// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if V8_TARGET_ARCH_ARM
#include "assembler-arm.h"
#include "code-stubs.h"
#include "codegen.h"
#include "disasm.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm,
Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ cmp(type, Operand(JS_GLOBAL_OBJECT_TYPE));
__ b(eq, global_object);
__ cmp(type, Operand(JS_BUILTINS_OBJECT_TYPE));
__ b(eq, global_object);
__ cmp(type, Operand(JS_GLOBAL_PROXY_TYPE));
__ b(eq, global_object);
}
// Generated code falls through if the receiver is a regular non-global
// JS object with slow properties and no interceptors.
static void GenerateNameDictionaryReceiverCheck(MacroAssembler* masm,
Register receiver,
Register elements,
Register t0,
Register t1,
Label* miss) {
// Register usage:
// receiver: holds the receiver on entry and is unchanged.
// elements: holds the property dictionary on fall through.
// Scratch registers:
// t0: used to holds the receiver map.
// t1: used to holds the receiver instance type, receiver bit mask and
// elements map.
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the receiver is a valid JS object.
__ CompareObjectType(receiver, t0, t1, FIRST_SPEC_OBJECT_TYPE);
__ b(lt, miss);
// If this assert fails, we have to check upper bound too.
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
GenerateGlobalInstanceTypeCheck(masm, t1, miss);
// Check that the global object does not require access checks.
__ ldrb(t1, FieldMemOperand(t0, Map::kBitFieldOffset));
__ tst(t1, Operand((1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasNamedInterceptor)));
__ b(ne, miss);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ ldr(t1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(t1, ip);
__ b(ne, miss);
}
// Helper function used from LoadIC/CallIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// result: Register for the result. It is only updated if a jump to the miss
// label is not done. Can be the same as elements or name clobbering
// one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss,
Register elements,
Register name,
Register result,
Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss,
&done,
elements,
name,
scratch1,
scratch2);
// If probing finds an entry check that the value is a normal
// property.
__ bind(&done); // scratch2 == elements + 4 * index
const int kElementsStartOffset = NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ tst(scratch1, Operand(PropertyDetails::TypeField::kMask << kSmiTagSize));
__ b(ne, miss);
// Get the value at the masked, scaled index and return.
__ ldr(result,
FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}
// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// value: The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm,
Label* miss,
Register elements,
Register name,
Register value,
Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm,
miss,
&done,
elements,
name,
scratch1,
scratch2);
// If probing finds an entry in the dictionary check that the value
// is a normal property that is not read only.
__ bind(&done); // scratch2 == elements + 4 * index
const int kElementsStartOffset = NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize;
__ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ tst(scratch1, Operand(kTypeAndReadOnlyMask));
__ b(ne, miss);
// Store the value at the masked, scaled index and return.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ add(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
__ str(value, MemOperand(scratch2));
// Update the write barrier. Make sure not to clobber the value.
__ mov(scratch1, value);
__ RecordWrite(
elements, scratch2, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver,
Register map,
Register scratch,
int interceptor_bit,
Label* slow) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Get the map of the receiver.
__ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
__ tst(scratch,
Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
__ b(ne, slow);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing into string
// objects work as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ cmp(scratch, Operand(JS_OBJECT_TYPE));
__ b(lt, slow);
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm,
Register receiver,
Register key,
Register elements,
Register scratch1,
Register scratch2,
Register result,
Label* not_fast_array,
Label* out_of_range) {
// Register use:
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// elements - holds the elements of the receiver on exit.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
//
// Scratch registers:
//
// scratch1 - used to hold elements map and elements length.
// Holds the elements map if not_fast_array branch is taken.
//
// scratch2 - used to hold the loaded value.
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode and writable.
__ ldr(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(scratch1, ip);
__ b(ne, not_fast_array);
} else {
__ AssertFastElements(elements);
}
// Check that the key (index) is within bounds.
__ ldr(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(scratch1));
__ b(hs, out_of_range);
// Fast case: Do the load.
__ add(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(scratch2, MemOperand::PointerAddressFromSmiKey(scratch1, key));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch2, ip);
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ b(eq, out_of_range);
__ mov(result, scratch2);
}
// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm,
Register key,
Register map,
Register hash,
Label* index_string,
Label* not_unique) {
// The key is not a smi.
