// Copyright 2013 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "hydrogen.h"
#include "hydrogen-gvn.h"
#include "v8.h"
namespace v8 {
namespace internal {
class HValueMap: public ZoneObject {
public:
explicit HValueMap(Zone* zone)
: array_size_(0),
lists_size_(0),
count_(0),
present_flags_(0),
array_(NULL),
lists_(NULL),
free_list_head_(kNil) {
ResizeLists(kInitialSize, zone);
Resize(kInitialSize, zone);
}
void Kill(GVNFlagSet flags);
void Add(HValue* value, Zone* zone) {
present_flags_.Add(value->gvn_flags());
Insert(value, zone);
}
HValue* Lookup(HValue* value) const;
HValueMap* Copy(Zone* zone) const {
return new(zone) HValueMap(zone, this);
}
bool IsEmpty() const { return count_ == 0; }
private:
// A linked list of HValue* values. Stored in arrays.
struct HValueMapListElement {
HValue* value;
int next; // Index in the array of the next list element.
};
static const int kNil = -1; // The end of a linked list
// Must be a power of 2.
static const int kInitialSize = 16;
HValueMap(Zone* zone, const HValueMap* other);
void Resize(int new_size, Zone* zone);
void ResizeLists(int new_size, Zone* zone);
void Insert(HValue* value, Zone* zone);
uint32_t Bound(uint32_t value) const { return value & (array_size_ - 1); }
int array_size_;
int lists_size_;
int count_; // The number of values stored in the HValueMap.
GVNFlagSet present_flags_; // All flags that are in any value in the
// HValueMap.
HValueMapListElement* array_; // Primary store - contains the first value
// with a given hash. Colliding elements are stored in linked lists.
HValueMapListElement* lists_; // The linked lists containing hash collisions.
int free_list_head_; // Unused elements in lists_ are on the free list.
};
class HSideEffectMap BASE_EMBEDDED {
public:
HSideEffectMap();
explicit HSideEffectMap(HSideEffectMap* other);
HSideEffectMap& operator= (const HSideEffectMap& other);
void Kill(GVNFlagSet flags);
void Store(GVNFlagSet flags, HInstruction* instr);
bool IsEmpty() const { return count_ == 0; }
inline HInstruction* operator[](int i) const {
ASSERT(0 <= i);
ASSERT(i < kNumberOfTrackedSideEffects);
return data_[i];
}
inline HInstruction* at(int i) const { return operator[](i); }
private:
int count_;
HInstruction* data_[kNumberOfTrackedSideEffects];
};
void TraceGVN(const char* msg, ...) {
va_list arguments;
va_start(arguments, msg);
OS::VPrint(msg, arguments);
va_end(arguments);
}
// Wrap TraceGVN in macros to avoid the expense of evaluating its arguments when
// --trace-gvn is off.
#define TRACE_GVN_1(msg, a1) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1); \
}
#define TRACE_GVN_2(msg, a1, a2) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2); \
}
#define TRACE_GVN_3(msg, a1, a2, a3) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3); \
}
#define TRACE_GVN_4(msg, a1, a2, a3, a4) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3, a4); \
}
#define TRACE_GVN_5(msg, a1, a2, a3, a4, a5) \
if (FLAG_trace_gvn) { \
TraceGVN(msg, a1, a2, a3, a4, a5); \
}
HValueMap::HValueMap(Zone* zone, const HValueMap* other)
: array_size_(other->array_size_),
lists_size_(other->lists_size_),
count_(other->count_),
present_flags_(other->present_flags_),
array_(zone->NewArray<HValueMapListElement>(other->array_size_)),
lists_(zone->NewArray<HValueMapListElement>(other->lists_size_)),
free_list_head_(other->free_list_head_) {
OS::MemCopy(
array_, other->array_, array_size_ * sizeof(HValueMapListElement));
OS::MemCopy(
lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement));
}
void HValueMap::Kill(GVNFlagSet flags) {
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(flags);
if (!present_flags_.ContainsAnyOf(depends_flags)) return;
present_flags_.RemoveAll();
for (int i = 0; i < array_size_; ++i) {
HValue* value = array_[i].value;
if (value != NULL) {
// Clear list of collisions first, so we know if it becomes empty.
int kept = kNil; // List of kept elements.
int next;
for (int current = array_[i].next; current != kNil; current = next) {
next = lists_[current].next;
HValue* value = lists_[current].value;
if (value->gvn_flags().ContainsAnyOf(depends_flags)) {
// Drop it.
