// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// MSVC++ requires this to be set before any other includes to get M_PI.
#define _USE_MATH_DEFINES
#include "ui/gfx/transform.h"
#include <cmath>
#include <ostream>
#include <limits>
#include "base/basictypes.h"
#include "base/logging.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/box_f.h"
#include "ui/gfx/point.h"
#include "ui/gfx/point3_f.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/transform_util.h"
#include "ui/gfx/vector3d_f.h"
namespace gfx {
namespace {
#define EXPECT_ROW1_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).matrix().get(0, 0)); \
EXPECT_FLOAT_EQ((b), (transform).matrix().get(0, 1)); \
EXPECT_FLOAT_EQ((c), (transform).matrix().get(0, 2)); \
EXPECT_FLOAT_EQ((d), (transform).matrix().get(0, 3));
#define EXPECT_ROW2_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).matrix().get(1, 0)); \
EXPECT_FLOAT_EQ((b), (transform).matrix().get(1, 1)); \
EXPECT_FLOAT_EQ((c), (transform).matrix().get(1, 2)); \
EXPECT_FLOAT_EQ((d), (transform).matrix().get(1, 3));
#define EXPECT_ROW3_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).matrix().get(2, 0)); \
EXPECT_FLOAT_EQ((b), (transform).matrix().get(2, 1)); \
EXPECT_FLOAT_EQ((c), (transform).matrix().get(2, 2)); \
EXPECT_FLOAT_EQ((d), (transform).matrix().get(2, 3));
#define EXPECT_ROW4_EQ(a, b, c, d, transform) \
EXPECT_FLOAT_EQ((a), (transform).matrix().get(3, 0)); \
EXPECT_FLOAT_EQ((b), (transform).matrix().get(3, 1)); \
EXPECT_FLOAT_EQ((c), (transform).matrix().get(3, 2)); \
EXPECT_FLOAT_EQ((d), (transform).matrix().get(3, 3)); \
// Checking float values for equality close to zero is not robust using
// EXPECT_FLOAT_EQ (see gtest documentation). So, to verify rotation matrices,
// we must use a looser absolute error threshold in some places.
#define EXPECT_ROW1_NEAR(a, b, c, d, transform, errorThreshold) \
EXPECT_NEAR((a), (transform).matrix().get(0, 0), (errorThreshold)); \
EXPECT_NEAR((b), (transform).matrix().get(0, 1), (errorThreshold)); \
EXPECT_NEAR((c), (transform).matrix().get(0, 2), (errorThreshold)); \
EXPECT_NEAR((d), (transform).matrix().get(0, 3), (errorThreshold));
#define EXPECT_ROW2_NEAR(a, b, c, d, transform, errorThreshold) \
EXPECT_NEAR((a), (transform).matrix().get(1, 0), (errorThreshold)); \
EXPECT_NEAR((b), (transform).matrix().get(1, 1), (errorThreshold)); \
EXPECT_NEAR((c), (transform).matrix().get(1, 2), (errorThreshold)); \
EXPECT_NEAR((d), (transform).matrix().get(1, 3), (errorThreshold));
#define EXPECT_ROW3_NEAR(a, b, c, d, transform, errorThreshold) \
EXPECT_NEAR((a), (transform).matrix().get(2, 0), (errorThreshold)); \
EXPECT_NEAR((b), (transform).matrix().get(2, 1), (errorThreshold)); \
EXPECT_NEAR((c), (transform).matrix().get(2, 2), (errorThreshold)); \
EXPECT_NEAR((d), (transform).matrix().get(2, 3), (errorThreshold));
bool PointsAreNearlyEqual(const Point3F& lhs,
const Point3F& rhs) {
float epsilon = 0.0001f;
return lhs.SquaredDistanceTo(rhs) < epsilon;
}
bool MatricesAreNearlyEqual(const Transform& lhs,
const Transform& rhs) {
float epsilon = 0.0001f;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
if (std::abs(lhs.matrix().get(row, col) -
rhs.matrix().get(row, col)) > epsilon)
return false;
}
}
return true;
}
void InitializeTestMatrix(Transform* transform) {
SkMatrix44& matrix = transform->matrix();
matrix.set(0, 0, 10.f);
matrix.set(1, 0, 11.f);
matrix.set(2, 0, 12.f);
matrix.set(3, 0, 13.f);
matrix.set(0, 1, 14.f);
matrix.set(1, 1, 15.f);
matrix.set(2, 1, 16.f);
matrix.set(3, 1, 17.f);
matrix.set(0, 2, 18.f);
matrix.set(1, 2, 19.f);
matrix.set(2, 2, 20.f);
matrix.set(3, 2, 21.f);
matrix.set(0, 3, 22.f);
matrix.set(1, 3, 23.f);
matrix.set(2, 3, 24.f);
matrix.set(3, 3, 25.f);
// Sanity check
EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, (*transform));
EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, (*transform));
EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, (*transform));
EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, (*transform));
}
void InitializeTestMatrix2(Transform* transform) {
SkMatrix44& matrix = transform->matrix();
matrix.set(0, 0, 30.f);
matrix.set(1, 0, 31.f);
matrix.set(2, 0, 32.f);
matrix.set(3, 0, 33.f);
matrix.set(0, 1, 34.f);
matrix.set(1, 1, 35.f);
matrix.set(2, 1, 36.f);
matrix.set(3, 1, 37.f);
matrix.set(0, 2, 38.f);
matrix.set(1, 2, 39.f);
matrix.set(2, 2, 40.f);
matrix.set(3, 2, 41.f);
matrix.set(0, 3, 42.f);
matrix.set(1, 3, 43.f);
matrix.set(2, 3, 44.f);
matrix.set(3, 3, 45.f);
// Sanity check
EXPECT_ROW1_EQ(30.0f, 34.0f, 38.0f, 42.0f, (*transform));
EXPECT_ROW2_EQ(31.0f, 35.0f, 39.0f, 43.0f, (*transform));
EXPECT_ROW3_EQ(32.0f, 36.0f, 40.0f, 44.0f, (*transform));
EXPECT_ROW4_EQ(33.0f, 37.0f, 41.0f, 45.0f, (*transform));
}
const SkMScalar kApproxZero =
SkFloatToMScalar(std::numeric_limits<float>::epsilon());
const SkMScalar kApproxOne = 1 - kApproxZero;
void InitializeApproxIdentityMatrix(Transform* transform) {
SkMatrix44& matrix = transform->matrix();
matrix.set(0, 0, kApproxOne);
matrix.set(0, 1, kApproxZero);
matrix.set(0, 2, kApproxZero);
matrix.set(0, 3, kApproxZero);
matrix.set(1, 0, kApproxZero);
matrix.set(1, 1, kApproxOne);
matrix.set(1, 2, kApproxZero);
matrix.set(1, 3, kApproxZero);
matrix.set(2, 0, kApproxZero);
matrix.set(2, 1, kApproxZero);
matrix.set(2, 2, kApproxOne);
matrix.set(2, 3, kApproxZero);
matrix.set(3, 0, kApproxZero);
matrix.set(3, 1, kApproxZero);
matrix.set(3, 2, kApproxZero);
matrix.set(3, 3, kApproxOne);
}
#ifdef SK_MSCALAR_IS_DOUBLE
#define ERROR_THRESHOLD 1e-14
#else
#define ERROR_THRESHOLD 1e-7
#endif
#define LOOSE_ERROR_THRESHOLD 1e-7
TEST(XFormTest, Equality) {
Transform lhs, rhs, interpolated;
rhs.matrix().set3x3(1, 2, 3,
4, 5, 6,
7, 8, 9);
interpolated = lhs;
for (int i = 0; i <= 100; ++i) {
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
float a = lhs.matrix().get(row, col);
float b = rhs.matrix().get(row, col);
float t = i / 100.0f;
interpolated.matrix().set(row, col, a + (b - a) * t);
}
}
if (i == 100) {
EXPECT_TRUE(rhs == interpolated);
} else {
EXPECT_TRUE(rhs != interpolated);
}
}
lhs = Transform();
rhs = Transform();
for (int i = 1; i < 100; ++i) {
lhs.MakeIdentity();
rhs.MakeIdentity();
lhs.Translate(i, i);
rhs.Translate(-i, -i);
EXPECT_TRUE(lhs != rhs);
rhs.Translate(2*i, 2*i);