Label unique;
// Is it a name?
__ CompareObjectType(key, map, hash, LAST_UNIQUE_NAME_TYPE);
__ b(hi, not_unique);
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ b(eq, &unique);
// Is the string an array index, with cached numeric value?
__ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ tst(hash, Operand(Name::kContainsCachedArrayIndexMask));
__ b(eq, index_string);
// Is the string internalized? We know it's a string, so a single
// bit test is enough.
// map: key map
__ ldrb(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0);
__ tst(hash, Operand(kIsNotInternalizedMask));
__ b(ne, not_unique);
__ bind(&unique);
}
// Defined in ic.cc.
Object* CallIC_Miss(Arguments args);
// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
void CallICBase::GenerateMonomorphicCacheProbe(MacroAssembler* masm,
int argc,
Code::Kind kind,
ExtraICState extra_state) {
// ----------- S t a t e -------------
// -- r1 : receiver
// -- r2 : name
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(kind,
MONOMORPHIC,
extra_state,
Code::NORMAL,
argc);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, r1, r2, r3, r4, r5, r6);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ JumpIfSmi(r1, &number);
__ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE);
__ b(ne, &non_number);
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, r1);
__ b(&probe);
// Check for string.
__ bind(&non_number);
__ cmp(r3, Operand(FIRST_NONSTRING_TYPE));
__ b(hs, &non_string);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, r1);
__ b(&probe);
// Check for boolean.
__ bind(&non_string);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r1, ip);
__ b(eq, &boolean);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r1, ip);
__ b(ne, &miss);
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, r1);
// Probe the stub cache for the value object.
__ bind(&probe);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, r1, r2, r3, r4, r5, r6);
__ bind(&miss);
}
static void GenerateFunctionTailCall(MacroAssembler* masm,
int argc,
Label* miss,
Register scratch) {
// r1: function
// Check that the value isn't a smi.
__ JumpIfSmi(r1, miss);
// Check that the value is a JSFunction.
__ CompareObjectType(r1, scratch, scratch, JS_FUNCTION_TYPE);
__ b(ne, miss);
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(r1, actual, JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
}
void CallICBase::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Get the receiver of the function from the stack into r1.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
GenerateNameDictionaryReceiverCheck(masm, r1, r0, r3, r4, &miss);
// r0: elements
// Search the dictionary - put result in register r1.
GenerateDictionaryLoad(masm, &miss, r0, r2, r1, r3, r4);
GenerateFunctionTailCall(masm, argc, &miss, r4);
__ bind(&miss);
}
void CallICBase::GenerateMiss(MacroAssembler* masm,
int argc,
IC::UtilityId id,
ExtraICState extra_state) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Isolate* isolate = masm->isolate();
if (id == IC::kCallIC_Miss) {
__ IncrementCounter(isolate->counters()->call_miss(), 1, r3, r4);
} else {
__ IncrementCounter(isolate->counters()->keyed_call_miss(), 1, r3, r4);
}
// Get the receiver of the function from the stack.
__ ldr(r3, MemOperand(sp, argc * kPointerSize));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Push the receiver and the name of the function.
__ Push(r3, r2);
// Call the entry.
__ mov(r0, Operand(2));
__ mov(r1, Operand(ExternalReference(IC_Utility(id), isolate)));
CEntryStub stub(1);
__ CallStub(&stub);
// Move result to r1 and leave the internal frame.
__ mov(r1, Operand(r0));
}
// Check if the receiver is a global object of some sort.
// This can happen only for regular CallIC but not KeyedCallIC.
if (id == IC::kCallIC_Miss) {
Label invoke, global;
__ ldr(r2, MemOperand(sp, argc * kPointerSize)); // receiver
__ JumpIfSmi(r2, &invoke);
__ CompareObjectType(r2, r3, r3, JS_GLOBAL_OBJECT_TYPE);
__ b(eq, &global);
__ cmp(r3, Operand(JS_BUILTINS_OBJECT_TYPE));
__ b(ne, &invoke);
// Patch the receiver on the stack.
