_cache->value_reference(StubCache::kPrimary).address(),
STUB_CACHE_TABLE,
2,
"StubCache::primary_->value");
Add(stub_cache->map_reference(StubCache::kPrimary).address(),
STUB_CACHE_TABLE,
3,
"StubCache::primary_->map");
Add(stub_cache->key_reference(StubCache::kSecondary).address(),
STUB_CACHE_TABLE,
4,
"StubCache::secondary_->key");
Add(stub_cache->value_reference(StubCache::kSecondary).address(),
STUB_CACHE_TABLE,
5,
"StubCache::secondary_->value");
Add(stub_cache->map_reference(StubCache::kSecondary).address(),
STUB_CACHE_TABLE,
6,
"StubCache::secondary_->map");
// Runtime entries
Add(ExternalReference::perform_gc_function(isolate).address(),
RUNTIME_ENTRY,
1,
"Runtime::PerformGC");
Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
RUNTIME_ENTRY,
4,
"HandleScope::DeleteExtensions");
Add(ExternalReference::
incremental_marking_record_write_function(isolate).address(),
RUNTIME_ENTRY,
5,
"IncrementalMarking::RecordWrite");
Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
RUNTIME_ENTRY,
6,
"StoreBuffer::StoreBufferOverflow");
Add(ExternalReference::
incremental_evacuation_record_write_function(isolate).address(),
RUNTIME_ENTRY,
7,
"IncrementalMarking::RecordWrite");
// Miscellaneous
Add(ExternalReference::roots_array_start(isolate).address(),
UNCLASSIFIED,
3,
"Heap::roots_array_start()");
Add(ExternalReference::address_of_stack_limit(isolate).address(),
UNCLASSIFIED,
4,
"StackGuard::address_of_jslimit()");
Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
UNCLASSIFIED,
5,
"StackGuard::address_of_real_jslimit()");
#ifndef V8_INTERPRETED_REGEXP
Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
UNCLASSIFIED,
6,
"RegExpStack::limit_address()");
Add(ExternalReference::address_of_regexp_stack_memory_address(
isolate).address(),
UNCLASSIFIED,
7,
"RegExpStack::memory_address()");
Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
UNCLASSIFIED,
8,
"RegExpStack::memory_size()");
Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
UNCLASSIFIED,
9,
"OffsetsVector::static_offsets_vector");
#endif // V8_INTERPRETED_REGEXP
Add(ExternalReference::new_space_start(isolate).address(),
UNCLASSIFIED,
10,
"Heap::NewSpaceStart()");
Add(ExternalReference::new_space_mask(isolate).address(),
UNCLASSIFIED,
11,
"Heap::NewSpaceMask()");
Add(ExternalReference::heap_always_allocate_scope_depth(isolate).address(),
UNCLASSIFIED,
12,
"Heap::always_allocate_scope_depth()");
Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
UNCLASSIFIED,
14,
"Heap::NewSpaceAllocationLimitAddress()");
Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
UNCLASSIFIED,
15,
"Heap::NewSpaceAllocationTopAddress()");
#ifdef ENABLE_DEBUGGER_SUPPORT
Add(ExternalReference::debug_break(isolate).address(),
UNCLASSIFIED,
16,
"Debug::Break()");
Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
UNCLASSIFIED,
17,
"Debug::step_in_fp_addr()");
#endif
Add(ExternalReference::double_fp_operation(Token::ADD, isolate).address(),
UNCLASSIFIED,
18,
"add_two_doubles");
Add(ExternalReference::double_fp_operation(Token::SUB, isolate).address(),
UNCLASSIFIED,
19,
"sub_two_doubles");
Add(ExternalReference::double_fp_operation(Token::MUL, isolate).address(),
UNCLASSIFIED,
20,
"mul_two_doubles");
Add(ExternalReference::double_fp_operation(Token::DIV, isolate).address(),
UNCLASSIFIED,
21,
"div_two_doubles");
Add(ExternalReference::double_fp_operation(Token::MOD, isolate).address(),
UNCLASSIFIED,
22,
"mod_two_doubles");
Add(ExternalReference::compare_doubles(isolate).address(),
UNCLASSIFIED,
23,
"compare_doubles");
#ifndef V8_INTERPRETED_REGEXP
Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
UNCLASSIFIED,
24,
"NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
UNCLASSIFIED,
25,
"RegExpMacroAssembler*::CheckStackGuardState()");
Add(ExternalReference::re_grow_stack(isolate).address(),
UNCLASSIFIED,
26,
"NativeRegExpMacroAssembler::GrowStack()");
Add(ExternalReference::re_word_character_map().address(),
UNCLASSIFIED,
27,
"NativeRegExpMacroAssembler::word_character_map");
#endif // V8_INTERPRETED_REGEXP
// Keyed lookup cache.
Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
UNCLASSIFIED,
28,
"KeyedLookupCache::keys()");
Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
UNCLASSIFIED,
29,
"KeyedLookupCache::field_offsets()");
Add(ExternalReference::transcendental_cache_array_address(isolate).address(),
UNCLASSIFIED,
30,
"TranscendentalCache::caches()");
Add(ExternalReference::handle_scope_next_address(isolate).address(),
UNCLASSIFIED,
31,
"HandleScope::next");
Add(ExternalReference::handle_scope_limit_address(isolate).address(),
UNCLASSIFIED,
32,
"HandleScope::limit");
Add(ExternalReference::handle_scope_level_address(isolate).address(),
UNCLASSIFIED,
33,
"HandleScope::level");
Add(ExternalReference::new_deoptimizer_function(isolate).address(),
UNCLASSIFIED,
34,
"Deoptimizer::New()");
Add(ExternalReference::compute_output_frames_function(isolate).address(),
UNCLASSIFIED,
35,
"Deoptimizer::ComputeOutputFrames()");
Add(ExternalReference::address_of_min_int().address(),
UNCLASSIFIED,
36,
"LDoubleConstant::min_int");
Add(ExternalReference::address_of_one_half().address(),
UNCLASSIFIED,
37,
"LDoubleConstant::one_half");
Add(ExternalReference::isolate_address(isolate).address(),
UNCLASSIFIED,
38,
"isolate");
Add(ExternalReference::address_of_minus_zero().address(),
UNCLASSIFIED,
39,
"LDoubleConstant::minus_zero");
Add(ExternalReference::address_of_negative_infinity().address(),
UNCLASSIFIED,
40,
"LDoubleConstant::negative_infinity");
Add(ExternalReference::power_double_double_function(isolate).address(),
UNCLASSIFIED,
41,
"power_double_double_function");
Add(ExternalReference::power_double_int_function(isolate).address(),
UNCLASSIFIED,
42,
"power_double_int_function");
Add(ExternalReference::store_buffer_top(isolate).address(),
UNCLASSIFIED,
43,
"store_buffer_top");
Add(ExternalReference::address_of_canonical_non_hole_nan().address(),
UNCLASSIFIED,
44,
"canonical_nan");
Add(ExternalReference::address_of_the_hole_nan().address(),
UNCLASSIFIED,
45,
"the_hole_nan");
Add(ExternalReference::get_date_field_function(isolate).address(),
UNCLASSIFIED,
46,
"JSDate::GetField");
Add(ExternalReference::date_cache_stamp(isolate).address(),
UNCLASSIFIED,
47,
"date_cache_stamp");
Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
UNCLASSIFIED,
48,
"address_of_pending_message_obj");
Add(ExternalReference::address_of_has_pending_message(isolate).address(),
UNCLASSIFIED,
49,
"address_of_has_pending_message");
Add(ExternalReference::address_of_pending_message_script(isolate).address(),
UNCLASSIFIED,
50,
"pending_message_script");
Add(ExternalReference::get_make_code_young_function(isolate).address(),
UNCLASSIFIED,
51,
"Code::MakeCodeYoung");
Add(ExternalReference::cpu_features().address(),
UNCLASSIFIED,
52,
"cpu_features");
Add(ExternalReference(Runtime::kAllocateInNewSpace, isolate).address(),
UNCLASSIFIED,
53,
"Runtime::AllocateInNewSpace");
Add(ExternalReference(Runtime::kAllocateInTargetSpace, isolate).address(),
UNCLASSIFIED,
54,
"Runtime::AllocateInTargetSpace");
Add(ExternalReference::old_pointer_space_allocation_top_address(
isolate).address(),
UNCLASSIFIED,
55,
"Heap::OldPointerSpaceAllocationTopAddress");
Add(ExternalReference::old_pointer_space_allocation_limit_address(
isolate).address(),
UNCLASSIFIED,
56,
"Heap::OldPointerSpaceAllocationLimitAddress");
Add(ExternalReference::old_data_space_allocation_top_address(
isolate).address(),
UNCLASSIFIED,
57,
"Heap::OldDataSpaceAllocationTopAddress");
Add(ExternalReference::old_data_space_allocation_limit_address(
isolate).address(),
UNCLASSIFIED,
58,
"Heap::OldDataSpaceAllocationLimitAddress");
Add(ExternalReference::new_space_high_promotion_mode_active_address(isolate).
address(),
UNCLASSIFIED,
59,
"Heap::NewSpaceAllocationLimitAddress");
Add(ExternalReference::allocation_sites_list_address(isolate).address(),
UNCLASSIFIED,
60,
"Heap::allocation_sites_list_address()");
Add(ExternalReference::address_of_uint32_bias().address(),
UNCLASSIFIED,
61,
"uint32_bias");
Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
UNCLASSIFIED,
62,
"Code::MarkCodeAsExecuted");
// Add a small set of deopt entry addresses to encoder without generating the
// deopt table code, which isn't possible at deserialization time.
HandleScope scope(isolate);
for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
Address address = Deoptimizer::GetDeoptimizationEntry(
isolate,
entry,
Deoptimizer::LAZY,
Deoptimizer::CALCULATE_ENTRY_ADDRESS);
Add(address, LAZY_DEOPTIMIZATION, entry, "lazy_deopt");
}
}
ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate)
: encodings_(Match),
isolate_(isolate) {
ExternalReferenceTable* external_references =
ExternalReferenceTable::instance(isolate_);
for (int i = 0; i < external_references->size(); ++i) {
Put(external_references->address(i), i);
}
}
uint32_t ExternalReferenceEncoder::Encode(Address key) const {
int index = IndexOf(key);
ASSERT(key == NULL || index >= 0);
return index >=0 ?
ExternalReferenceTable::instance(isolate_)->code(index) : 0;
}
const char* ExternalReferenceEncoder::NameOfAddress(Address key) const {
int index = IndexOf(key);
return index >= 0 ?