EXPECT_TRUE(lhs == rhs);
}
}
TEST(XFormTest, ConcatTranslate) {
static const struct TestCase {
int x1;
int y1;
float tx;
float ty;
int x2;
int y2;
} test_cases[] = {
{ 0, 0, 10.0f, 20.0f, 10, 20 },
{ 0, 0, -10.0f, -20.0f, 0, 0 },
{ 0, 0, -10.0f, -20.0f, -10, -20 },
{ 0, 0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
10, 20 },
};
Transform xform;
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
Transform translation;
translation.Translate(value.tx, value.ty);
xform = translation * xform;
Point3F p1(value.x1, value.y1, 0);
Point3F p2(value.x2, value.y2, 0);
xform.TransformPoint(&p1);
if (value.tx == value.tx &&
value.ty == value.ty) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
}
}
}
TEST(XFormTest, ConcatScale) {
static const struct TestCase {
int before;
float scale;
int after;
} test_cases[] = {
{ 1, 10.0f, 10 },
{ 1, .1f, 1 },
{ 1, 100.0f, 100 },
{ 1, -1.0f, -100 },
{ 1, std::numeric_limits<float>::quiet_NaN(), 1 }
};
Transform xform;
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
Transform scale;
scale.Scale(value.scale, value.scale);
xform = scale * xform;
Point3F p1(value.before, value.before, 0);
Point3F p2(value.after, value.after, 0);
xform.TransformPoint(&p1);
if (value.scale == value.scale) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
}
}
}
TEST(XFormTest, ConcatRotate) {
static const struct TestCase {
int x1;
int y1;
float degrees;
int x2;
int y2;
} test_cases[] = {
{ 1, 0, 90.0f, 0, 1 },
{ 1, 0, -90.0f, 1, 0 },
{ 1, 0, 90.0f, 0, 1 },
{ 1, 0, 360.0f, 0, 1 },
{ 1, 0, 0.0f, 0, 1 },
{ 1, 0, std::numeric_limits<float>::quiet_NaN(), 1, 0 }
};
Transform xform;
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
Transform rotation;
rotation.Rotate(value.degrees);
xform = rotation * xform;
Point3F p1(value.x1, value.y1, 0);
Point3F p2(value.x2, value.y2, 0);
xform.TransformPoint(&p1);
if (value.degrees == value.degrees) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
}
}
}
TEST(XFormTest, SetTranslate) {
static const struct TestCase {
int x1; int y1;
float tx; float ty;
int x2; int y2;
} test_cases[] = {
{ 0, 0, 10.0f, 20.0f, 10, 20 },
{ 10, 20, 10.0f, 20.0f, 20, 40 },
{ 10, 20, 0.0f, 0.0f, 10, 20 },
{ 0, 0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
0, 0 }
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
for (int k = 0; k < 3; ++k) {
Point3F p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.x1, 0, 0);
p2.SetPoint(value.x2, 0, 0);
xform.Translate(value.tx, 0.0);
break;
case 1:
p1.SetPoint(0, value.y1, 0);
p2.SetPoint(0, value.y2, 0);
xform.Translate(0.0, value.ty);
break;
case 2:
p1.SetPoint(value.x1, value.y1, 0);
p2.SetPoint(value.x2, value.y2, 0);
xform.Translate(value.tx, value.ty);
break;
}
p0 = p1;
xform.TransformPoint(&p1);
if (value.tx == value.tx &&
value.ty == value.ty) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
xform.TransformPointReverse(&p1);
EXPECT_TRUE(PointsAreNearlyEqual(p1, p0));
}
}
}
}
TEST(XFormTest, SetScale) {
static const struct TestCase {
int before;
float s;
int after;
} test_cases[] = {
{ 1, 10.0f, 10 },
{ 1, 1.0f, 1 },
{ 1, 0.0f, 0 },
{ 0, 10.0f, 0 },
{ 1, std::numeric_limits<float>::quiet_NaN(), 0 },
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
for (int k = 0; k < 3; ++k) {
Point3F p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.before, 0, 0);
p2.SetPoint(value.after, 0, 0);
xform.Scale(value.s, 1.0);
break;
case 1:
p1.SetPoint(0, value.before, 0);
p2.SetPoint(0, value.after, 0);
xform.Scale(1.0, value.s);
break;
case 2:
p1.SetPoint(value.before, value.before, 0);
p2.SetPoint(value.after, value.after, 0);
xform.Scale(value.s, value.s);
break;
}
p0 = p1;
xform.TransformPoint(&p1);
if (value.s == value.s) {
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
if (value.s != 0.0f) {
xform.TransformPointReverse(&p1);
EXPECT_TRUE(PointsAreNearlyEqual(p1, p0));
}
}
}
}
}
TEST(XFormTest, SetRotate) {
static const struct SetRotateCase {
int x;
int y;
float degree;
int xprime;
int yprime;
} set_rotate_cases[] = {
{ 100, 0, 90.0f, 0, 100 },
{ 0, 0, 90.0f, 0, 0 },
{ 0, 100, 90.0f, -100, 0 },
{ 0, 1, -90.0f, 1, 0 },
{ 100, 0, 0.0f, 100, 0 },
{ 0, 0, 0.0f, 0, 0 },
{ 0, 0, std::numeric_limits<float>::quiet_NaN(), 0, 0 },
{ 100, 0, 360.0f, 100, 0 }
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(set_rotate_cases); ++i) {
const SetRotateCase& value = set_rotate_cases[i];
Point3F p0;
Point3F p1(value.x, value.y, 0);
Point3F p2(value.xprime, value.yprime, 0);
p0 = p1;
Transform xform;
xform.Rotate(value.degree);
// just want to make sure that we don't crash in the case of NaN.
if (value.degree == value.degree) {
xform.TransformPoint(&p1);
EXPECT_TRUE(PointsAreNearlyEqual(p1, p2));
xform.TransformPointReverse(&p1);
EXPECT_TRUE(PointsAreNearlyEqual(p1, p0));
}
}
}
// 2D tests
TEST(XFormTest, ConcatTranslate2D) {
static const struct TestCase {
int x1;
int y1;
float tx;
float ty;
int x2;
int y2;
} test_cases[] = {
{ 0, 0, 10.0f, 20.0f, 10, 20},
{ 0, 0, -10.0f, -20.0f, 0, 0},
{ 0, 0, -10.0f, -20.0f, -10, -20},
{ 0, 0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
10, 20},
};
Transform xform;
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
Transform translation;
translation.Translate(value.tx, value.ty);
xform = translation * xform;
Point p1(value.x1, value.y1);
Point p2(value.x2, value.y2);
xform.TransformPoint(&p1);
if (value.tx == value.tx &&
value.ty == value.ty) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
}
}
}
TEST(XFormTest, ConcatScale2D) {
static const struct TestCase {
int before;
float scale;
int after;
} test_cases[] = {
{ 1, 10.0f, 10},
{ 1, .1f, 1},
{ 1, 100.0f, 100},
{ 1, -1.0f, -100},
{ 1, std::numeric_limits<float>::quiet_NaN(), 1}
};
Transform xform;
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
Transform scale;
scale.Scale(value.scale, value.scale);
xform = scale * xform;
Point p1(value.before, value.before);
Point p2(value.after, value.after);
xform.TransformPoint(&p1);
if (value.scale == value.scale) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
}
}
}
TEST(XFormTest, ConcatRotate2D) {
static const struct TestCase {
int x1;
int y1;
float degrees;
int x2;
int y2;
} test_cases[] = {
{ 1, 0, 90.0f, 0, 1},
{ 1, 0, -90.0f, 1, 0},
{ 1, 0, 90.0f, 0, 1},
{ 1, 0, 360.0f, 0, 1},
{ 1, 0, 0.0f, 0, 1},
{ 1, 0, std::numeric_limits<float>::quiet_NaN(), 1, 0}