count_--;
lists_[current].next = free_list_head_;
free_list_head_ = current;
} else {
// Keep it.
lists_[current].next = kept;
kept = current;
present_flags_.Add(value->gvn_flags());
}
}
array_[i].next = kept;
// Now possibly drop directly indexed element.
value = array_[i].value;
if (value->gvn_flags().ContainsAnyOf(depends_flags)) { // Drop it.
count_--;
int head = array_[i].next;
if (head == kNil) {
array_[i].value = NULL;
} else {
array_[i].value = lists_[head].value;
array_[i].next = lists_[head].next;
lists_[head].next = free_list_head_;
free_list_head_ = head;
}
} else {
present_flags_.Add(value->gvn_flags()); // Keep it.
}
}
}
}
HValue* HValueMap::Lookup(HValue* value) const {
uint32_t hash = static_cast<uint32_t>(value->Hashcode());
uint32_t pos = Bound(hash);
if (array_[pos].value != NULL) {
if (array_[pos].value->Equals(value)) return array_[pos].value;
int next = array_[pos].next;
while (next != kNil) {
if (lists_[next].value->Equals(value)) return lists_[next].value;
next = lists_[next].next;
}
}
return NULL;
}
void HValueMap::Resize(int new_size, Zone* zone) {
ASSERT(new_size > count_);
// Hashing the values into the new array has no more collisions than in the
// old hash map, so we can use the existing lists_ array, if we are careful.
// Make sure we have at least one free element.
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1, zone);
}
HValueMapListElement* new_array =
zone->NewArray<HValueMapListElement>(new_size);
memset(new_array, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_array = array_;
int old_size = array_size_;
int old_count = count_;
count_ = 0;
// Do not modify present_flags_. It is currently correct.
array_size_ = new_size;
array_ = new_array;
if (old_array != NULL) {
// Iterate over all the elements in lists, rehashing them.
for (int i = 0; i < old_size; ++i) {
if (old_array[i].value != NULL) {
int current = old_array[i].next;
while (current != kNil) {
Insert(lists_[current].value, zone);
int next = lists_[current].next;
lists_[current].next = free_list_head_;
free_list_head_ = current;
current = next;
}
// Rehash the directly stored value.
Insert(old_array[i].value, zone);
}
}
}
USE(old_count);
ASSERT(count_ == old_count);
}
void HValueMap::ResizeLists(int new_size, Zone* zone) {
ASSERT(new_size > lists_size_);
HValueMapListElement* new_lists =
zone->NewArray<HValueMapListElement>(new_size);
memset(new_lists, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_lists = lists_;
int old_size = lists_size_;
lists_size_ = new_size;
lists_ = new_lists;
if (old_lists != NULL) {
OS::MemCopy(lists_, old_lists, old_size * sizeof(HValueMapListElement));
}
for (int i = old_size; i < lists_size_; ++i) {
lists_[i].next = free_list_head_;
free_list_head_ = i;
}
}
void HValueMap::Insert(HValue* value, Zone* zone) {
ASSERT(value != NULL);
// Resizing when half of the hashtable is filled up.
if (count_ >= array_size_ >> 1) Resize(array_size_ << 1, zone);
ASSERT(count_ < array_size_);
count_++;
uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode()));
if (array_[pos].value == NULL) {
array_[pos].value = value;
array_[pos].next = kNil;
} else {
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1, zone);
}
int new_element_pos = free_list_head_;
ASSERT(new_element_pos != kNil);
free_list_head_ = lists_[free_list_head_].next;
lists_[new_element_pos].value = value;
lists_[new_element_pos].next = array_[pos].next;
ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL);
array_[pos].next = new_element_pos;
}
}
HSideEffectMap::HSideEffectMap() : count_(0) {
memset(data_, 0, kNumberOfTrackedSideEffects * kPointerSize);
}
HSideEffectMap::HSideEffectMap(HSideEffectMap* other) : count_(other->count_) {
*this = *other; // Calls operator=.