ExternalReferenceTable::instance(isolate_)->name(index) : NULL;
}
int ExternalReferenceEncoder::IndexOf(Address key) const {
if (key == NULL) return -1;
HashMap::Entry* entry =
const_cast<HashMap&>(encodings_).Lookup(key, Hash(key), false);
return entry == NULL
? -1
: static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
}
void ExternalReferenceEncoder::Put(Address key, int index) {
HashMap::Entry* entry = encodings_.Lookup(key, Hash(key), true);
entry->value = reinterpret_cast<void*>(index);
}
ExternalReferenceDecoder::ExternalReferenceDecoder(Isolate* isolate)
: encodings_(NewArray<Address*>(kTypeCodeCount)),
isolate_(isolate) {
ExternalReferenceTable* external_references =
ExternalReferenceTable::instance(isolate_);
for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
int max = external_references->max_id(type) + 1;
encodings_[type] = NewArray<Address>(max + 1);
}
for (int i = 0; i < external_references->size(); ++i) {
Put(external_references->code(i), external_references->address(i));
}
}
ExternalReferenceDecoder::~ExternalReferenceDecoder() {
for (int type = kFirstTypeCode; type < kTypeCodeCount; ++type) {
DeleteArray(encodings_[type]);
}
DeleteArray(encodings_);
}
bool Serializer::serialization_enabled_ = false;
bool Serializer::too_late_to_enable_now_ = false;
class CodeAddressMap: public CodeEventLogger {
public:
explicit CodeAddressMap(Isolate* isolate)
: isolate_(isolate) {
isolate->logger()->addCodeEventListener(this);
}
virtual ~CodeAddressMap() {
isolate_->logger()->removeCodeEventListener(this);
}
virtual void CodeMoveEvent(Address from, Address to) {
address_to_name_map_.Move(from, to);
}
virtual void CodeDeleteEvent(Address from) {
address_to_name_map_.Remove(from);
}
const char* Lookup(Address address) {
return address_to_name_map_.Lookup(address);
}
private:
class NameMap {
public:
NameMap() : impl_(&PointerEquals) {}
~NameMap() {
for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
DeleteArray(static_cast<const char*>(p->value));
}
}
void Insert(Address code_address, const char* name, int name_size) {
HashMap::Entry* entry = FindOrCreateEntry(code_address);
if (entry->value == NULL) {
entry->value = CopyName(name, name_size);
}
}
const char* Lookup(Address code_address) {
HashMap::Entry* entry = FindEntry(code_address);
return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
}
void Remove(Address code_address) {
HashMap::Entry* entry = FindEntry(code_address);
if (entry != NULL) {
DeleteArray(static_cast<char*>(entry->value));
RemoveEntry(entry);
}
}
void Move(Address from, Address to) {
if (from == to) return;
HashMap::Entry* from_entry = FindEntry(from);
ASSERT(from_entry != NULL);
void* value = from_entry->value;
RemoveEntry(from_entry);
HashMap::Entry* to_entry = FindOrCreateEntry(to);
ASSERT(to_entry->value == NULL);
to_entry->value = value;
}
private:
static bool PointerEquals(void* lhs, void* rhs) {
return lhs == rhs;
}
static char* CopyName(const char* name, int name_size) {
char* result = NewArray<char>(name_size + 1);
for (int i = 0; i < name_size; ++i) {
char c = name[i];
if (c == '\0') c = ' ';
result[i] = c;
}
result[name_size] = '\0';
return result;
}
HashMap::Entry* FindOrCreateEntry(Address code_address) {
return impl_.Lookup(code_address, ComputePointerHash(code_address), true);
}
HashMap::Entry* FindEntry(Address code_address) {
return impl_.Lookup(code_address,
ComputePointerHash(code_address),
false);
}
void RemoveEntry(HashMap::Entry* entry) {
impl_.Remove(entry->key, entry->hash);
}
HashMap impl_;
DISALLOW_COPY_AND_ASSIGN(NameMap);
};
virtual void LogRecordedBuffer(Code* code,
SharedFunctionInfo*,
const char* name,
int length) {
address_to_name_map_.Insert(code->address(), name, length);
}
NameMap address_to_name_map_;
Isolate* isolate_;
};
CodeAddressMap* Serializer::code_address_map_ = NULL;
void Serializer::Enable(Isolate* isolate) {
if (!serialization_enabled_) {
ASSERT(!too_late_to_enable_now_);
}
if (serialization_enabled_) return;
serialization_enabled_ = true;
isolate->InitializeLoggingAndCounters();
code_address_map_ = new CodeAddressMap(isolate);
}
void Serializer::Disable() {
if (!serialization_enabled_) return;
serialization_enabled_ = false;
delete code_address_map_;
code_address_map_ = NULL;
}
Deserializer::Deserializer(SnapshotByteSource* source)
: isolate_(NULL),
source_(source),
external_reference_decoder_(NULL) {
for (int i = 0; i < LAST_SPACE + 1; i++) {
reservations_[i] = kUninitializedReservation;
}
}
void Deserializer::FlushICacheForNewCodeObjects() {
PageIterator it(isolate_->heap()->code_space());
while (it.has_next()) {
Page* p = it.next();
CPU::FlushICache(p->area_start(), p->area_end() - p->area_start());
}
}
void Deserializer::Deserialize(Isolate* isolate) {
isolate_ = isolate;
ASSERT(isolate_ != NULL);
isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
// No active threads.
ASSERT_EQ(NULL, isolate_->thread_manager()->FirstThreadStateInUse());
// No active handles.
ASSERT(isolate_->handle_scope_implementer()->blocks()->is_empty());
ASSERT_EQ(NULL, external_reference_decoder_);
external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
isolate_->heap()->RepairFreeListsAfterBoot();
isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
isolate_->heap()->set_native_contexts_list(
isolate_->heap()->undefined_value());
isolate_->heap()->set_array_buffers_list(
isolate_->heap()->undefined_value());
// The allocation site list is build during root iteration, but if no sites
// were encountered then it needs to be initialized to undefined.
if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
isolate_->heap()->set_allocation_sites_list(
isolate_->heap()->undefined_value());
}
isolate_->heap()->InitializeWeakObjectToCodeTable();
// Update data pointers to the external strings containing natives sources.
for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
Object* source = isolate_->heap()->natives_source_cache()->get(i);
if (!source->IsUndefined()) {
ExternalAsciiString::cast(source)->update_data_cache();
}
}
FlushICacheForNewCodeObjects();
// Issue code events for newly deserialized code objects.
LOG_CODE_EVENT(isolate_, LogCodeObjects());
LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
}
void Deserializer::DeserializePartial(Isolate* isolate, Object** root) {
isolate_ = isolate;
for (int i = NEW_SPACE; i < kNumberOfSpaces; i++) {
ASSERT(reservations_[i] != kUninitializedReservation);
}
isolate_->heap()->ReserveSpace(reservations_, &high_water_[0]);
if (external_reference_decoder_ == NULL) {
external_reference_decoder_ = new ExternalReferenceDecoder(isolate);
}
// Keep track of the code space start and end pointers in case new
// code objects were unserialized
OldSpace* code_space = isolate_->heap()->code_space();
Address start_address = code_space->top();
VisitPointer(root);
// There's no code deserialized here. If this assert fires
// then that's changed and logging should be added to notify
// the profiler et al of the new code.
CHECK_EQ(start_address, code_space->top());
}
Deserializer::~Deserializer() {
ASSERT(source_->AtEOF());
if (external_reference_decoder_) {
delete external_reference_decoder_;
external_reference_decoder_ = NULL;
}
}
// This is called on the roots. It is the driver of the deserialization
// process. It is also called on the body of each function.
void Deserializer::VisitPointers(Object** start, Object** end) {
// The space must be new space. Any other space would cause ReadChunk to try
// to update the remembered using NULL as the address.