};
Transform xform;
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
Transform rotation;
rotation.Rotate(value.degrees);
xform = rotation * xform;
Point p1(value.x1, value.y1);
Point p2(value.x2, value.y2);
xform.TransformPoint(&p1);
if (value.degrees == value.degrees) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
}
}
}
TEST(XFormTest, SetTranslate2D) {
static const struct TestCase {
int x1; int y1;
float tx; float ty;
int x2; int y2;
} test_cases[] = {
{ 0, 0, 10.0f, 20.0f, 10, 20},
{ 10, 20, 10.0f, 20.0f, 20, 40},
{ 10, 20, 0.0f, 0.0f, 10, 20},
{ 0, 0,
std::numeric_limits<float>::quiet_NaN(),
std::numeric_limits<float>::quiet_NaN(),
0, 0}
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
for (int j = -1; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
float epsilon = 0.0001f;
Point p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.x1, 0);
p2.SetPoint(value.x2, 0);
xform.Translate(value.tx + j * epsilon, 0.0);
break;
case 1:
p1.SetPoint(0, value.y1);
p2.SetPoint(0, value.y2);
xform.Translate(0.0, value.ty + j * epsilon);
break;
case 2:
p1.SetPoint(value.x1, value.y1);
p2.SetPoint(value.x2, value.y2);
xform.Translate(value.tx + j * epsilon,
value.ty + j * epsilon);
break;
}
p0 = p1;
xform.TransformPoint(&p1);
if (value.tx == value.tx &&
value.ty == value.ty) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
xform.TransformPointReverse(&p1);
EXPECT_EQ(p1.x(), p0.x());
EXPECT_EQ(p1.y(), p0.y());
}
}
}
}
}
TEST(XFormTest, SetScale2D) {
static const struct TestCase {
int before;
float s;
int after;
} test_cases[] = {
{ 1, 10.0f, 10},
{ 1, 1.0f, 1},
{ 1, 0.0f, 0},
{ 0, 10.0f, 0},
{ 1, std::numeric_limits<float>::quiet_NaN(), 0},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
for (int j = -1; j < 2; ++j) {
for (int k = 0; k < 3; ++k) {
float epsilon = 0.0001f;
Point p0, p1, p2;
Transform xform;
switch (k) {
case 0:
p1.SetPoint(value.before, 0);
p2.SetPoint(value.after, 0);
xform.Scale(value.s + j * epsilon, 1.0);
break;
case 1:
p1.SetPoint(0, value.before);
p2.SetPoint(0, value.after);
xform.Scale(1.0, value.s + j * epsilon);
break;
case 2:
p1.SetPoint(value.before,
value.before);
p2.SetPoint(value.after,
value.after);
xform.Scale(value.s + j * epsilon,
value.s + j * epsilon);
break;
}
p0 = p1;
xform.TransformPoint(&p1);
if (value.s == value.s) {
EXPECT_EQ(p1.x(), p2.x());
EXPECT_EQ(p1.y(), p2.y());
if (value.s != 0.0f) {
xform.TransformPointReverse(&p1);
EXPECT_EQ(p1.x(), p0.x());
EXPECT_EQ(p1.y(), p0.y());
}
}
}
}
}
}
TEST(XFormTest, SetRotate2D) {
static const struct SetRotateCase {
int x;
int y;
float degree;
int xprime;
int yprime;
} set_rotate_cases[] = {
{ 100, 0, 90.0f, 0, 100},
{ 0, 0, 90.0f, 0, 0},
{ 0, 100, 90.0f, -100, 0},
{ 0, 1, -90.0f, 1, 0},
{ 100, 0, 0.0f, 100, 0},
{ 0, 0, 0.0f, 0, 0},
{ 0, 0, std::numeric_limits<float>::quiet_NaN(), 0, 0},
{ 100, 0, 360.0f, 100, 0}
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(set_rotate_cases); ++i) {
const SetRotateCase& value = set_rotate_cases[i];
for (int j = 1; j >= -1; --j) {
float epsilon = 0.1f;
Point pt(value.x, value.y);
Transform xform;
// should be invariant to small floating point errors.
xform.Rotate(value.degree + j * epsilon);
// just want to make sure that we don't crash in the case of NaN.
if (value.degree == value.degree) {
xform.TransformPoint(&pt);
EXPECT_EQ(value.xprime, pt.x());
EXPECT_EQ(value.yprime, pt.y());
xform.TransformPointReverse(&pt);
EXPECT_EQ(pt.x(), value.x);
EXPECT_EQ(pt.y(), value.y);
}
}
}
}
TEST(XFormTest, TransformPointWithExtremePerspective) {
Point3F point(1.f, 1.f, 1.f);
Transform perspective;
perspective.ApplyPerspectiveDepth(1.f);
Point3F transformed = point;
perspective.TransformPoint(&transformed);
EXPECT_EQ(point.ToString(), transformed.ToString());
transformed = point;
perspective.MakeIdentity();
perspective.ApplyPerspectiveDepth(1.1f);
perspective.TransformPoint(&transformed);
EXPECT_FLOAT_EQ(11.f, transformed.x());
EXPECT_FLOAT_EQ(11.f, transformed.y());
EXPECT_FLOAT_EQ(11.f, transformed.z());
}
TEST(XFormTest, BlendTranslate) {
Transform from;
for (int i = -5; i < 15; ++i) {
Transform to;
to.Translate3d(1, 1, 1);
double t = i / 9.0;
EXPECT_TRUE(to.Blend(from, t));
EXPECT_FLOAT_EQ(t, to.matrix().get(0, 3));
EXPECT_FLOAT_EQ(t, to.matrix().get(1, 3));
EXPECT_FLOAT_EQ(t, to.matrix().get(2, 3));
}
}
TEST(XFormTest, BlendRotate) {
Vector3dF axes[] = {
Vector3dF(1, 0, 0),
Vector3dF(0, 1, 0),
Vector3dF(0, 0, 1),
Vector3dF(1, 1, 1)
};
Transform from;
for (size_t index = 0; index < ARRAYSIZE_UNSAFE(axes); ++index) {
for (int i = -5; i < 15; ++i) {
Transform to;
to.RotateAbout(axes[index], 90);
double t = i / 9.0;
EXPECT_TRUE(to.Blend(from, t));
Transform expected;
expected.RotateAbout(axes[index], 90 * t);
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to));
}
}
}
TEST(XFormTest, BlendRotateFollowsShortestPath) {
// Verify that we interpolate along the shortest path regardless of whether
// this path crosses the 180-degree point.
Vector3dF axes[] = {
Vector3dF(1, 0, 0),
Vector3dF(0, 1, 0),
Vector3dF(0, 0, 1),
Vector3dF(1, 1, 1)
};
for (size_t index = 0; index < ARRAYSIZE_UNSAFE(axes); ++index) {
for (int i = -5; i < 15; ++i) {
Transform from1;
from1.RotateAbout(axes[index], 130.0);
Transform to1;
to1.RotateAbout(axes[index], 175.0);
Transform from2;
from2.RotateAbout(axes[index], 140.0);
Transform to2;
to2.RotateAbout(axes[index], 185.0);
double t = i / 9.0;
EXPECT_TRUE(to1.Blend(from1, t));
EXPECT_TRUE(to2.Blend(from2, t));
Transform expected1;
expected1.RotateAbout(axes[index], 130.0 + 45.0 * t);
Transform expected2;
expected2.RotateAbout(axes[index], 140.0 + 45.0 * t);
EXPECT_TRUE(MatricesAreNearlyEqual(expected1, to1));
EXPECT_TRUE(MatricesAreNearlyEqual(expected2, to2));
}
}
}
TEST(XFormTest, CanBlend180DegreeRotation) {
Vector3dF axes[] = {
Vector3dF(1, 0, 0),
Vector3dF(0, 1, 0),
Vector3dF(0, 0, 1),
Vector3dF(1, 1, 1)
};
Transform from;
for (size_t index = 0; index < ARRAYSIZE_UNSAFE(axes); ++index) {
for (int i = -5; i < 15; ++i) {
Transform to;
to.RotateAbout(axes[index], 180.0);
double t = i / 9.0;
EXPECT_TRUE(to.Blend(from, t));
// A 180 degree rotation is exactly opposite on the sphere, therefore
// either great circle arc to it is equivalent (and numerical precision
// will determine which is closer). Test both directions.