}
HSideEffectMap& HSideEffectMap::operator= (const HSideEffectMap& other) {
if (this != &other) {
OS::MemCopy(data_, other.data_, kNumberOfTrackedSideEffects * kPointerSize);
}
return *this;
}
void HSideEffectMap::Kill(GVNFlagSet flags) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
if (flags.Contains(changes_flag)) {
if (data_[i] != NULL) count_--;
data_[i] = NULL;
}
}
}
void HSideEffectMap::Store(GVNFlagSet flags, HInstruction* instr) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
if (flags.Contains(changes_flag)) {
if (data_[i] == NULL) count_++;
data_[i] = instr;
}
}
}
HGlobalValueNumberingPhase::HGlobalValueNumberingPhase(HGraph* graph)
: HPhase("H_Global value numbering", graph),
removed_side_effects_(false),
block_side_effects_(graph->blocks()->length(), zone()),
loop_side_effects_(graph->blocks()->length(), zone()),
visited_on_paths_(graph->blocks()->length(), zone()) {
ASSERT(!AllowHandleAllocation::IsAllowed());
block_side_effects_.AddBlock(GVNFlagSet(), graph->blocks()->length(),
zone());
loop_side_effects_.AddBlock(GVNFlagSet(), graph->blocks()->length(),
zone());
}
void HGlobalValueNumberingPhase::Analyze() {
removed_side_effects_ = false;
ComputeBlockSideEffects();
if (FLAG_loop_invariant_code_motion) {
LoopInvariantCodeMotion();
}
AnalyzeGraph();
}
void HGlobalValueNumberingPhase::ComputeBlockSideEffects() {
// The Analyze phase of GVN can be called multiple times. Clear loop side
// effects before computing them to erase the contents from previous Analyze
// passes.
for (int i = 0; i < loop_side_effects_.length(); ++i) {
loop_side_effects_[i].RemoveAll();
}
for (int i = graph()->blocks()->length() - 1; i >= 0; --i) {
// Compute side effects for the block.
HBasicBlock* block = graph()->blocks()->at(i);
GVNFlagSet side_effects;
if (block->IsReachable() && !block->IsDeoptimizing()) {
int id = block->block_id();
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* instr = it.Current();
side_effects.Add(instr->ChangesFlags());
}
block_side_effects_[id].Add(side_effects);
// Loop headers are part of their loop.
if (block->IsLoopHeader()) {
loop_side_effects_[id].Add(side_effects);
}
// Propagate loop side effects upwards.
if (block->HasParentLoopHeader()) {
HBasicBlock* with_parent = block;
if (block->IsLoopHeader()) side_effects = loop_side_effects_[id];
do {
HBasicBlock* parent_block = with_parent->parent_loop_header();
loop_side_effects_[parent_block->block_id()].Add(side_effects);
with_parent = parent_block;
} while (with_parent->HasParentLoopHeader());
}
}
}
}
SmartArrayPointer<char> GetGVNFlagsString(GVNFlagSet flags) {
char underlying_buffer[kLastFlag * 128];
Vector<char> buffer(underlying_buffer, sizeof(underlying_buffer));
#if DEBUG
int offset = 0;
const char* separator = "";
const char* comma = ", ";
buffer[0] = 0;
uint32_t set_depends_on = 0;
uint32_t set_changes = 0;
for (int bit = 0; bit < kLastFlag; ++bit) {
if (flags.Contains(static_cast<GVNFlag>(bit))) {
if (bit % 2 == 0) {
set_changes++;
} else {
set_depends_on++;
}
}
}
bool positive_changes = set_changes < (kLastFlag / 2);
bool positive_depends_on = set_depends_on < (kLastFlag / 2);
if (set_changes > 0) {
if (positive_changes) {
offset += OS::SNPrintF(buffer + offset, "changes [");
} else {
offset += OS::SNPrintF(buffer + offset, "changes all except [");
}
for (int bit = 0; bit < kLastFlag; ++bit) {
if (flags.Contains(static_cast<GVNFlag>(bit)) == positive_changes) {
switch (static_cast<GVNFlag>(bit)) {
#define DECLARE_FLAG(type) \
case kChanges##type: \
offset += OS::SNPrintF(buffer + offset, separator); \
offset += OS::SNPrintF(buffer + offset, #type); \
separator = comma; \
break;