ReadChunk(start, end, NEW_SPACE, NULL);
}
void Deserializer::RelinkAllocationSite(AllocationSite* site) {
if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
site->set_weak_next(isolate_->heap()->undefined_value());
} else {
site->set_weak_next(isolate_->heap()->allocation_sites_list());
}
isolate_->heap()->set_allocation_sites_list(site);
}
// This routine writes the new object into the pointer provided and then
// returns true if the new object was in young space and false otherwise.
// The reason for this strange interface is that otherwise the object is
// written very late, which means the FreeSpace map is not set up by the
// time we need to use it to mark the space at the end of a page free.
void Deserializer::ReadObject(int space_number,
Object** write_back) {
int size = source_->GetInt() << kObjectAlignmentBits;
Address address = Allocate(space_number, size);
HeapObject* obj = HeapObject::FromAddress(address);
*write_back = obj;
Object** current = reinterpret_cast<Object**>(address);
Object** limit = current + (size >> kPointerSizeLog2);
if (FLAG_log_snapshot_positions) {
LOG(isolate_, SnapshotPositionEvent(address, source_->position()));
}
ReadChunk(current, limit, space_number, address);
// TODO(mvstanton): consider treating the heap()->allocation_sites_list()
// as a (weak) root. If this root is relocated correctly,
// RelinkAllocationSite() isn't necessary.
if (obj->IsAllocationSite()) {
RelinkAllocationSite(AllocationSite::cast(obj));
}
#ifdef DEBUG
bool is_codespace = (space_number == CODE_SPACE);
ASSERT(obj->IsCode() == is_codespace);
#endif
}
void Deserializer::ReadChunk(Object** current,
Object** limit,
int source_space,
Address current_object_address) {
Isolate* const isolate = isolate_;
// Write barrier support costs around 1% in startup time. In fact there
// are no new space objects in current boot snapshots, so it's not needed,
// but that may change.
bool write_barrier_needed = (current_object_address != NULL &&
source_space != NEW_SPACE &&
source_space != CELL_SPACE &&
source_space != PROPERTY_CELL_SPACE &&
source_space != CODE_SPACE &&
source_space != OLD_DATA_SPACE);
while (current < limit) {
int data = source_->Get();
switch (data) {
#define CASE_STATEMENT(where, how, within, space_number) \
case where + how + within + space_number: \
ASSERT((where & ~kPointedToMask) == 0); \
ASSERT((how & ~kHowToCodeMask) == 0); \
ASSERT((within & ~kWhereToPointMask) == 0); \
ASSERT((space_number & ~kSpaceMask) == 0);
#define CASE_BODY(where, how, within, space_number_if_any) \
{ \
bool emit_write_barrier = false; \
bool current_was_incremented = false; \
int space_number = space_number_if_any == kAnyOldSpace ? \
(data & kSpaceMask) : space_number_if_any; \
if (where == kNewObject && how == kPlain && within == kStartOfObject) {\
ReadObject(space_number, current); \
emit_write_barrier = (space_number == NEW_SPACE); \
} else { \
Object* new_object = NULL; /* May not be a real Object pointer. */ \
if (where == kNewObject) { \
ReadObject(space_number, &new_object); \
} else if (where == kRootArray) { \
int root_id = source_->GetInt(); \
new_object = isolate->heap()->roots_array_start()[root_id]; \
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
} else if (where == kPartialSnapshotCache) { \
int cache_index = source_->GetInt(); \
new_object = isolate->serialize_partial_snapshot_cache() \
[cache_index]; \
emit_write_barrier = isolate->heap()->InNewSpace(new_object); \
} else if (where == kExternalReference) { \
int skip = source_->GetInt(); \
current = reinterpret_cast<Object**>(reinterpret_cast<Address>( \
current) + skip); \
int reference_id = source_->GetInt(); \
Address address = external_reference_decoder_-> \
Decode(reference_id); \
new_object = reinterpret_cast<Object*>(address); \
} else if (where == kBackref) { \
emit_write_barrier = (space_number == NEW_SPACE); \
new_object = GetAddressFromEnd(data & kSpaceMask); \
} else { \
ASSERT(where == kBackrefWithSkip); \
int skip = source_->GetInt(); \
current = reinterpret_cast<Object**>( \
reinterpret_cast<Address>(current) + skip); \
emit_write_barrier = (space_number == NEW_SPACE); \
new_object = GetAddressFromEnd(data & kSpaceMask); \
} \
if (within == kInnerPointer) { \
if (space_number != CODE_SPACE || new_object->IsCode()) { \
Code* new_code_object = reinterpret_cast<Code*>(new_object); \
new_object = reinterpret_cast<Object*>( \
new_code_object->instruction_start()); \
} else { \
ASSERT(space_number == CODE_SPACE); \
Cell* cell = Cell::cast(new_object); \
new_object = reinterpret_cast<Object*>( \
cell->ValueAddress()); \
} \
} \
if (how == kFromCode) { \
Address location_of_branch_data = \
reinterpret_cast<Address>(current); \
Assembler::deserialization_set_special_target_at( \
location_of_branch_data, \
reinterpret_cast<Address>(new_object)); \
location_of_branch_data += Assembler::kSpecialTargetSize; \
current = reinterpret_cast<Object**>(location_of_branch_data); \
current_was_incremented = true; \
} else { \
*current = new_object; \
} \
} \
if (emit_write_barrier && write_barrier_needed) { \
Address current_address = reinterpret_cast<Address>(current); \
isolate->heap()->RecordWrite( \
current_object_address, \
static_cast<int>(current_address - current_object_address)); \
} \
if (!current_was_incremented) { \
current++; \
} \
break; \
} \
// This generates a case and a body for the new space (which has to do extra
// write barrier handling) and handles the other spaces with 8 fall-through
// cases and one body.