__ bind(&global);
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
__ str(r2, MemOperand(sp, argc * kPointerSize));
__ bind(&invoke);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_state)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
ParameterCount actual(argc);
__ InvokeFunction(r1,
actual,
JUMP_FUNCTION,
NullCallWrapper(),
call_kind);
}
void CallIC::GenerateMegamorphic(MacroAssembler* masm,
int argc,
ExtraICState extra_ic_state) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
// Get the receiver of the function from the stack into r1.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC, extra_ic_state);
GenerateMiss(masm, argc, extra_ic_state);
}
void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
// Get the receiver of the function from the stack into r1.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
Label do_call, slow_call, slow_load, slow_reload_receiver;
Label check_number_dictionary, check_name, lookup_monomorphic_cache;
Label index_smi, index_name;
// Check that the key is a smi.
__ JumpIfNotSmi(r2, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, r1, r0, r3, Map::kHasIndexedInterceptor, &slow_call);
GenerateFastArrayLoad(
masm, r1, r2, r4, r3, r0, r1, &check_number_dictionary, &slow_load);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_call_generic_smi_fast(), 1, r0, r3);
__ bind(&do_call);
// receiver in r1 is not used after this point.
// r2: key
// r1: function
GenerateFunctionTailCall(masm, argc, &slow_call, r0);
__ bind(&check_number_dictionary);
// r2: key
// r3: elements map
// r4: elements
// Check whether the elements is a number dictionary.
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &slow_load);
__ SmiUntag(r0, r2);
// r0: untagged index
__ LoadFromNumberDictionary(&slow_load, r4, r2, r1, r0, r3, r5);
__ IncrementCounter(counters->keyed_call_generic_smi_dict(), 1, r0, r3);
__ jmp(&do_call);
__ bind(&slow_load);
// This branch is taken when calling KeyedCallIC_Miss is neither required
// nor beneficial.
__ IncrementCounter(counters->keyed_call_generic_slow_load(), 1, r0, r3);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ Push(r2, r1); // save the key and the receiver
__ push(r2); // pass the receiver and the key
__ CallRuntime(Runtime::kKeyedGetProperty, 2);
__ pop(r2); // restore the key
}
__ mov(r1, r0);
__ jmp(&do_call);
__ bind(&check_name);
GenerateKeyNameCheck(masm, r2, r0, r3, &index_name, &slow_call);
// The key is known to be a unique name.
// If the receiver is a regular JS object with slow properties then do
// a quick inline probe of the receiver's dictionary.
// Otherwise do the monomorphic cache probe.
GenerateKeyedLoadReceiverCheck(
masm, r1, r0, r3, Map::kHasNamedInterceptor, &lookup_monomorphic_cache);
__ ldr(r0, FieldMemOperand(r1, JSObject::kPropertiesOffset));
__ ldr(r3, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &lookup_monomorphic_cache);
GenerateDictionaryLoad(masm, &slow_load, r0, r2, r1, r3, r4);
__ IncrementCounter(counters->keyed_call_generic_lookup_dict(), 1, r0, r3);
__ jmp(&do_call);
__ bind(&lookup_monomorphic_cache);
__ IncrementCounter(counters->keyed_call_generic_lookup_cache(), 1, r0, r3);
GenerateMonomorphicCacheProbe(masm,
argc,
Code::KEYED_CALL_IC,
kNoExtraICState);
// Fall through on miss.
__ bind(&slow_call);
// This branch is taken if:
// - the receiver requires boxing or access check,
// - the key is neither smi nor a unique name,
// - the value loaded is not a function,
// - there is hope that the runtime will create a monomorphic call stub
// that will get fetched next time.
__ IncrementCounter(counters->keyed_call_generic_slow(), 1, r0, r3);
GenerateMiss(masm, argc);
__ bind(&index_name);
__ IndexFromHash(r3, r2);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
// Check if the name is really a name.