Transform expected1;
expected1.RotateAbout(axes[index], 180.0 * t);
Transform expected2;
expected2.RotateAbout(axes[index], -180.0 * t);
EXPECT_TRUE(MatricesAreNearlyEqual(expected1, to) ||
MatricesAreNearlyEqual(expected2, to))
<< "axis: " << index << ", i: " << i;
}
}
}
TEST(XFormTest, BlendScale) {
Transform from;
for (int i = -5; i < 15; ++i) {
Transform to;
to.Scale3d(5, 4, 3);
double t = i / 9.0;
EXPECT_TRUE(to.Blend(from, t));
EXPECT_FLOAT_EQ(t * 4 + 1, to.matrix().get(0, 0)) << "i: " << i;
EXPECT_FLOAT_EQ(t * 3 + 1, to.matrix().get(1, 1)) << "i: " << i;
EXPECT_FLOAT_EQ(t * 2 + 1, to.matrix().get(2, 2)) << "i: " << i;
}
}
TEST(XFormTest, BlendSkew) {
Transform from;
for (int i = 0; i < 2; ++i) {
Transform to;
to.SkewX(10);
to.SkewY(5);
double t = i;
Transform expected;
expected.SkewX(t * 10);
expected.SkewY(t * 5);
EXPECT_TRUE(to.Blend(from, t));
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to));
}
}
TEST(XFormTest, ExtrapolateSkew) {
Transform from;
for (int i = -1; i < 2; ++i) {
Transform to;
to.SkewX(20);
double t = i;
Transform expected;
expected.SkewX(t * 20);
EXPECT_TRUE(to.Blend(from, t));
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to));
}
}
TEST(XFormTest, BlendPerspective) {
Transform from;
from.ApplyPerspectiveDepth(200);
for (int i = -1; i < 3; ++i) {
Transform to;
to.ApplyPerspectiveDepth(800);
double t = i;
double depth = 1.0 / ((1.0 / 200) * (1.0 - t) + (1.0 / 800) * t);
Transform expected;
expected.ApplyPerspectiveDepth(depth);
EXPECT_TRUE(to.Blend(from, t));
EXPECT_TRUE(MatricesAreNearlyEqual(expected, to));
}
}
TEST(XFormTest, BlendIdentity) {
Transform from;
Transform to;
EXPECT_TRUE(to.Blend(from, 0.5));
EXPECT_EQ(to, from);
}
TEST(XFormTest, CannotBlendSingularMatrix) {
Transform from;
Transform to;
to.matrix().set(1, 1, SkDoubleToMScalar(0));
EXPECT_FALSE(to.Blend(from, 0.5));
}
TEST(XFormTest, VerifyBlendForTranslation) {
Transform from;
from.Translate3d(100.0, 200.0, 100.0);
Transform to;
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 0.25);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 125.0f, to);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 175.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 150.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 0.5);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 150.0f, to);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 150.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 200.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Translate3d(200.0, 100.0, 300.0);
to.Blend(from, 1.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 200.0f, to);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 100.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 300.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForScale) {
Transform from;
from.Scale3d(100.0, 200.0, 100.0);
Transform to;
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 0.25);
EXPECT_ROW1_EQ(125.0f, 0.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 175.0f, 0.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 150.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 0.5);
EXPECT_ROW1_EQ(150.0f, 0.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 150.0f, 0.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 200.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.Scale3d(200.0, 100.0, 300.0);
to.Blend(from, 1.0);
EXPECT_ROW1_EQ(200.0f, 0.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 100.0f, 0.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 300.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForSkewX) {
Transform from;
from.SkewX(0.0);
Transform to;
to.SkewX(45.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.SkewX(45.0);
to.Blend(from, 0.5);
EXPECT_ROW1_EQ(1.0f, 0.5f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.SkewX(45.0);
to.Blend(from, 0.25);
EXPECT_ROW1_EQ(1.0f, 0.25f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.SkewX(45.0);
to.Blend(from, 1.0);
EXPECT_ROW1_EQ(1.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, to);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForSkewY) {
// NOTE CAREFULLY: Decomposition of skew and rotation terms of the matrix
// is inherently underconstrained, and so it does not always compute the
// originally intended skew parameters. The current implementation uses QR
// decomposition, which decomposes the shear into a rotation + non-uniform
// scale.
//
// It is unlikely that the decomposition implementation will need to change
// very often, so to get any test coverage, the compromise is to verify the
// exact matrix that the.Blend() operation produces.
//
// This problem also potentially exists for skewX, but the current QR
// decomposition implementation just happens to decompose those test
// matrices intuitively.
//
// Unfortunately, this case suffers from uncomfortably large precision
// error.
Transform from;
from.SkewY(0.0);
Transform to;
to.SkewY(45.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = Transform();
to.SkewY(45.0);
to.Blend(from, 0.25);
EXPECT_ROW1_NEAR(1.0823489449280947471976333,
0.0464370719145053845178239,
0.0,
0.0,
to,
LOOSE_ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.2152925909665224513123150,
0.9541702441750861130032035,
0.0,
0.0,
to,
LOOSE_ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.SkewY(45.0);
to.Blend(from, 0.5);
EXPECT_ROW1_NEAR(1.1152212925809066312865525,
0.0676495144007326631996335,
0.0,
0.0,
to,
LOOSE_ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.4619397844342648662419037,
0.9519009045724774464858342,
0.0,
0.0,
to,
LOOSE_ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.SkewY(45.0);
to.Blend(from, 1.0);
EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(1.0, 1.0, 0.0, 0.0, to, LOOSE_ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, to);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForRotationAboutX) {
// Even though.Blending uses quaternions, axis-aligned rotations should.
// Blend the same with quaternions or Euler angles. So we can test
// rotation.Blending by comparing against manually specified matrices from
// Euler angles.
Transform from;
from.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 0.0);
Transform to;
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
double expectedRotationAngle = 22.5 * M_PI / 180.0;
to = Transform();
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 0.25);
EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0,
std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0,
std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
expectedRotationAngle = 45.0 * M_PI / 180.0;
to = Transform();
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 0.5);
EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0,
std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0,
std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
to.Blend(from, 1.0);
EXPECT_ROW1_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0, 0.0, -1.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForRotationAboutY) {
Transform from;
from.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 0.0);
Transform to;
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
double expectedRotationAngle = 22.5 * M_PI / 180.0;
to = Transform();
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 0.25);
EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle),
0.0,
std::sin(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(-std::sin(expectedRotationAngle),
0.0,
std::cos(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
expectedRotationAngle = 45.0 * M_PI / 180.0;
to = Transform();
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 0.5);
EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle),
0.0,
std::sin(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(-std::sin(expectedRotationAngle),
0.0,
std::cos(expectedRotationAngle),
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
to.Blend(from, 1.0);
EXPECT_ROW1_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0, 1.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(-1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForRotationAboutZ) {
Transform from;
from.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 0.0);
Transform to;
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
double expectedRotationAngle = 22.5 * M_PI / 180.0;
to = Transform();
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 0.25);
EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle),
0.0,
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle),
0.0,
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
expectedRotationAngle = 45.0 * M_PI / 180.0;
to = Transform();
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 0.5);
EXPECT_ROW1_NEAR(std::cos(expectedRotationAngle),
-std::sin(expectedRotationAngle),
0.0,
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(std::sin(expectedRotationAngle),
std::cos(expectedRotationAngle),
0.0,
0.0,
to,
ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
to = Transform();
to.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
to.Blend(from, 1.0);
EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, 0.0, 1.0, 0.0, to, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, to);
}
TEST(XFormTest, VerifyBlendForCompositeTransform) {
// Verify that the.Blending was done with a decomposition in correct order
// by blending a composite transform. Using matrix x vector notation
// (Ax = b, where x is column vector), the ordering should be:
// perspective * translation * rotation * skew * scale
//
// It is not as important (or meaningful) to check intermediate
// interpolations; order of operations will be tested well enough by the
// end cases that are easier to specify.
Transform from;
Transform to;
Transform expectedEndOfAnimation;
expectedEndOfAnimation.ApplyPerspectiveDepth(1.0);
expectedEndOfAnimation.Translate3d(10.0, 20.0, 30.0);
expectedEndOfAnimation.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 25.0);
expectedEndOfAnimation.SkewY(45.0);
expectedEndOfAnimation.Scale3d(6.0, 7.0, 8.0);
to = expectedEndOfAnimation;
to.Blend(from, 0.0);
EXPECT_EQ(from, to);
to = expectedEndOfAnimation;
// We short circuit if blend is >= 1, so to check the numerics, we will
// check that we get close to what we expect when we're nearly done
// interpolating.
to.Blend(from, .99999f);
// Recomposing the matrix results in a normalized matrix, so to verify we
// need to normalize the expectedEndOfAnimation before comparing elements.
// Normalizing means dividing everything by expectedEndOfAnimation.m44().