#define ALL_SPACES(where, how, within) \
CASE_STATEMENT(where, how, within, NEW_SPACE) \
CASE_BODY(where, how, within, NEW_SPACE) \
CASE_STATEMENT(where, how, within, OLD_DATA_SPACE) \
CASE_STATEMENT(where, how, within, OLD_POINTER_SPACE) \
CASE_STATEMENT(where, how, within, CODE_SPACE) \
CASE_STATEMENT(where, how, within, CELL_SPACE) \
CASE_STATEMENT(where, how, within, PROPERTY_CELL_SPACE) \
CASE_STATEMENT(where, how, within, MAP_SPACE) \
CASE_BODY(where, how, within, kAnyOldSpace)
#define FOUR_CASES(byte_code) \
case byte_code: \
case byte_code + 1: \
case byte_code + 2: \
case byte_code + 3:
#define SIXTEEN_CASES(byte_code) \
FOUR_CASES(byte_code) \
FOUR_CASES(byte_code + 4) \
FOUR_CASES(byte_code + 8) \
FOUR_CASES(byte_code + 12)
#define COMMON_RAW_LENGTHS(f) \
f(1) \
f(2) \
f(3) \
f(4) \
f(5) \
f(6) \
f(7) \
f(8) \
f(9) \
f(10) \
f(11) \
f(12) \
f(13) \
f(14) \
f(15) \
f(16) \
f(17) \
f(18) \
f(19) \
f(20) \
f(21) \
f(22) \
f(23) \
f(24) \
f(25) \
f(26) \
f(27) \
f(28) \
f(29) \
f(30) \
f(31)
// We generate 15 cases and bodies that process special tags that combine
// the raw data tag and the length into one byte.
#define RAW_CASE(index) \
case kRawData + index: { \
byte* raw_data_out = reinterpret_cast<byte*>(current); \
source_->CopyRaw(raw_data_out, index * kPointerSize); \
current = \
reinterpret_cast<Object**>(raw_data_out + index * kPointerSize); \
break; \
}
COMMON_RAW_LENGTHS(RAW_CASE)
#undef RAW_CASE
// Deserialize a chunk of raw data that doesn't have one of the popular
// lengths.
case kRawData: {
int size = source_->GetInt();
byte* raw_data_out = reinterpret_cast<byte*>(current);
source_->CopyRaw(raw_data_out, size);
break;
}
SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance)
SIXTEEN_CASES(kRootArrayConstants + kNoSkipDistance + 16) {
int root_id = RootArrayConstantFromByteCode(data);
Object* object = isolate->heap()->roots_array_start()[root_id];
ASSERT(!isolate->heap()->InNewSpace(object));
*current++ = object;
break;
}
SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance)
SIXTEEN_CASES(kRootArrayConstants + kHasSkipDistance + 16) {
int root_id = RootArrayConstantFromByteCode(data);
int skip = source_->GetInt();
current = reinterpret_cast<Object**>(
reinterpret_cast<intptr_t>(current) + skip);
Object* object = isolate->heap()->roots_array_start()[root_id];
ASSERT(!isolate->heap()->InNewSpace(object));
*current++ = object;
break;
}
case kRepeat: {
int repeats = source_->GetInt();
Object* object = current[-1];
ASSERT(!isolate->heap()->InNewSpace(object));
for (int i = 0; i < repeats; i++) current[i] = object;
current += repeats;
break;
}
STATIC_ASSERT(kRootArrayNumberOfConstantEncodings ==
Heap::kOldSpaceRoots);
STATIC_ASSERT(kMaxRepeats == 13);
case kConstantRepeat:
FOUR_CASES(kConstantRepeat + 1)
FOUR_CASES(kConstantRepeat + 5)
FOUR_CASES(kConstantRepeat + 9) {
int repeats = RepeatsForCode(data);
Object* object = current[-1];
ASSERT(!isolate->heap()->InNewSpace(object));
for (int i = 0; i < repeats; i++) current[i] = object;
current += repeats;
break;
}
// Deserialize a new object and write a pointer to it to the current
// object.
ALL_SPACES(kNewObject, kPlain, kStartOfObject)
// Support for direct instruction pointers in functions. It's an inner
// pointer because it points at the entry point, not at the start of the
// code object.
CASE_STATEMENT(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
CASE_BODY(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
// Deserialize a new code object and write a pointer to its first
// instruction to the current code object.
ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
// Find a recently deserialized object using its offset from the current
// allocation point and write a pointer to it to the current object.
ALL_SPACES(kBackref, kPlain, kStartOfObject)
ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
#if V8_TARGET_ARCH_MIPS
// Deserialize a new object from pointer found in code and write
// a pointer to it to the current object. Required only for MIPS, and
// omitted on the other architectures because it is fully unrolled and
// would cause bloat.
ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
// Find a recently deserialized code object using its offset from the
// current allocation point and write a pointer to it to the current
// object. Required only for MIPS.
ALL_SPACES(kBackref, kFromCode, kStartOfObject)
ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
#endif
// Find a recently deserialized code object using its offset from the
// current allocation point and write a pointer to its first instruction
// to the current code object or the instruction pointer in a function
// object.
ALL_SPACES(kBackref, kFromCode, kInnerPointer)
ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
ALL_SPACES(kBackref, kPlain, kInnerPointer)
ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
// Find an object in the roots array and write a pointer to it to the
// current object.
CASE_STATEMENT(kRootArray, kPlain, kStartOfObject, 0)
CASE_BODY(kRootArray, kPlain, kStartOfObject, 0)
// Find an object in the partial snapshots cache and write a pointer to it
// to the current object.
CASE_STATEMENT(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
CASE_BODY(kPartialSnapshotCache,
kPlain,
kStartOfObject,
0)
// Find an code entry in the partial snapshots cache and
// write a pointer to it to the current object.
CASE_STATEMENT(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
CASE_BODY(kPartialSnapshotCache,
kPlain,
kInnerPointer,
0)
// Find an external reference and write a pointer to it to the current
// object.
CASE_STATEMENT(kExternalReference, kPlain, kStartOfObject, 0)
CASE_BODY(kExternalReference,
kPlain,
kStartOfObject,
0)
// Find an external reference and write a pointer to it in the current
// code object.
CASE_STATEMENT(kExternalReference, kFromCode, kStartOfObject, 0)
CASE_BODY(kExternalReference,
kFromCode,
kStartOfObject,
0)
#undef CASE_STATEMENT
#undef CASE_BODY
#undef ALL_SPACES
case kSkip: {
int size = source_->GetInt();
current = reinterpret_cast<Object**>(
reinterpret_cast<intptr_t>(current) + size);
break;
}
case kNativesStringResource: {
int index = source_->Get();
Vector<const char> source_vector = Natives::GetRawScriptSource(index);
NativesExternalStringResource* resource =
new NativesExternalStringResource(isolate->bootstrapper(),
source_vector.start(),
source_vector.length());
*current++ = reinterpret_cast<Object*>(resource);
break;
}
case kSynchronize: {
// If we get here then that indicates that you have a mismatch between
// the number of GC roots when serializing and deserializing.