Label miss;
__ JumpIfSmi(r2, &miss);
__ IsObjectNameType(r2, r0, &miss);
CallICBase::GenerateNormal(masm, argc);
__ bind(&miss);
GenerateMiss(masm, argc);
}
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(
Code::HANDLER, MONOMORPHIC, kNoExtraICState,
Code::NORMAL, Code::LOAD_IC);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, r0, r2, r3, r4, r5, r6);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -----------------------------------
Label miss;
GenerateNameDictionaryReceiverCheck(masm, r0, r1, r3, r4, &miss);
// r1: elements
GenerateDictionaryLoad(masm, &miss, r1, r2, r0, r3, r4);
__ Ret();
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -----------------------------------
Isolate* isolate = masm->isolate();
__ IncrementCounter(isolate->counters()->load_miss(), 1, r3, r4);
__ mov(r3, r0);
__ Push(r3, r2);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kLoadIC_Miss), isolate);
__ TailCallExternalReference(ref, 2, 1);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -----------------------------------
__ mov(r3, r0);
__ Push(r3, r2);
__ TailCallRuntime(Runtime::kGetProperty, 2, 1);
}
static MemOperand GenerateMappedArgumentsLookup(MacroAssembler* masm,
Register object,
Register key,
Register scratch1,
Register scratch2,
Register scratch3,
Label* unmapped_case,
Label* slow_case) {
Heap* heap = masm->isolate()->heap();
// Check that the receiver is a JSObject. Because of the map check
// later, we do not need to check for interceptors or whether it
// requires access checks.
__ JumpIfSmi(object, slow_case);
// Check that the object is some kind of JSObject.
__ CompareObjectType(object, scratch1, scratch2, FIRST_JS_RECEIVER_TYPE);
__ b(lt, slow_case);
// Check that the key is a positive smi.
__ tst(key, Operand(0x80000001));
__ b(ne, slow_case);
// Load the elements into scratch1 and check its map.
Handle<Map> arguments_map(heap->non_strict_arguments_elements_map());
__ ldr(scratch1, FieldMemOperand(object, JSObject::kElementsOffset));
__ CheckMap(scratch1, scratch2, arguments_map, slow_case, DONT_DO_SMI_CHECK);
// Check if element is in the range of mapped arguments. If not, jump
// to the unmapped lookup with the parameter map in scratch1.
__ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset));
__ sub(scratch2, scratch2, Operand(Smi::FromInt(2)));
__ cmp(key, Operand(scratch2));
__ b(cs, unmapped_case);
// Load element index and check whether it is the hole.
const int kOffset =
FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag;
__ mov(scratch3, Operand(kPointerSize >> 1));
__ mul(scratch3, key, scratch3);
__ add(scratch3, scratch3, Operand(kOffset));
__ ldr(scratch2, MemOperand(scratch1, scratch3));
__ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
__ cmp(scratch2, scratch3);
__ b(eq, unmapped_case);
// Load value from context and return it. We can reuse scratch1 because
// we do not jump to the unmapped lookup (which requires the parameter
// map in scratch1).
__ ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
__ mov(scratch3, Operand(kPointerSize >> 1));
__ mul(scratch3, scratch2, scratch3);
__ add(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag));
return MemOperand(scratch1, scratch3);
}
static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm,
Register key,
Register parameter_map,
Register scratch,
Label* slow_case) {
// Element is in arguments backing store, which is referenced by the
// second element of the parameter_map. The parameter_map register
// must be loaded with the parameter map of the arguments object and is
// overwritten.
const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize;
Register backing_store = parameter_map;
__ ldr(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset));
Handle<Map> fixed_array_map(masm->isolate()->heap()->fixed_array_map());
__ CheckMap(backing_store, scratch, fixed_array_map, slow_case,
DONT_DO_SMI_CHECK);
__ ldr(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset));
__ cmp(key, Operand(scratch));
__ b(cs, slow_case);
__ mov(scratch, Operand(kPointerSize >> 1));
__ mul(scratch, key, scratch);
__ add(scratch,
scratch,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
return MemOperand(backing_store, scratch);
}
void KeyedLoadIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow, notin;
MemOperand mapped_location =
GenerateMappedArgumentsLookup(masm, r1, r0, r2, r3, r4, ¬in, &slow);
__ ldr(r0, mapped_location);
__ Ret();
__ bind(¬in);
// The unmapped lookup expects that the parameter map is in r2.
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, r0, r2, r3, &slow);
__ ldr(r2, unmapped_location);
__ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
__ cmp(r2, r3);
__ b(eq, &slow);
__ mov(r0, r2);
__ Ret();
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateNonStrictArguments(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, notin;
MemOperand mapped_location =
GenerateMappedArgumentsLookup(masm, r2, r1, r3, r4, r5, ¬in, &slow);
__ str(r0, mapped_location);
__ add(r6, r3, r5);
__ mov(r9, r0);
__ RecordWrite(r3, r6, r9, kLRHasNotBeenSaved, kDontSaveFPRegs);
__ Ret();
__ bind(¬in);
// The unmapped lookup expects that the parameter map is in r3.