Transform normalizedExpectedEndOfAnimation = expectedEndOfAnimation;
Transform normalizationMatrix;
normalizationMatrix.matrix().set(
0.0,
0.0,
SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0)));
normalizationMatrix.matrix().set(
1.0,
1.0,
SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0)));
normalizationMatrix.matrix().set(
2.0,
2.0,
SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0)));
normalizationMatrix.matrix().set(
3.0,
3.0,
SkDoubleToMScalar(1 / expectedEndOfAnimation.matrix().get(3.0, 3.0)));
normalizedExpectedEndOfAnimation.PreconcatTransform(normalizationMatrix);
EXPECT_TRUE(MatricesAreNearlyEqual(normalizedExpectedEndOfAnimation, to));
}
TEST(XFormTest, DecomposedTransformCtor) {
DecomposedTransform decomp;
for (int i = 0; i < 3; ++i) {
EXPECT_EQ(0.0, decomp.translate[i]);
EXPECT_EQ(1.0, decomp.scale[i]);
EXPECT_EQ(0.0, decomp.skew[i]);
EXPECT_EQ(0.0, decomp.quaternion[i]);
EXPECT_EQ(0.0, decomp.perspective[i]);
}
EXPECT_EQ(1.0, decomp.quaternion[3]);
EXPECT_EQ(1.0, decomp.perspective[3]);
Transform identity;
Transform composed = ComposeTransform(decomp);
EXPECT_TRUE(MatricesAreNearlyEqual(identity, composed));
}
TEST(XFormTest, FactorTRS) {
for (int degrees = 0; degrees < 180; ++degrees) {
// build a transformation matrix.
gfx::Transform transform;
transform.Translate(degrees * 2, -degrees * 3);
transform.Rotate(degrees);
transform.Scale(degrees + 1, 2 * degrees + 1);
// factor the matrix
DecomposedTransform decomp;
bool success = DecomposeTransform(&decomp, transform);
EXPECT_TRUE(success);
EXPECT_FLOAT_EQ(decomp.translate[0], degrees * 2);
EXPECT_FLOAT_EQ(decomp.translate[1], -degrees * 3);
double rotation =
std::acos(SkMScalarToDouble(decomp.quaternion[3])) * 360.0 / M_PI;
while (rotation < 0.0)
rotation += 360.0;
while (rotation > 360.0)
rotation -= 360.0;
const float epsilon = 0.00015f;
EXPECT_NEAR(rotation, degrees, epsilon);
EXPECT_NEAR(decomp.scale[0], degrees + 1, epsilon);
EXPECT_NEAR(decomp.scale[1], 2 * degrees + 1, epsilon);
}
}
TEST(XFormTest, IntegerTranslation) {
gfx::Transform transform;
EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation());
transform.Translate3d(1, 2, 3);
EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(-1, -2, -3);
EXPECT_TRUE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(4.5f, 0, 0);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(0, -6.7f, 0);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
transform.MakeIdentity();
transform.Translate3d(0, 0, 8.9f);
EXPECT_FALSE(transform.IsIdentityOrIntegerTranslation());
}
TEST(XFormTest, verifyMatrixInversion) {
{
// Invert a translation
gfx::Transform translation;
translation.Translate3d(2.0, 3.0, 4.0);
EXPECT_TRUE(translation.IsInvertible());
gfx::Transform inverse_translation;
bool is_invertible = translation.GetInverse(&inverse_translation);
EXPECT_TRUE(is_invertible);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, -2.0f, inverse_translation);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, -3.0f, inverse_translation);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, -4.0f, inverse_translation);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_translation);
}
{
// Invert a non-uniform scale
gfx::Transform scale;
scale.Scale3d(4.0, 10.0, 100.0);
EXPECT_TRUE(scale.IsInvertible());
gfx::Transform inverse_scale;
bool is_invertible = scale.GetInverse(&inverse_scale);
EXPECT_TRUE(is_invertible);
EXPECT_ROW1_EQ(0.25f, 0.0f, 0.0f, 0.0f, inverse_scale);
EXPECT_ROW2_EQ(0.0f, 0.1f, 0.0f, 0.0f, inverse_scale);
EXPECT_ROW3_EQ(0.0f, 0.0f, 0.01f, 0.0f, inverse_scale);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_scale);
}
{
// Try to invert a matrix that is not invertible.
// The inverse() function should reset the output matrix to identity.
gfx::Transform uninvertible;
uninvertible.matrix().set(0, 0, 0.f);
uninvertible.matrix().set(1, 1, 0.f);
uninvertible.matrix().set(2, 2, 0.f);
uninvertible.matrix().set(3, 3, 0.f);
EXPECT_FALSE(uninvertible.IsInvertible());
gfx::Transform inverse_of_uninvertible;
// Add a scale just to more easily ensure that inverse_of_uninvertible is
// reset to identity.
inverse_of_uninvertible.Scale3d(4.0, 10.0, 100.0);
bool is_invertible = uninvertible.GetInverse(&inverse_of_uninvertible);
EXPECT_FALSE(is_invertible);
EXPECT_TRUE(inverse_of_uninvertible.IsIdentity());
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, inverse_of_uninvertible);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, inverse_of_uninvertible);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, inverse_of_uninvertible);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, inverse_of_uninvertible);
}
}
TEST(XFormTest, verifyBackfaceVisibilityBasicCases) {
Transform transform;
transform.MakeIdentity();
EXPECT_FALSE(transform.IsBackFaceVisible());
transform.MakeIdentity();
transform.RotateAboutYAxis(80.0);
EXPECT_FALSE(transform.IsBackFaceVisible());
transform.MakeIdentity();
transform.RotateAboutYAxis(100.0);
EXPECT_TRUE(transform.IsBackFaceVisible());
// Edge case, 90 degree rotation should return false.
transform.MakeIdentity();
transform.RotateAboutYAxis(90.0);
EXPECT_FALSE(transform.IsBackFaceVisible());
}
TEST(XFormTest, verifyBackfaceVisibilityForPerspective) {
Transform layer_space_to_projection_plane;
// This tests if IsBackFaceVisible works properly under perspective
// transforms. Specifically, layers that may have their back face visible in
// orthographic projection, may not actually have back face visible under
// perspective projection.
// Case 1: Layer is rotated by slightly more than 90 degrees, at the center
// of the prespective projection. In this case, the layer's back-side
// is visible to the camera.
layer_space_to_projection_plane.MakeIdentity();
layer_space_to_projection_plane.ApplyPerspectiveDepth(1.0);
layer_space_to_projection_plane.Translate3d(0.0, 0.0, 0.0);
layer_space_to_projection_plane.RotateAboutYAxis(100.0);
EXPECT_TRUE(layer_space_to_projection_plane.IsBackFaceVisible());
// Case 2: Layer is rotated by slightly more than 90 degrees, but shifted off
// to the side of the camera. Because of the wide field-of-view, the
// layer's front side is still visible.
//
// |<-- front side of layer is visible to camera
// \ | /
// \ | /
// \| /
// | /
// |\ /<-- camera field of view
// | \ /
// back side of layer -->| \ /
// \./ <-- camera origin
//
layer_space_to_projection_plane.MakeIdentity();
layer_space_to_projection_plane.ApplyPerspectiveDepth(1.0);
layer_space_to_projection_plane.Translate3d(-10.0, 0.0, 0.0);
layer_space_to_projection_plane.RotateAboutYAxis(100.0);
EXPECT_FALSE(layer_space_to_projection_plane.IsBackFaceVisible());
// Case 3: Additionally rotating the layer by 180 degrees should of course
// show the opposite result of case 2.
layer_space_to_projection_plane.RotateAboutYAxis(180.0);
EXPECT_TRUE(layer_space_to_projection_plane.IsBackFaceVisible());
}
TEST(XFormTest, verifyDefaultConstructorCreatesIdentityMatrix) {
Transform A;
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
EXPECT_TRUE(A.IsIdentity());
}
TEST(XFormTest, verifyCopyConstructor) {
Transform A;
InitializeTestMatrix(&A);
// Copy constructor should produce exact same elements as matrix A.
Transform B(A);
EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, B);
EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, B);
EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, B);
EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, B);
}
TEST(XFormTest, verifyConstructorFor16Elements) {
Transform transform(1.0, 2.0, 3.0, 4.0,
5.0, 6.0, 7.0, 8.0,
9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0);
EXPECT_ROW1_EQ(1.0f, 2.0f, 3.0f, 4.0f, transform);
EXPECT_ROW2_EQ(5.0f, 6.0f, 7.0f, 8.0f, transform);
EXPECT_ROW3_EQ(9.0f, 10.0f, 11.0f, 12.0f, transform);
EXPECT_ROW4_EQ(13.0f, 14.0f, 15.0f, 16.0f, transform);
}
TEST(XFormTest, verifyConstructorFor2dElements) {
Transform transform(1.0, 2.0, 3.0, 4.0, 5.0, 6.0);
EXPECT_ROW1_EQ(1.0f, 2.0f, 0.0f, 5.0f, transform);
EXPECT_ROW2_EQ(3.0f, 4.0f, 0.0f, 6.0f, transform);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, transform);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, transform);
}
TEST(XFormTest, verifyAssignmentOperator) {
Transform A;
InitializeTestMatrix(&A);
Transform B;
InitializeTestMatrix2(&B);
Transform C;
InitializeTestMatrix2(&C);
C = B = A;
// Both B and C should now have been re-assigned to the value of A.
EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, B);
EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, B);
EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, B);
EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, B);
EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, C);
EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, C);
EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, C);
EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, C);
}
TEST(XFormTest, verifyEqualsBooleanOperator) {
Transform A;
InitializeTestMatrix(&A);
Transform B;
InitializeTestMatrix(&B);
EXPECT_TRUE(A == B);
// Modifying multiple elements should cause equals operator to return false.
Transform C;
InitializeTestMatrix2(&C);
EXPECT_FALSE(A == C);
// Modifying any one individual element should cause equals operator to
// return false.
Transform D;
D = A;
D.matrix().set(0, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(1, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(2, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(3, 0, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(0, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(1, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(2, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(3, 1, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(0, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(1, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(2, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(3, 2, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(0, 3, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(1, 3, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(2, 3, 0.f);
EXPECT_FALSE(A == D);
D = A;
D.matrix().set(3, 3, 0.f);
EXPECT_FALSE(A == D);
}
TEST(XFormTest, verifyMultiplyOperator) {
Transform A;
InitializeTestMatrix(&A);
Transform B;
InitializeTestMatrix2(&B);
Transform C = A * B;
EXPECT_ROW1_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, C);
EXPECT_ROW2_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, C);
EXPECT_ROW3_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, C);
EXPECT_ROW4_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, C);
// Just an additional sanity check; matrix multiplication is not commutative.
EXPECT_FALSE(A * B == B * A);
}
TEST(XFormTest, verifyMultiplyAndAssignOperator) {
Transform A;
InitializeTestMatrix(&A);
Transform B;
InitializeTestMatrix2(&B);
A *= B;
EXPECT_ROW1_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, A);
EXPECT_ROW2_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, A);
EXPECT_ROW3_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, A);
EXPECT_ROW4_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, A);
// Just an additional sanity check; matrix multiplication is not commutative.
Transform C = A;
C *= B;
Transform D = B;
D *= A;
EXPECT_FALSE(C == D);
}
TEST(XFormTest, verifyMatrixMultiplication) {
Transform A;
InitializeTestMatrix(&A);
Transform B;
InitializeTestMatrix2(&B);
A.PreconcatTransform(B);
EXPECT_ROW1_EQ(2036.0f, 2292.0f, 2548.0f, 2804.0f, A);
EXPECT_ROW2_EQ(2162.0f, 2434.0f, 2706.0f, 2978.0f, A);
EXPECT_ROW3_EQ(2288.0f, 2576.0f, 2864.0f, 3152.0f, A);
EXPECT_ROW4_EQ(2414.0f, 2718.0f, 3022.0f, 3326.0f, A);
}
TEST(XFormTest, verifyMakeIdentiy) {
Transform A;
InitializeTestMatrix(&A);
A.MakeIdentity();
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
EXPECT_TRUE(A.IsIdentity());
}
TEST(XFormTest, verifyTranslate) {
Transform A;
A.Translate(2.0, 3.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 3.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Translate() post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale(5.0, 5.0);
A.Translate(2.0, 3.0);
EXPECT_ROW1_EQ(5.0f, 0.0f, 0.0f, 10.0f, A);
EXPECT_ROW2_EQ(0.0f, 5.0f, 0.0f, 15.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyTranslate3d) {
Transform A;
A.Translate3d(2.0, 3.0, 4.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 3.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 4.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Translate3d() post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.Translate3d(2.0, 3.0, 4.0);
EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 12.0f, A);
EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 21.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 32.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyScale) {
Transform A;
A.Scale(6.0, 7.0);
EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Scale() post-multiplies the existing matrix.
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
A.Scale(6.0, 7.0);
EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 3.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 4.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyScale3d) {
Transform A;
A.Scale3d(6.0, 7.0, 8.0);
EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that scale3d() post-multiplies the existing matrix.
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
A.Scale3d(6.0, 7.0, 8.0);
EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 2.0f, A);
EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 3.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 4.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotate) {
Transform A;
A.Rotate(90.0);
EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that Rotate() post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.Rotate(90.0);
EXPECT_ROW1_NEAR(0.0, -6.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(7.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutXAxis) {
Transform A;
double sin45 = 0.5 * sqrt(2.0);
double cos45 = sin45;
A.MakeIdentity();
A.RotateAboutXAxis(90.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_NEAR(0.0, 0.0, -1.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, 1.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
A.MakeIdentity();
A.RotateAboutXAxis(45.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_NEAR(0.0, cos45, -sin45, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, sin45, cos45, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that RotateAboutXAxis(angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutXAxis(90.0);
EXPECT_ROW1_NEAR(6.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0, 0.0, -7.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, 8.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutYAxis) {
Transform A;
double sin45 = 0.5 * sqrt(2.0);
double cos45 = sin45;
// Note carefully, the expected pattern is inverted compared to rotating
// about x axis or z axis.
A.MakeIdentity();
A.RotateAboutYAxis(90.0);
EXPECT_ROW1_NEAR(0.0, 0.0, 1.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_NEAR(-1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
A.MakeIdentity();
A.RotateAboutYAxis(45.0);
EXPECT_ROW1_NEAR(cos45, 0.0, sin45, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_NEAR(-sin45, 0.0, cos45, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that RotateAboutYAxis(angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutYAxis(90.0);
EXPECT_ROW1_NEAR(0.0, 0.0, 6.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.0, 7.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(-8.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutZAxis) {
Transform A;
double sin45 = 0.5 * sqrt(2.0);
double cos45 = sin45;
A.MakeIdentity();
A.RotateAboutZAxis(90.0);
EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
A.MakeIdentity();
A.RotateAboutZAxis(45.0);
EXPECT_ROW1_NEAR(cos45, -sin45, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(sin45, cos45, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that RotateAboutZAxis(angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutZAxis(90.0);
EXPECT_ROW1_NEAR(0.0, -6.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(7.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutForAlignedAxes) {
Transform A;
// Check rotation about z-axis
A.MakeIdentity();
A.RotateAbout(Vector3dF(0.0, 0.0, 1.0), 90.0);
EXPECT_ROW1_NEAR(0.0, -1.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Check rotation about x-axis
A.MakeIdentity();
A.RotateAbout(Vector3dF(1.0, 0.0, 0.0), 90.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_NEAR(0.0, 0.0, -1.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(0.0, 1.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Check rotation about y-axis. Note carefully, the expected pattern is
// inverted compared to rotating about x axis or z axis.
A.MakeIdentity();
A.RotateAbout(Vector3dF(0.0, 1.0, 0.0), 90.0);
EXPECT_ROW1_NEAR(0.0, 0.0, 1.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_NEAR(-1.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that rotate3d(axis, angle) post-multiplies the existing matrix.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutZAxis(90.0);
EXPECT_ROW1_NEAR(0.0, -6.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(7.0, 0.0, 0.0, 0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutForArbitraryAxis) {
// Check rotation about an arbitrary non-axis-aligned vector.
Transform A;
A.RotateAbout(Vector3dF(1.0, 1.0, 1.0), 90.0);
EXPECT_ROW1_NEAR(0.3333333333333334258519187,
-0.2440169358562924717404030,
0.9106836025229592124219380,
0.0, A, ERROR_THRESHOLD);
EXPECT_ROW2_NEAR(0.9106836025229592124219380,
0.3333333333333334258519187,
-0.2440169358562924717404030,
0.0, A, ERROR_THRESHOLD);
EXPECT_ROW3_NEAR(-0.2440169358562924717404030,
0.9106836025229592124219380,
0.3333333333333334258519187,
0.0, A, ERROR_THRESHOLD);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyRotateAboutForDegenerateAxis) {
// Check rotation about a degenerate zero vector.
// It is expected to skip applying the rotation.
Transform A;
A.RotateAbout(Vector3dF(0.0, 0.0, 0.0), 45.0);
// Verify that A remains unchanged.
EXPECT_TRUE(A.IsIdentity());
InitializeTestMatrix(&A);
A.RotateAbout(Vector3dF(0.0, 0.0, 0.0), 35.0);
// Verify that A remains unchanged.