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
default:
break;
}
}
}
offset += OS::SNPrintF(buffer + offset, "]");
}
if (set_depends_on > 0) {
separator = "";
if (set_changes > 0) {
offset += OS::SNPrintF(buffer + offset, ", ");
}
if (positive_depends_on) {
offset += OS::SNPrintF(buffer + offset, "depends on [");
} else {
offset += OS::SNPrintF(buffer + offset, "depends on all except [");
}
for (int bit = 0; bit < kLastFlag; ++bit) {
if (flags.Contains(static_cast<GVNFlag>(bit)) == positive_depends_on) {
switch (static_cast<GVNFlag>(bit)) {
#define DECLARE_FLAG(type) \
case kDependsOn##type: \
offset += OS::SNPrintF(buffer + offset, separator); \
offset += OS::SNPrintF(buffer + offset, #type); \
separator = comma; \
break;
GVN_TRACKED_FLAG_LIST(DECLARE_FLAG)
GVN_UNTRACKED_FLAG_LIST(DECLARE_FLAG)
#undef DECLARE_FLAG
default:
break;
}
}
}
offset += OS::SNPrintF(buffer + offset, "]");
}
#else
OS::SNPrintF(buffer, "0x%08X", flags.ToIntegral());
#endif
size_t string_len = strlen(underlying_buffer) + 1;
ASSERT(string_len <= sizeof(underlying_buffer));
char* result = new char[strlen(underlying_buffer) + 1];
OS::MemCopy(result, underlying_buffer, string_len);
return SmartArrayPointer<char>(result);
}
void HGlobalValueNumberingPhase::LoopInvariantCodeMotion() {
TRACE_GVN_1("Using optimistic loop invariant code motion: %s\n",
graph()->use_optimistic_licm() ? "yes" : "no");
for (int i = graph()->blocks()->length() - 1; i >= 0; --i) {
HBasicBlock* block = graph()->blocks()->at(i);
if (block->IsLoopHeader()) {
GVNFlagSet side_effects = loop_side_effects_[block->block_id()];
TRACE_GVN_2("Try loop invariant motion for block B%d %s\n",
block->block_id(),
*GetGVNFlagsString(side_effects));
GVNFlagSet accumulated_first_time_depends;
GVNFlagSet accumulated_first_time_changes;
HBasicBlock* last = block->loop_information()->GetLastBackEdge();
for (int j = block->block_id(); j <= last->block_id(); ++j) {
ProcessLoopBlock(graph()->blocks()->at(j), block, side_effects,
&accumulated_first_time_depends,
&accumulated_first_time_changes);
}
}
}
}
void HGlobalValueNumberingPhase::ProcessLoopBlock(
HBasicBlock* block,
HBasicBlock* loop_header,
GVNFlagSet loop_kills,
GVNFlagSet* first_time_depends,
GVNFlagSet* first_time_changes) {
HBasicBlock* pre_header = loop_header->predecessors()->at(0);
GVNFlagSet depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills);
TRACE_GVN_2("Loop invariant motion for B%d %s\n",
block->block_id(),
*GetGVNFlagsString(depends_flags));
HInstruction* instr = block->first();
while (instr != NULL) {
HInstruction* next = instr->next();
bool hoisted = false;
if (instr->CheckFlag(HValue::kUseGVN)) {
TRACE_GVN_4("Checking instruction %d (%s) %s. Loop %s\n",
instr->id(),
instr->Mnemonic(),
*GetGVNFlagsString(instr->gvn_flags()),
*GetGVNFlagsString(loop_kills));
bool can_hoist = !instr->gvn_flags().ContainsAnyOf(depends_flags);
if (can_hoist && !graph()->use_optimistic_licm()) {
can_hoist = block->IsLoopSuccessorDominator();
}
if (can_hoist) {
bool inputs_loop_invariant = true;
for (int i = 0; i < instr->OperandCount(); ++i) {
if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) {
inputs_loop_invariant = false;
}
}
if (inputs_loop_invariant && ShouldMove(instr, loop_header)) {
TRACE_GVN_2("Hoisting loop invariant instruction i%d to block B%d\n",
instr->id(), pre_header->block_id());
// Move the instruction out of the loop.
instr->Unlink();
instr->InsertBefore(pre_header->end());
if (instr->HasSideEffects()) removed_side_effects_ = true;
hoisted = true;
}
}
}
if (!hoisted) {
// If an instruction is not hoisted, we have to account for its side
// effects when hoisting later HTransitionElementsKind instructions.