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, r1, r3, r4, &slow);
__ str(r0, unmapped_location);
__ add(r6, r3, r4);
__ mov(r9, r0);
__ RecordWrite(r3, r6, r9, kLRHasNotBeenSaved, kDontSaveFPRegs);
__ Ret();
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedCallIC::GenerateNonStrictArguments(MacroAssembler* masm,
int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label slow, notin;
// Load receiver.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
MemOperand mapped_location =
GenerateMappedArgumentsLookup(masm, r1, r2, r3, r4, r5, ¬in, &slow);
__ ldr(r1, mapped_location);
GenerateFunctionTailCall(masm, argc, &slow, r3);
__ bind(¬in);
// The unmapped lookup expects that the parameter map is in r3.
MemOperand unmapped_location =
GenerateUnmappedArgumentsLookup(masm, r2, r3, r4, &slow);
__ ldr(r1, unmapped_location);
__ LoadRoot(r3, Heap::kTheHoleValueRootIndex);
__ cmp(r1, r3);
__ b(eq, &slow);
GenerateFunctionTailCall(masm, argc, &slow, r3);
__ bind(&slow);
GenerateMiss(masm, argc);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Isolate* isolate = masm->isolate();
__ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, r3, r4);
__ Push(r1, r0);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate);
__ TailCallExternalReference(ref, 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
__ Push(r1, r0);
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow, check_name, index_smi, index_name, property_array_property;
Label probe_dictionary, check_number_dictionary;
Register key = r0;
Register receiver = r1;
Isolate* isolate = masm->isolate();
// Check that the key is a smi.
__ JumpIfNotSmi(key, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, receiver, r2, r3, Map::kHasIndexedInterceptor, &slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(r2, r3, &check_number_dictionary);
GenerateFastArrayLoad(
masm, receiver, key, r4, r3, r2, r0, NULL, &slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, r2, r3);
__ Ret();
__ bind(&check_number_dictionary);
__ ldr(r4, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(r3, FieldMemOperand(r4, JSObject::kMapOffset));
// Check whether the elements is a number dictionary.
// r0: key
// r3: elements map
// r4: elements
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &slow);
__ SmiUntag(r2, r0);
__ LoadFromNumberDictionary(&slow, r4, r0, r0, r2, r3, r5);
__ Ret();
// Slow case, key and receiver still in r0 and r1.
__ bind(&slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_slow(),
1, r2, r3);
GenerateRuntimeGetProperty(masm);
__ bind(&check_name);
GenerateKeyNameCheck(masm, key, r2, r3, &index_name, &slow);
GenerateKeyedLoadReceiverCheck(
masm, receiver, r2, r3, Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary.
__ ldr(r3, FieldMemOperand(r1, JSObject::kPropertiesOffset));
__ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r4, ip);
__ b(eq, &probe_dictionary);
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the name hash.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ mov(r3, Operand(r2, ASR, KeyedLookupCache::kMapHashShift));
__ ldr(r4, FieldMemOperand(r0, Name::kHashFieldOffset));
__ eor(r3, r3, Operand(r4, ASR, Name::kHashShift));
int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask;
__ And(r3, r3, Operand(mask));
// Load the key (consisting of map and unique name) from the cache and
// check for match.
Label load_in_object_property;
static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket;
Label hit_on_nth_entry[kEntriesPerBucket];
ExternalReference cache_keys =
ExternalReference::keyed_lookup_cache_keys(isolate);
__ mov(r4, Operand(cache_keys));
__ add(r4, r4, Operand(r3, LSL, kPointerSizeLog2 + 1));
for (int i = 0; i < kEntriesPerBucket - 1; i++) {
Label try_next_entry;
// Load map and move r4 to next entry.
__ ldr(r5, MemOperand(r4, kPointerSize * 2, PostIndex));
__ cmp(r2, r5);
__ b(ne, &try_next_entry);
__ ldr(r5, MemOperand(r4, -kPointerSize)); // Load name
__ cmp(r0, r5);
__ b(eq, &hit_on_nth_entry[i]);
__ bind(&try_next_entry);
}
// Last entry: Load map and move r4 to name.