EXPECT_ROW1_EQ(10.0f, 14.0f, 18.0f, 22.0f, A);
EXPECT_ROW2_EQ(11.0f, 15.0f, 19.0f, 23.0f, A);
EXPECT_ROW3_EQ(12.0f, 16.0f, 20.0f, 24.0f, A);
EXPECT_ROW4_EQ(13.0f, 17.0f, 21.0f, 25.0f, A);
}
TEST(XFormTest, verifySkewX) {
Transform A;
A.SkewX(45.0);
EXPECT_ROW1_EQ(1.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that skewX() post-multiplies the existing matrix. Row 1, column 2,
// would incorrectly have value "7" if the matrix is pre-multiplied instead
// of post-multiplied.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.SkewX(45.0);
EXPECT_ROW1_EQ(6.0f, 6.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifySkewY) {
Transform A;
A.SkewY(45.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(1.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
// Verify that skewY() post-multiplies the existing matrix. Row 2, column 1 ,
// would incorrectly have value "6" if the matrix is pre-multiplied instead
// of post-multiplied.
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
A.SkewY(45.0);
EXPECT_ROW1_EQ(6.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(7.0f, 7.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 8.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, 0.0f, 1.0f, A);
}
TEST(XFormTest, verifyPerspectiveDepth) {
Transform A;
A.ApplyPerspectiveDepth(1.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, 0.0f, 0.0f, A);
EXPECT_ROW2_EQ(0.0f, 1.0f, 0.0f, 0.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, -1.0f, 1.0f, A);
// Verify that PerspectiveDepth() post-multiplies the existing matrix.
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
A.ApplyPerspectiveDepth(1.0);
EXPECT_ROW1_EQ(1.0f, 0.0f, -2.0f, 2.0f, A);
EXPECT_ROW2_EQ(0.0f, 1.0f, -3.0f, 3.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, -3.0f, 4.0f, A);
EXPECT_ROW4_EQ(0.0f, 0.0f, -1.0f, 1.0f, A);
}
TEST(XFormTest, verifyHasPerspective) {
Transform A;
A.ApplyPerspectiveDepth(1.0);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.ApplyPerspectiveDepth(0.0);
EXPECT_FALSE(A.HasPerspective());
A.MakeIdentity();
A.matrix().set(3, 0, -1.f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.matrix().set(3, 1, -1.f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.matrix().set(3, 2, -0.3f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.matrix().set(3, 3, 0.5f);
EXPECT_TRUE(A.HasPerspective());
A.MakeIdentity();
A.matrix().set(3, 3, 0.f);
EXPECT_TRUE(A.HasPerspective());
}
TEST(XFormTest, verifyIsInvertible) {
Transform A;
// Translations, rotations, scales, skews and arbitrary combinations of them
// are invertible.
A.MakeIdentity();
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.Translate3d(2.0, 3.0, 4.0);
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.Scale3d(6.0, 7.0, 8.0);
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.RotateAboutXAxis(10.0);
A.RotateAboutYAxis(20.0);
A.RotateAboutZAxis(30.0);
EXPECT_TRUE(A.IsInvertible());
A.MakeIdentity();
A.SkewX(45.0);
EXPECT_TRUE(A.IsInvertible());
// A perspective matrix (projection plane at z=0) is invertible. The
// intuitive explanation is that perspective is eqivalent to a skew of the
// w-axis; skews are invertible.
A.MakeIdentity();
A.ApplyPerspectiveDepth(1.0);
EXPECT_TRUE(A.IsInvertible());
// A "pure" perspective matrix derived by similar triangles, with m44() set
// to zero (i.e. camera positioned at the origin), is not invertible.
A.MakeIdentity();
A.ApplyPerspectiveDepth(1.0);
A.matrix().set(3, 3, 0.f);
EXPECT_FALSE(A.IsInvertible());
// Adding more to a non-invertible matrix will not make it invertible in the
// general case.
A.MakeIdentity();
A.ApplyPerspectiveDepth(1.0);
A.matrix().set(3, 3, 0.f);
A.Scale3d(6.0, 7.0, 8.0);
A.RotateAboutXAxis(10.0);
A.RotateAboutYAxis(20.0);
A.RotateAboutZAxis(30.0);
A.Translate3d(6.0, 7.0, 8.0);
EXPECT_FALSE(A.IsInvertible());
// A degenerate matrix of all zeros is not invertible.
A.MakeIdentity();
A.matrix().set(0, 0, 0.f);
A.matrix().set(1, 1, 0.f);
A.matrix().set(2, 2, 0.f);
A.matrix().set(3, 3, 0.f);
EXPECT_FALSE(A.IsInvertible());
}
TEST(XFormTest, verifyIsIdentity) {
Transform A;
InitializeTestMatrix(&A);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
EXPECT_TRUE(A.IsIdentity());
// Modifying any one individual element should cause the matrix to no longer
// be identity.
A.MakeIdentity();
A.matrix().set(0, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(1, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(2, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(3, 0, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(0, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(1, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(2, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(3, 1, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(0, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(1, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(2, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(3, 2, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(0, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(1, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(2, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
A.MakeIdentity();
A.matrix().set(3, 3, 2.f);
EXPECT_FALSE(A.IsIdentity());
}
TEST(XFormTest, verifyIsIdentityOrTranslation) {
Transform A;
InitializeTestMatrix(&A);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
EXPECT_TRUE(A.IsIdentityOrTranslation());
// Modifying any non-translation components should cause
// IsIdentityOrTranslation() to return false. NOTE: (0, 3), (1, 3), and
// (2, 3) are the translation components, so modifying them should still
// return true.
A.MakeIdentity();
A.matrix().set(0, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(1, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(2, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 0, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(0, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(1, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(2, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 1, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(0, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(1, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(2, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 2, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(0, 3, 2.f);
EXPECT_TRUE(A.IsIdentityOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(1, 3, 2.f);
EXPECT_TRUE(A.IsIdentityOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(2, 3, 2.f);
EXPECT_TRUE(A.IsIdentityOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 3, 2.f);
EXPECT_FALSE(A.IsIdentityOrTranslation());
}
TEST(XFormTest, verifyIsApproximatelyIdentityOrTranslation) {
Transform A;
SkMatrix44& matrix = A.matrix();
// Exact pure translation.
A.MakeIdentity();
// Set translate values to values other than 0 or 1.
matrix.set(0, 3, 3.4f);
matrix.set(1, 3, 4.4f);
matrix.set(2, 3, 5.6f);
EXPECT_TRUE(A.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(A.IsApproximatelyIdentityOrTranslation(kApproxZero));
// Approximately pure translation.
InitializeApproxIdentityMatrix(&A);
// Some values must be exact.
matrix.set(3, 0, 0);
matrix.set(3, 1, 0);
matrix.set(3, 2, 0);
matrix.set(3, 3, 1);
// Set translate values to values other than 0 or 1.
matrix.set(0, 3, 3.4f);
matrix.set(1, 3, 4.4f);
matrix.set(2, 3, 5.6f);
EXPECT_FALSE(A.IsApproximatelyIdentityOrTranslation(0));
EXPECT_TRUE(A.IsApproximatelyIdentityOrTranslation(kApproxZero));
// Not approximately pure translation.
InitializeApproxIdentityMatrix(&A);
// Some values must be exact.
matrix.set(3, 0, 0);
matrix.set(3, 1, 0);
matrix.set(3, 2, 0);
matrix.set(3, 3, 1);
// Set some values (not translate values) to values other than 0 or 1.
matrix.set(0, 1, 3.4f);
matrix.set(3, 2, 4.4f);
matrix.set(2, 0, 5.6f);
EXPECT_FALSE(A.IsApproximatelyIdentityOrTranslation(0));
EXPECT_FALSE(A.IsApproximatelyIdentityOrTranslation(kApproxZero));
}
TEST(XFormTest, verifyIsScaleOrTranslation) {
Transform A;
InitializeTestMatrix(&A);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
EXPECT_TRUE(A.IsScaleOrTranslation());
// Modifying any non-scale or non-translation components should cause
// IsScaleOrTranslation() to return false. (0, 0), (1, 1), (2, 2), (0, 3),
// (1, 3), and (2, 3) are the scale and translation components, so
// modifying them should still return true.
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(0, 0, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(1, 0, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(2, 0, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 0, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(0, 1, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(1, 1, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(2, 1, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 1, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(0, 2, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(1, 2, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(2, 2, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 2, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(0, 3, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(1, 3, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
// Note carefully - expecting true here.