GVNFlagSet previous_depends = *first_time_depends;
GVNFlagSet previous_changes = *first_time_changes;
first_time_depends->Add(instr->DependsOnFlags());
first_time_changes->Add(instr->ChangesFlags());
if (!(previous_depends == *first_time_depends)) {
TRACE_GVN_1("Updated first-time accumulated %s\n",
*GetGVNFlagsString(*first_time_depends));
}
if (!(previous_changes == *first_time_changes)) {
TRACE_GVN_1("Updated first-time accumulated %s\n",
*GetGVNFlagsString(*first_time_changes));
}
}
instr = next;
}
}
bool HGlobalValueNumberingPhase::AllowCodeMotion() {
return info()->IsStub() || info()->opt_count() + 1 < FLAG_max_opt_count;
}
bool HGlobalValueNumberingPhase::ShouldMove(HInstruction* instr,
HBasicBlock* loop_header) {
// If we've disabled code motion or we're in a block that unconditionally
// deoptimizes, don't move any instructions.
return AllowCodeMotion() && !instr->block()->IsDeoptimizing() &&
instr->block()->IsReachable();
}
GVNFlagSet
HGlobalValueNumberingPhase::CollectSideEffectsOnPathsToDominatedBlock(
HBasicBlock* dominator, HBasicBlock* dominated) {
GVNFlagSet side_effects;
for (int i = 0; i < dominated->predecessors()->length(); ++i) {
HBasicBlock* block = dominated->predecessors()->at(i);
if (dominator->block_id() < block->block_id() &&
block->block_id() < dominated->block_id() &&
!visited_on_paths_.Contains(block->block_id())) {
visited_on_paths_.Add(block->block_id());
side_effects.Add(block_side_effects_[block->block_id()]);
if (block->IsLoopHeader()) {
side_effects.Add(loop_side_effects_[block->block_id()]);
}
side_effects.Add(CollectSideEffectsOnPathsToDominatedBlock(
dominator, block));
}
}
return side_effects;
}
// Each instance of this class is like a "stack frame" for the recursive
// traversal of the dominator tree done during GVN (the stack is handled
// as a double linked list).
// We reuse frames when possible so the list length is limited by the depth
// of the dominator tree but this forces us to initialize each frame calling
// an explicit "Initialize" method instead of a using constructor.
class GvnBasicBlockState: public ZoneObject {
public:
static GvnBasicBlockState* CreateEntry(Zone* zone,
HBasicBlock* entry_block,
HValueMap* entry_map) {
return new(zone)
GvnBasicBlockState(NULL, entry_block, entry_map, NULL, zone);
}
HBasicBlock* block() { return block_; }
HValueMap* map() { return map_; }
HSideEffectMap* dominators() { return &dominators_; }
GvnBasicBlockState* next_in_dominator_tree_traversal(
Zone* zone,
HBasicBlock** dominator) {
// This assignment needs to happen before calling next_dominated() because
// that call can reuse "this" if we are at the last dominated block.
*dominator = block();
GvnBasicBlockState* result = next_dominated(zone);
if (result == NULL) {
GvnBasicBlockState* dominator_state = pop();
if (dominator_state != NULL) {
// This branch is guaranteed not to return NULL because pop() never
// returns a state where "is_done() == true".
*dominator = dominator_state->block();
result = dominator_state->next_dominated(zone);
} else {
// Unnecessary (we are returning NULL) but done for cleanness.
*dominator = NULL;
}
}
return result;
}
private:
void Initialize(HBasicBlock* block,
HValueMap* map,
HSideEffectMap* dominators,
bool copy_map,
Zone* zone) {
block_ = block;
map_ = copy_map ? map->Copy(zone) : map;
dominated_index_ = -1;
length_ = block->dominated_blocks()->length();
if (dominators != NULL) {
dominators_ = *dominators;
}
}
bool is_done() { return dominated_index_ >= length_; }
GvnBasicBlockState(GvnBasicBlockState* previous,
HBasicBlock* block,
HValueMap* map,
HSideEffectMap* dominators,
Zone* zone)
: previous_(previous), next_(NULL) {
Initialize(block, map, dominators, true, zone);
}
GvnBasicBlockState* next_dominated(Zone* zone) {
dominated_index_++;
if (dominated_index_ == length_ - 1) {
// No need to copy the map for the last child in the dominator tree.