__ ldr(r5, MemOperand(r4, kPointerSize, PostIndex));
__ cmp(r2, r5);
__ b(ne, &slow);
__ ldr(r5, MemOperand(r4));
__ cmp(r0, r5);
__ b(ne, &slow);
// Get field offset.
// r0 : key
// r1 : receiver
// r2 : receiver's map
// r3 : lookup cache index
ExternalReference cache_field_offsets =
ExternalReference::keyed_lookup_cache_field_offsets(isolate);
// Hit on nth entry.
for (int i = kEntriesPerBucket - 1; i >= 0; i--) {
__ bind(&hit_on_nth_entry[i]);
__ mov(r4, Operand(cache_field_offsets));
if (i != 0) {
__ add(r3, r3, Operand(i));
}
__ ldr(r5, MemOperand(r4, r3, LSL, kPointerSizeLog2));
__ ldrb(r6, FieldMemOperand(r2, Map::kInObjectPropertiesOffset));
__ sub(r5, r5, r6, SetCC);
__ b(ge, &property_array_property);
if (i != 0) {
__ jmp(&load_in_object_property);
}
}
// Load in-object property.
__ bind(&load_in_object_property);
__ ldrb(r6, FieldMemOperand(r2, Map::kInstanceSizeOffset));
__ add(r6, r6, r5); // Index from start of object.
__ sub(r1, r1, Operand(kHeapObjectTag)); // Remove the heap tag.
__ ldr(r0, MemOperand(r1, r6, LSL, kPointerSizeLog2));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(),
1, r2, r3);
__ Ret();
// Load property array property.
__ bind(&property_array_property);
__ ldr(r1, FieldMemOperand(r1, JSObject::kPropertiesOffset));
__ add(r1, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r0, MemOperand(r1, r5, LSL, kPointerSizeLog2));
__ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(),
1, r2, r3);
__ Ret();
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// r1: receiver
// r0: key
// r3: elements
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, r2, &slow);
// Load the property to r0.
GenerateDictionaryLoad(masm, &slow, r3, r0, r0, r2, r4);
__ IncrementCounter(
isolate->counters()->keyed_load_generic_symbol(), 1, r2, r3);
__ Ret();
__ bind(&index_name);
__ IndexFromHash(r3, key);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key (index)
// -- r1 : receiver
// -----------------------------------
Label miss;
Register receiver = r1;
Register index = r0;
Register scratch = r3;
Register result = r0;
StringCharAtGenerator char_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
STRING_INDEX_IS_ARRAY_INDEX);
char_at_generator.GenerateFast(masm);
__ Ret();
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ bind(&miss);
GenerateMiss(masm);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ JumpIfSmi(r1, &slow);
// Check that the key is an array index, that is Uint32.
__ NonNegativeSmiTst(r0);
__ b(ne, &slow);
// Get the map of the receiver.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
__ and_(r3, r3, Operand(kSlowCaseBitFieldMask));
__ cmp(r3, Operand(1 << Map::kHasIndexedInterceptor));
__ b(ne, &slow);
// Everything is fine, call runtime.
__ Push(r1, r0); // Receiver, key.
// Perform tail call to the entry.
__ TailCallExternalReference(
ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor),
masm->isolate()),
2,
1);
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(r2, r1, r0);
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateSlow(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r2 : key
// -- r1 : receiver
// -- lr : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(r1, r2, r0);
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
ExternalReference ref =
ExternalReference(IC_Utility(kStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(r2, r1, r0);
// The slow case calls into the runtime to complete the store without causing
// an IC miss that would otherwise cause a transition to the generic stub.
ExternalReference ref =
ExternalReference(IC_Utility(kKeyedStoreIC_Slow), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(r2, r1, r0);
__ mov(r1, Operand(Smi::FromInt(NONE))); // PropertyAttributes
__ mov(r0, Operand(Smi::FromInt(strict_mode))); // Strict mode.
__ Push(r1, r0);
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
static void KeyedStoreGenerateGenericHelper(
MacroAssembler* masm,
Label* fast_object,
Label* fast_double,
Label* slow,
KeyedStoreCheckMap check_map,
KeyedStoreIncrementLength increment_length,
Register value,
Register key,
Register receiver,
Register receiver_map,
Register elements_map,
Register elements) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
// Fast case: Do the store, could be either Object or double.