A.MakeIdentity();
A.matrix().set(2, 3, 2.f);
EXPECT_TRUE(A.IsScaleOrTranslation());
A.MakeIdentity();
A.matrix().set(3, 3, 2.f);
EXPECT_FALSE(A.IsScaleOrTranslation());
}
TEST(XFormTest, verifyFlattenTo2d) {
Transform A;
InitializeTestMatrix(&A);
A.FlattenTo2d();
EXPECT_ROW1_EQ(10.0f, 14.0f, 0.0f, 22.0f, A);
EXPECT_ROW2_EQ(11.0f, 15.0f, 0.0f, 23.0f, A);
EXPECT_ROW3_EQ(0.0f, 0.0f, 1.0f, 0.0f, A);
EXPECT_ROW4_EQ(13.0f, 17.0f, 0.0f, 25.0f, A);
}
// Another implementation of Preserves2dAxisAlignment that isn't as fast,
// good for testing the faster implementation.
static bool EmpiricallyPreserves2dAxisAlignment(const Transform& transform) {
Point3F p1(5.0f, 5.0f, 0.0f);
Point3F p2(10.0f, 5.0f, 0.0f);
Point3F p3(10.0f, 20.0f, 0.0f);
Point3F p4(5.0f, 20.0f, 0.0f);
QuadF test_quad(PointF(p1.x(), p1.y()),
PointF(p2.x(), p2.y()),
PointF(p3.x(), p3.y()),
PointF(p4.x(), p4.y()));
EXPECT_TRUE(test_quad.IsRectilinear());
transform.TransformPoint(&p1);
transform.TransformPoint(&p2);
transform.TransformPoint(&p3);
transform.TransformPoint(&p4);
QuadF transformedQuad(PointF(p1.x(), p1.y()),
PointF(p2.x(), p2.y()),
PointF(p3.x(), p3.y()),
PointF(p4.x(), p4.y()));
return transformedQuad.IsRectilinear();
}
TEST(XFormTest, Preserves2dAxisAlignment) {
static const struct TestCase {
SkMScalar a; // row 1, column 1
SkMScalar b; // row 1, column 2
SkMScalar c; // row 2, column 1
SkMScalar d; // row 2, column 2
bool expected;
} test_cases[] = {
{ 3.f, 0.f,
0.f, 4.f, true }, // basic case
{ 0.f, 4.f,
3.f, 0.f, true }, // rotate by 90
{ 0.f, 0.f,
0.f, 4.f, true }, // degenerate x
{ 3.f, 0.f,
0.f, 0.f, true }, // degenerate y
{ 0.f, 0.f,
3.f, 0.f, true }, // degenerate x + rotate by 90
{ 0.f, 4.f,
0.f, 0.f, true }, // degenerate y + rotate by 90
{ 3.f, 4.f,
0.f, 0.f, false },
{ 0.f, 0.f,
3.f, 4.f, false },
{ 0.f, 3.f,
0.f, 4.f, false },
{ 3.f, 0.f,
4.f, 0.f, false },
{ 3.f, 4.f,
5.f, 0.f, false },
{ 3.f, 4.f,
0.f, 5.f, false },
{ 3.f, 0.f,
4.f, 5.f, false },
{ 0.f, 3.f,
4.f, 5.f, false },
{ 2.f, 3.f,
4.f, 5.f, false },
};
Transform transform;
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
transform.MakeIdentity();
transform.matrix().set(0, 0, value.a);
transform.matrix().set(0, 1, value.b);
transform.matrix().set(1, 0, value.c);
transform.matrix().set(1, 1, value.d);
if (value.expected) {
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
} else {
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
}
}
// Try the same test cases again, but this time make sure that other matrix
// elements (except perspective) have entries, to test that they are ignored.
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
transform.MakeIdentity();
transform.matrix().set(0, 0, value.a);
transform.matrix().set(0, 1, value.b);
transform.matrix().set(1, 0, value.c);
transform.matrix().set(1, 1, value.d);
transform.matrix().set(0, 2, 1.f);
transform.matrix().set(0, 3, 2.f);
transform.matrix().set(1, 2, 3.f);
transform.matrix().set(1, 3, 4.f);
transform.matrix().set(2, 0, 5.f);
transform.matrix().set(2, 1, 6.f);
transform.matrix().set(2, 2, 7.f);
transform.matrix().set(2, 3, 8.f);
if (value.expected) {
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
} else {
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
}
}
// Try the same test cases again, but this time add perspective which is
// always assumed to not-preserve axis alignment.
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(test_cases); ++i) {
const TestCase& value = test_cases[i];
transform.MakeIdentity();
transform.matrix().set(0, 0, value.a);
transform.matrix().set(0, 1, value.b);
transform.matrix().set(1, 0, value.c);
transform.matrix().set(1, 1, value.d);
transform.matrix().set(0, 2, 1.f);
transform.matrix().set(0, 3, 2.f);
transform.matrix().set(1, 2, 3.f);
transform.matrix().set(1, 3, 4.f);
transform.matrix().set(2, 0, 5.f);
transform.matrix().set(2, 1, 6.f);
transform.matrix().set(2, 2, 7.f);
transform.matrix().set(2, 3, 8.f);
transform.matrix().set(3, 0, 9.f);
transform.matrix().set(3, 1, 10.f);
transform.matrix().set(3, 2, 11.f);
transform.matrix().set(3, 3, 12.f);
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
}
// Try a few more practical situations to check precision
transform.MakeIdentity();
transform.RotateAboutZAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(180.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(270.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutYAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutXAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(90.0);
transform.RotateAboutYAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(90.0);
transform.RotateAboutXAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutYAxis(90.0);
transform.RotateAboutZAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutZAxis(45.0);
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
// 3-d case; In 2d after an orthographic projection, this case does
// preserve 2d axis alignment. But in 3d, it does not preserve axis
// alignment.
transform.MakeIdentity();
transform.RotateAboutYAxis(45.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.RotateAboutXAxis(45.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
// Perspective cases.
transform.MakeIdentity();
transform.ApplyPerspectiveDepth(10.0);
transform.RotateAboutYAxis(45.0);
EXPECT_FALSE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_FALSE(transform.Preserves2dAxisAlignment());
transform.MakeIdentity();
transform.ApplyPerspectiveDepth(10.0);
transform.RotateAboutZAxis(90.0);
EXPECT_TRUE(EmpiricallyPreserves2dAxisAlignment(transform));
EXPECT_TRUE(transform.Preserves2dAxisAlignment());
}
TEST(XFormTest, To2dTranslation) {
Vector2dF translation(3.f, 7.f);
Transform transform;
transform.Translate(translation.x(), translation.y() + 1);
EXPECT_NE(translation.ToString(), transform.To2dTranslation().ToString());
transform.MakeIdentity();
transform.Translate(translation.x(), translation.y());
EXPECT_EQ(translation.ToString(), transform.To2dTranslation().ToString());
}
TEST(XFormTest, TransformRect) {
Transform translation;
translation.Translate(3.f, 7.f);
RectF rect(1.f, 2.f, 3.f, 4.f);
RectF expected(4.f, 9.f, 3.f, 4.f);
translation.TransformRect(&rect);
EXPECT_EQ(expected.ToString(), rect.ToString());
}
TEST(XFormTest, TransformRectReverse) {
Transform translation;
translation.Translate(3.f, 7.f);
RectF rect(1.f, 2.f, 3.f, 4.f);
RectF expected(-2.f, -5.f, 3.f, 4.f);
EXPECT_TRUE(translation.TransformRectReverse(&rect));
EXPECT_EQ(expected.ToString(), rect.ToString());
Transform singular;
singular.Scale3d(0.f, 0.f, 0.f);
EXPECT_FALSE(singular.TransformRectReverse(&rect));
}
TEST(XFormTest, TransformBox) {
Transform translation;
translation.Translate3d(3.f, 7.f, 6.f);
BoxF box(1.f, 2.f, 3.f, 4.f, 5.f, 6.f);
BoxF expected(4.f, 9.f, 9.f, 4.f, 5.f, 6.f);
translation.TransformBox(&box);
EXPECT_EQ(expected.ToString(), box.ToString());
}
TEST(XFormTest, TransformBoxReverse) {
Transform translation;
translation.Translate3d(3.f, 7.f, 6.f);
BoxF box(1.f, 2.f, 3.f, 4.f, 5.f, 6.f);
BoxF expected(-2.f, -5.f, -3.f, 4.f, 5.f, 6.f);
EXPECT_TRUE(translation.TransformBoxReverse(&box));
EXPECT_EQ(expected.ToString(), box.ToString());
Transform singular;
singular.Scale3d(0.f, 0.f, 0.f);
EXPECT_FALSE(singular.TransformBoxReverse(&box));
}
} // namespace
} // namespace gfx