UNREACHABLE();
}
default:
UNREACHABLE();
}
}
ASSERT_EQ(limit, current);
}
void SnapshotByteSink::PutInt(uintptr_t integer, const char* description) {
ASSERT(integer < 1 << 22);
integer <<= 2;
int bytes = 1;
if (integer > 0xff) bytes = 2;
if (integer > 0xffff) bytes = 3;
integer |= bytes;
Put(static_cast<int>(integer & 0xff), "IntPart1");
if (bytes > 1) Put(static_cast<int>((integer >> 8) & 0xff), "IntPart2");
if (bytes > 2) Put(static_cast<int>((integer >> 16) & 0xff), "IntPart3");
}
Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
: isolate_(isolate),
sink_(sink),
current_root_index_(0),
external_reference_encoder_(new ExternalReferenceEncoder(isolate)),
root_index_wave_front_(0) {
// The serializer is meant to be used only to generate initial heap images
// from a context in which there is only one isolate.
for (int i = 0; i <= LAST_SPACE; i++) {
fullness_[i] = 0;
}
}
Serializer::~Serializer() {
delete external_reference_encoder_;
}
void StartupSerializer::SerializeStrongReferences() {
Isolate* isolate = this->isolate();
// No active threads.
CHECK_EQ(NULL, isolate->thread_manager()->FirstThreadStateInUse());
// No active or weak handles.
CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
// We don't support serializing installed extensions.
CHECK(!isolate->has_installed_extensions());
isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
}
void PartialSerializer::Serialize(Object** object) {
this->VisitPointer(object);
Pad();
}
bool Serializer::ShouldBeSkipped(Object** current) {
Object** roots = isolate()->heap()->roots_array_start();
return current == &roots[Heap::kStoreBufferTopRootIndex]
|| current == &roots[Heap::kStackLimitRootIndex]
|| current == &roots[Heap::kRealStackLimitRootIndex];
}
void Serializer::VisitPointers(Object** start, Object** end) {
Isolate* isolate = this->isolate();;
for (Object** current = start; current < end; current++) {
if (start == isolate->heap()->roots_array_start()) {
root_index_wave_front_ =
Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
}
if (ShouldBeSkipped(current)) {
sink_->Put(kSkip, "Skip");
sink_->PutInt(kPointerSize, "SkipOneWord");
} else if ((*current)->IsSmi()) {
sink_->Put(kRawData + 1, "Smi");
for (int i = 0; i < kPointerSize; i++) {
sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
}
} else {
SerializeObject(*current, kPlain, kStartOfObject, 0);
}
}
}
// This ensures that the partial snapshot cache keeps things alive during GC and
// tracks their movement. When it is called during serialization of the startup
// snapshot nothing happens. When the partial (context) snapshot is created,
// this array is populated with the pointers that the partial snapshot will
// need. As that happens we emit serialized objects to the startup snapshot
// that correspond to the elements of this cache array. On deserialization we
// therefore need to visit the cache array. This fills it up with pointers to
// deserialized objects.
void SerializerDeserializer::Iterate(Isolate* isolate,
ObjectVisitor* visitor) {
if (Serializer::enabled()) return;
for (int i = 0; ; i++) {
if (isolate->serialize_partial_snapshot_cache_length() <= i) {
// Extend the array ready to get a value from the visitor when
// deserializing.
isolate->PushToPartialSnapshotCache(Smi::FromInt(0));
}
Object** cache = isolate->serialize_partial_snapshot_cache();
visitor->VisitPointers(&cache[i], &cache[i + 1]);
// Sentinel is the undefined object, which is a root so it will not normally
// be found in the cache.
if (cache[i] == isolate->heap()->undefined_value()) {
break;
}
}
}
int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
Isolate* isolate = this->isolate();
for (int i = 0;
i < isolate->serialize_partial_snapshot_cache_length();
i++) {
Object* entry = isolate->serialize_partial_snapshot_cache()[i];
if (entry == heap_object) return i;
}
// We didn't find the object in the cache. So we add it to the cache and
// then visit the pointer so that it becomes part of the startup snapshot
// and we can refer to it from the partial snapshot.
int length = isolate->serialize_partial_snapshot_cache_length();
isolate->PushToPartialSnapshotCache(heap_object);
startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
// We don't recurse from the startup snapshot generator into the partial
// snapshot generator.
ASSERT(length == isolate->serialize_partial_snapshot_cache_length() - 1);
return length;
}
int Serializer::RootIndex(HeapObject* heap_object, HowToCode from) {
Heap* heap = isolate()->heap();
if (heap->InNewSpace(heap_object)) return kInvalidRootIndex;
for (int i = 0; i < root_index_wave_front_; i++) {
Object* root = heap->roots_array_start()[i];
if (!root->IsSmi() && root == heap_object) {
#if V8_TARGET_ARCH_MIPS
if (from == kFromCode) {
// In order to avoid code bloat in the deserializer we don't have
// support for the encoding that specifies a particular root should
// be written into the lui/ori instructions on MIPS. Therefore we
// should not generate such serialization data for MIPS.
return kInvalidRootIndex;
}
#endif
return i;
}
}
return kInvalidRootIndex;
}
// Encode the location of an already deserialized object in order to write its
// location into a later object. We can encode the location as an offset from
// the start of the deserialized objects or as an offset backwards from the
// current allocation pointer.
void Serializer::SerializeReferenceToPreviousObject(
int space,
int address,
HowToCode how_to_code,
WhereToPoint where_to_point,
int skip) {
int offset = CurrentAllocationAddress(space) - address;
// Shift out the bits that are always 0.
offset >>= kObjectAlignmentBits;
if (skip == 0) {
sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRefSer");
} else {
sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
"BackRefSerWithSkip");
sink_->PutInt(skip, "BackRefSkipDistance");
}
sink_->PutInt(offset, "offset");
}
void StartupSerializer::SerializeObject(
Object* o,
HowToCode how_to_code,
WhereToPoint where_to_point,
int skip) {
CHECK(o->IsHeapObject());
HeapObject* heap_object = HeapObject::cast(o);
int root_index;
if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
return;
}
if (address_mapper_.IsMapped(heap_object)) {
int space = SpaceOfObject(heap_object);
int address = address_mapper_.MappedTo(heap_object);
SerializeReferenceToPreviousObject(space,
address,
how_to_code,
where_to_point,
skip);
} else {
if (skip != 0) {
sink_->Put(kSkip, "FlushPendingSkip");
sink_->PutInt(skip, "SkipDistance");
}
// Object has not yet been serialized. Serialize it here.
ObjectSerializer object_serializer(this,
heap_object,
sink_,
how_to_code,
where_to_point);
object_serializer.Serialize();
}
}
void StartupSerializer::SerializeWeakReferences() {
// This phase comes right after the partial serialization (of the snapshot).
// After we have done the partial serialization the partial snapshot cache
// will contain some references needed to decode the partial snapshot. We
// add one entry with 'undefined' which is the sentinel that the deserializer
// uses to know it is done deserializing the array.
Object* undefined = isolate()->heap()->undefined_value();
VisitPointer(&undefined);
isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
Pad();
}
void Serializer::PutRoot(int root_index,
HeapObject* object,
SerializerDeserializer::HowToCode how_to_code,
SerializerDeserializer::WhereToPoint where_to_point,
int skip) {
if (how_to_code == kPlain &&
where_to_point == kStartOfObject &&
root_index < kRootArrayNumberOfConstantEncodings &&
!isolate()->heap()->InNewSpace(object)) {
if (skip == 0) {
sink_->Put(kRootArrayConstants + kNoSkipDistance + root_index,
"RootConstant");
} else {
sink_->Put(kRootArrayConstants + kHasSkipDistance + root_index,
"RootConstant");
sink_->PutInt(skip, "SkipInPutRoot");
}
} else {
if (skip != 0) {
sink_->Put(kSkip, "SkipFromPutRoot");
sink_->PutInt(skip, "SkipFromPutRootDistance");
}
sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
sink_->PutInt(root_index, "root_index");
}
}
void PartialSerializer::SerializeObject(
Object* o,
HowToCode how_to_code,
WhereToPoint where_to_point,
int skip) {
CHECK(o->IsHeapObject());
HeapObject* heap_object = HeapObject::cast(o);
if (heap_object->IsMap()) {
// The code-caches link to context-specific code objects, which
// the startup and context serializes cannot currently handle.
ASSERT(Map::cast(heap_object)->code_cache() ==
heap_object->GetHeap()->empty_fixed_array());
}
int root_index;
if ((root_index = RootIndex(heap_object, how_to_code)) != kInvalidRootIndex) {
PutRoot(root_index, heap_object, how_to_code, where_to_point, skip);
return;
}
if (ShouldBeInThePartialSnapshotCache(heap_object)) {
if (skip != 0) {
sink_->Put(kSkip, "SkipFromSerializeObject");
sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
}
int cache_index = PartialSnapshotCacheIndex(heap_object);
sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
"PartialSnapshotCache");
sink_->PutInt(cache_index, "partial_snapshot_cache_index");
return;
}
// Pointers from the partial snapshot to the objects in the startup snapshot
// should go through the root array or through the partial snapshot cache.
// If this is not the case you may have to add something to the root array.
ASSERT(!startup_serializer_->address_mapper()->IsMapped(heap_object));
// All the internalized strings that the partial snapshot needs should be
// either in the root table or in the partial snapshot cache.
ASSERT(!heap_object->IsInternalizedString());
if (address_mapper_.IsMapped(heap_object)) {
int space = SpaceOfObject(heap_object);
int address = address_mapper_.MappedTo(heap_object);
SerializeReferenceToPreviousObject(space,
address,
how_to_code,
where_to_point,
skip);
} else {
if (skip != 0) {
sink_->Put(kSkip, "SkipFromSerializeObject");
sink_->PutInt(skip, "SkipDistanceFromSerializeObject");
}
// Object has not yet been serialized. Serialize it here.
ObjectSerializer serializer(this,
heap_object,
sink_,
how_to_code,
where_to_point);
serializer.Serialize();
}
}
void Serializer::ObjectSerializer::Serialize() {
int space = Serializer::SpaceOfObject(object_);
int size = object_->Size();
sink_->Put(kNewObject + reference_representation_ + space,
"ObjectSerialization");
sink_->PutInt(size >> kObjectAlignmentBits, "Size in words");
ASSERT(code_address_map_);
const char* code_name = code_address_map_->Lookup(object_->address());
LOG(serializer_->isolate_,
CodeNameEvent(object_->address(), sink_->Position(), code_name));
LOG(serializer_->isolate_,
SnapshotPositionEvent(object_->address(), sink_->Position()));
// Mark this object as already serialized.
int offset = serializer_->Allocate(space, size);
serializer_->address_mapper()->AddMapping(object_, offset);
// Serialize the map (first word of the object).
serializer_->SerializeObject(object_->map(), kPlain, kStartOfObject, 0);
// Serialize the rest of the object.
CHECK_EQ(0, bytes_processed_so_far_);
bytes_processed_so_far_ = kPointerSize;
object_->IterateBody(object_->map()->instance_type(), size, this);
OutputRawData(object_->address() + size);
}
void Serializer::ObjectSerializer::VisitPointers(Object** start,
Object** end) {
Object** current = start;
while (current < end) {
while (current < end && (*current)->IsSmi()) current++;
if (current < end) OutputRawData(reinterpret_cast<Address>(current));
while (current < end && !(*current)->IsSmi()) {
HeapObject* current_contents = HeapObject::cast(*current);
int root_index = serializer_->RootIndex(current_contents, kPlain);
// Repeats are not subject to the write barrier so there are only some
// objects that can be used in a repeat encoding. These are the early
// ones in the root array that are never in new space.