__ bind(fast_object);
Register scratch_value = r4;
Register address = r5;
if (check_map == kCheckMap) {
__ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
__ b(ne, fast_double);
}
// HOLECHECK: guards "A[i] = V"
// We have to go to the runtime if the current value is the hole because
// there may be a callback on the element
Label holecheck_passed1;
__ add(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(scratch_value,
MemOperand::PointerAddressFromSmiKey(address, key, PreIndex));
__ cmp(scratch_value, Operand(masm->isolate()->factory()->the_hole_value()));
__ b(ne, &holecheck_passed1);
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
slow);
__ bind(&holecheck_passed1);
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(value, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(scratch_value, key, Operand(Smi::FromInt(1)));
__ str(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ add(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ str(value, MemOperand::PointerAddressFromSmiKey(address, key));
__ Ret();
__ bind(&non_smi_value);
// Escape to elements kind transition case.
__ CheckFastObjectElements(receiver_map, scratch_value,
&transition_smi_elements);
// Fast elements array, store the value to the elements backing store.
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(scratch_value, key, Operand(Smi::FromInt(1)));
__ str(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ add(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ add(address, address, Operand::PointerOffsetFromSmiKey(key));
__ str(value, MemOperand(address));
// Update write barrier for the elements array address.
__ mov(scratch_value, value); // Preserve the value which is returned.
__ RecordWrite(elements,
address,
scratch_value,
kLRHasNotBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
__ Ret();
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ CompareRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex);
__ b(ne, slow);
}
// HOLECHECK: guards "A[i] double hole?"
// We have to see if the double version of the hole is present. If so
// go to the runtime.
__ add(address, elements,
Operand((FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32))
- kHeapObjectTag));
__ ldr(scratch_value,
MemOperand(address, key, LSL, kPointerSizeLog2, PreIndex));
__ cmp(scratch_value, Operand(kHoleNanUpper32));
__ b(ne, &fast_double_without_map_check);
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value,
slow);
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value, key, elements, r3, d0,
&transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ add(scratch_value, key, Operand(Smi::FromInt(1)));
__ str(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Ret();
__ bind(&transition_smi_elements);
// Transition the array appropriately depending on the value type.
__ ldr(r4, FieldMemOperand(value, HeapObject::kMapOffset));
__ CompareRoot(r4, Heap::kHeapNumberMapRootIndex);
__ b(ne, &non_double_value);
// Value is a double. Transition FAST_SMI_ELEMENTS ->
// FAST_DOUBLE_ELEMENTS and complete the store.
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS,
receiver_map,
r4,
slow);
ASSERT(receiver_map.is(r3)); // Transition code expects map in r3
AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS,
FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, mode, slow);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS,
FAST_ELEMENTS,
receiver_map,
r4,
slow);
ASSERT(receiver_map.is(r3)); // Transition code expects map in r3
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(masm, mode,
slow);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS,
FAST_ELEMENTS,
receiver_map,
r4,
slow);
ASSERT(receiver_map.is(r3)); // Transition code expects map in r3
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(masm, mode, slow);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array;
// Register usage.
Register value = r0;
Register key = r1;
Register receiver = r2;
Register receiver_map = r3;
Register elements_map = r6;
Register elements = r9; // Elements array of the receiver.
// r4 and r5 are used as general scratch registers.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &slow);
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Get the map of the object.
__ ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks and is not observed.
// The generic stub does not perform map checks or handle observed objects.
__ ldrb(ip, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved));
__ b(ne, &slow);
// Check if the object is a JS array or not.
__ ldrb(r4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
__ cmp(r4, Operand(JS_ARRAY_TYPE));
__ b(eq, &array);
// Check that the object is some kind of JSObject.
__ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, &slow);
// Object case: Check key against length in the elements array.
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(lo, &fast_object);
// Slow case, handle jump to runtime.
__ bind(&slow);
// Entry registers are intact.
// r0: value.
// r1: key.
// r2: receiver.
GenerateRuntimeSetProperty(masm, strict_mode);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// Condition code from comparing key and array length is still available.