Initialize(block_->dominated_blocks()->at(dominated_index_),
map(),
dominators(),
false,
zone);
return this;
} else if (dominated_index_ < length_) {
return push(zone, block_->dominated_blocks()->at(dominated_index_));
} else {
return NULL;
}
}
GvnBasicBlockState* push(Zone* zone, HBasicBlock* block) {
if (next_ == NULL) {
next_ =
new(zone) GvnBasicBlockState(this, block, map(), dominators(), zone);
} else {
next_->Initialize(block, map(), dominators(), true, zone);
}
return next_;
}
GvnBasicBlockState* pop() {
GvnBasicBlockState* result = previous_;
while (result != NULL && result->is_done()) {
TRACE_GVN_2("Backtracking from block B%d to block b%d\n",
block()->block_id(),
previous_->block()->block_id())
result = result->previous_;
}
return result;
}
GvnBasicBlockState* previous_;
GvnBasicBlockState* next_;
HBasicBlock* block_;
HValueMap* map_;
HSideEffectMap dominators_;
int dominated_index_;
int length_;
};
// This is a recursive traversal of the dominator tree but it has been turned
// into a loop to avoid stack overflows.
// The logical "stack frames" of the recursion are kept in a list of
// GvnBasicBlockState instances.
void HGlobalValueNumberingPhase::AnalyzeGraph() {
HBasicBlock* entry_block = graph()->entry_block();
HValueMap* entry_map = new(zone()) HValueMap(zone());
GvnBasicBlockState* current =
GvnBasicBlockState::CreateEntry(zone(), entry_block, entry_map);
while (current != NULL) {
HBasicBlock* block = current->block();
HValueMap* map = current->map();
HSideEffectMap* dominators = current->dominators();
TRACE_GVN_2("Analyzing block B%d%s\n",
block->block_id(),
block->IsLoopHeader() ? " (loop header)" : "");
// If this is a loop header kill everything killed by the loop.
if (block->IsLoopHeader()) {
map->Kill(loop_side_effects_[block->block_id()]);
dominators->Kill(loop_side_effects_[block->block_id()]);
}
// Go through all instructions of the current block.
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* instr = it.Current();
if (instr->CheckFlag(HValue::kTrackSideEffectDominators)) {
for (int i = 0; i < kNumberOfTrackedSideEffects; i++) {
HValue* other = dominators->at(i);
GVNFlag changes_flag = HValue::ChangesFlagFromInt(i);
GVNFlag depends_on_flag = HValue::DependsOnFlagFromInt(i);
if (instr->DependsOnFlags().Contains(depends_on_flag) &&
(other != NULL)) {
TRACE_GVN_5("Side-effect #%d in %d (%s) is dominated by %d (%s)\n",
i,
instr->id(),
instr->Mnemonic(),
other->id(),
other->Mnemonic());
instr->HandleSideEffectDominator(changes_flag, other);
}
}
}
// Instruction was unlinked during graph traversal.
if (!instr->IsLinked()) continue;
GVNFlagSet flags = instr->ChangesFlags();
if (!flags.IsEmpty()) {
// Clear all instructions in the map that are affected by side effects.
// Store instruction as the dominating one for tracked side effects.
map->Kill(flags);
dominators->Store(flags, instr);
TRACE_GVN_2("Instruction %d %s\n", instr->id(),
*GetGVNFlagsString(flags));
}
if (instr->CheckFlag(HValue::kUseGVN)) {
ASSERT(!instr->HasObservableSideEffects());
HValue* other = map->Lookup(instr);
if (other != NULL) {
ASSERT(instr->Equals(other) && other->Equals(instr));
TRACE_GVN_4("Replacing value %d (%s) with value %d (%s)\n",
instr->id(),
instr->Mnemonic(),
other->id(),
other->Mnemonic());
if (instr->HasSideEffects()) removed_side_effects_ = true;
instr->DeleteAndReplaceWith(other);
} else {
map->Add(instr, zone());
}
}
}
HBasicBlock* dominator_block;
GvnBasicBlockState* next =
current->next_in_dominator_tree_traversal(zone(),
&dominator_block);
if (next != NULL) {
HBasicBlock* dominated = next->block();
HValueMap* successor_map = next->map();
HSideEffectMap* successor_dominators = next->dominators();
// Kill everything killed on any path between this block and the
// dominated block. We don't have to traverse these paths if the
// value map and the dominators list is already empty. If the range
// of block ids (block_id, dominated_id) is empty there are no such
// paths.
if ((!successor_map->IsEmpty() || !successor_dominators->IsEmpty()) &&
dominator_block->block_id() + 1 < dominated->block_id()) {
visited_on_paths_.Clear();
GVNFlagSet side_effects_on_all_paths =
CollectSideEffectsOnPathsToDominatedBlock(dominator_block,
dominated);
successor_map->Kill(side_effects_on_all_paths);
successor_dominators->Kill(side_effects_on_all_paths);
}
}
current = next;
}
}
} } // namespace v8::internal