if (current != start &&
root_index != kInvalidRootIndex &&
root_index < kRootArrayNumberOfConstantEncodings &&
current_contents == current[-1]) {
ASSERT(!serializer_->isolate()->heap()->InNewSpace(current_contents));
int repeat_count = 1;
while (current < end - 1 && current[repeat_count] == current_contents) {
repeat_count++;
}
current += repeat_count;
bytes_processed_so_far_ += repeat_count * kPointerSize;
if (repeat_count > kMaxRepeats) {
sink_->Put(kRepeat, "SerializeRepeats");
sink_->PutInt(repeat_count, "SerializeRepeats");
} else {
sink_->Put(CodeForRepeats(repeat_count), "SerializeRepeats");
}
} else {
serializer_->SerializeObject(
current_contents, kPlain, kStartOfObject, 0);
bytes_processed_so_far_ += kPointerSize;
current++;
}
}
}
}
void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
Object* object = rinfo->target_object();
serializer_->SerializeObject(object, how_to_code, kStartOfObject, skip);
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
int skip = OutputRawData(reinterpret_cast<Address>(p),
kCanReturnSkipInsteadOfSkipping);
sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = *p;
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += kPointerSize;
}
void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = rinfo->target_reference();
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
sink_->PutInt(skip, "SkipB4ExternalRef");
Address target = rinfo->target_address();
sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->target_address_address(),
kCanReturnSkipInsteadOfSkipping);
Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
bytes_processed_so_far_ += rinfo->target_address_size();
}
void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
bytes_processed_so_far_ += kPointerSize;
}
void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
Cell* object = Cell::cast(rinfo->target_cell());
serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
}
void Serializer::ObjectSerializer::VisitExternalAsciiString(
v8::String::ExternalAsciiStringResource** resource_pointer) {
Address references_start = reinterpret_cast<Address>(resource_pointer);
OutputRawData(references_start);
for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
Object* source =
serializer_->isolate()->heap()->natives_source_cache()->get(i);
if (!source->IsUndefined()) {
ExternalAsciiString* string = ExternalAsciiString::cast(source);
typedef v8::String::ExternalAsciiStringResource Resource;
const Resource* resource = string->resource();
if (resource == *resource_pointer) {
sink_->Put(kNativesStringResource, "NativesStringResource");
sink_->PutSection(i, "NativesStringResourceEnd");
bytes_processed_so_far_ += sizeof(resource);
return;
}
}
}
// One of the strings in the natives cache should match the resource. We
// can't serialize any other kinds of external strings.
UNREACHABLE();
}
static Code* CloneCodeObject(HeapObject* code) {
Address copy = new byte[code->Size()];
OS::MemCopy(copy, code->address(), code->Size());
return Code::cast(HeapObject::FromAddress(copy));
}
static void WipeOutRelocations(Code* code) {
int mode_mask =
RelocInfo::kCodeTargetMask |
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY);
for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
it.rinfo()->WipeOut();
}
}
int Serializer::ObjectSerializer::OutputRawData(
Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
Address object_start = object_->address();
int base = bytes_processed_so_far_;
int up_to_offset = static_cast<int>(up_to - object_start);
int to_skip = up_to_offset - bytes_processed_so_far_;
int bytes_to_output = to_skip;
bytes_processed_so_far_ += to_skip;
// This assert will fail if the reloc info gives us the target_address_address
// locations in a non-ascending order. Luckily that doesn't happen.
ASSERT(to_skip >= 0);
bool outputting_code = false;
if (to_skip != 0 && code_object_ && !code_has_been_output_) {
// Output the code all at once and fix later.
bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
outputting_code = true;
code_has_been_output_ = true;
}
if (bytes_to_output != 0 &&
(!code_object_ || outputting_code)) {
#define RAW_CASE(index) \
if (!outputting_code && bytes_to_output == index * kPointerSize && \
index * kPointerSize == to_skip) { \
sink_->PutSection(kRawData + index, "RawDataFixed"); \
to_skip = 0; /* This insn already skips. */ \
} else /* NOLINT */
COMMON_RAW_LENGTHS(RAW_CASE)
#undef RAW_CASE
{ /* NOLINT */
// We always end up here if we are outputting the code of a code object.
sink_->Put(kRawData, "RawData");
sink_->PutInt(bytes_to_output, "length");
}
// To make snapshots reproducible, we need to wipe out all pointers in code.
if (code_object_) {
Code* code = CloneCodeObject(object_);
WipeOutRelocations(code);
// We need to wipe out the header fields *after* wiping out the
// relocations, because some of these fields are needed for the latter.
code->WipeOutHeader();
object_start = code->address();
}
const char* description = code_object_ ? "Code" : "Byte";
for (int i = 0; i < bytes_to_output; i++) {
sink_->PutSection(object_start[base + i], description);
}
if (code_object_) delete[] object_start;
}
if (to_skip != 0 && return_skip == kIgnoringReturn) {
sink_->Put(kSkip, "Skip");
sink_->PutInt(to_skip, "SkipDistance");
to_skip = 0;
}
return to_skip;
}
int Serializer::SpaceOfObject(HeapObject* object) {
for (int i = FIRST_SPACE; i <= LAST_SPACE; i++) {
AllocationSpace s = static_cast<AllocationSpace>(i);
if (object->GetHeap()->InSpace(object, s)) {
ASSERT(i < kNumberOfSpaces);
return i;
}
}
UNREACHABLE();
return 0;
}
int Serializer::Allocate(int space, int size) {
CHECK(space >= 0 && space < kNumberOfSpaces);
int allocation_address = fullness_[space];
fullness_[space] = allocation_address + size;
return allocation_address;
}
int Serializer::SpaceAreaSize(int space) {
if (space == CODE_SPACE) {
return isolate_->memory_allocator()->CodePageAreaSize();
} else {
return Page::kPageSize - Page::kObjectStartOffset;
}
}
void Serializer::Pad() {
// The non-branching GetInt will read up to 3 bytes too far, so we need
// to pad the snapshot to make sure we don't read over the end.
for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
sink_->Put(kNop, "Padding");
}
}
bool SnapshotByteSource::AtEOF() {
if (0u + length_ - position_ > 2 * sizeof(uint32_t)) return false;
for (int x = position_; x < length_; x++) {
if (data_[x] != SerializerDeserializer::nop()) return false;
}
return true;
}
} } // namespace v8::internal