__ b(ne, &slow); // Only support writing to writing to array[array.length].
// Check for room in the elements backing store.
// Both the key and the length of FixedArray are smis.
__ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(hs, &slow);
__ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
__ b(ne, &check_if_double_array);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
__ cmp(elements_map,
Operand(masm->isolate()->factory()->fixed_double_array_map()));
__ b(ne, &slow);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check the key against the length in the array.
__ ldr(ip, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(hs, &extra);
KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double,
&slow, kCheckMap, kDontIncrementLength,
value, key, receiver, receiver_map,
elements_map, elements);
KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow,
&slow, kDontCheckMap, kIncrementLength,
value, key, receiver, receiver_map,
elements_map, elements);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm,
ExtraICState extra_ic_state) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
// Get the receiver from the stack and probe the stub cache.
Code::Flags flags = Code::ComputeFlags(
Code::HANDLER, MONOMORPHIC, extra_ic_state,
Code::NORMAL, Code::STORE_IC);
masm->isolate()->stub_cache()->GenerateProbe(
masm, flags, r1, r2, r3, r4, r5, r6);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
__ Push(r1, r2, r0);
// Perform tail call to the entry.
ExternalReference ref =
ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate());
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateNameDictionaryReceiverCheck(masm, r1, r3, r4, r5, &miss);
GenerateDictionaryStore(masm, &miss, r3, r2, r0, r4, r5);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->store_normal_hit(),
1, r4, r5);
__ Ret();
__ bind(&miss);
__ IncrementCounter(counters->store_normal_miss(), 1, r4, r5);
GenerateMiss(masm);
}
void StoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm,
StrictModeFlag strict_mode) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
__ Push(r1, r2, r0);
__ mov(r1, Operand(Smi::FromInt(NONE))); // PropertyAttributes
__ mov(r0, Operand(Smi::FromInt(strict_mode)));
__ Push(r1, r0);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 5, 1);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address cmp_instruction_address =
Assembler::return_address_from_call_start(address);
// If the instruction following the call is not a cmp rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(cmp_instruction_address);
return Assembler::IsCmpImmediate(instr);
}
void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) {
Address cmp_instruction_address =
Assembler::return_address_from_call_start(address);
// If the instruction following the call is not a cmp rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(cmp_instruction_address);
if (!Assembler::IsCmpImmediate(instr)) {
return;
}
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
int delta = Assembler::GetCmpImmediateRawImmediate(instr);
delta +=
Assembler::GetCmpImmediateRegister(instr).code() * kOff12Mask;
// If the delta is 0 the instruction is cmp r0, #0 which also signals that
// nothing was inlined.
if (delta == 0) {
return;
}
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, cmp=%p, delta=%d\n",
address, cmp_instruction_address, delta);
}
Address patch_address =
cmp_instruction_address - delta * Instruction::kInstrSize;
Instr instr_at_patch = Assembler::instr_at(patch_address);
Instr branch_instr =
Assembler::instr_at(patch_address + Instruction::kInstrSize);
// This is patching a conditional "jump if not smi/jump if smi" site.
// Enabling by changing from
// cmp rx, rx
// b eq/ne, <target>
// to
// tst rx, #kSmiTagMask
// b ne/eq, <target>
// and vice-versa to be disabled again.
CodePatcher patcher(patch_address, 2);
Register reg = Assembler::GetRn(instr_at_patch);
if (check == ENABLE_INLINED_SMI_CHECK) {
ASSERT(Assembler::IsCmpRegister(instr_at_patch));
ASSERT_EQ(Assembler::GetRn(instr_at_patch).code(),
Assembler::GetRm(instr_at_patch).code());
patcher.masm()->tst(reg, Operand(kSmiTagMask));
} else {
ASSERT(check == DISABLE_INLINED_SMI_CHECK);
ASSERT(Assembler::IsTstImmediate(instr_at_patch));
patcher.masm()->cmp(reg, reg);
}
ASSERT(Assembler::IsBranch(branch_instr));
if (Assembler::GetCondition(branch_instr) == eq) {
patcher.EmitCondition(ne);
} else {
ASSERT(Assembler::GetCondition(branch_instr) == ne);
patcher.EmitCondition(eq);
}
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM