// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// A template for a simple rectangle class. The containment semantics
// are array-like; that is, the coordinate (x, y) is considered to be
// contained by the rectangle, but the coordinate (x + width, y) is not.
// The class will happily let you create malformed rectangles (that is,
// rectangles with negative width and/or height), but there will be assertions
// in the operations (such as Contains()) to complain in this case.
#ifndef UI_GFX_RECT_BASE_H_
#define UI_GFX_RECT_BASE_H_
#include <string>
#include "base/compiler_specific.h"
namespace gfx {
template<typename Class,
typename PointClass,
typename SizeClass,
typename InsetsClass,
typename VectorClass,
typename Type>
class GFX_EXPORT RectBase {
public:
Type x() const { return origin_.x(); }
void set_x(Type x) { origin_.set_x(x); }
Type y() const { return origin_.y(); }
void set_y(Type y) { origin_.set_y(y); }
Type width() const { return size_.width(); }
void set_width(Type width) { size_.set_width(width); }
Type height() const { return size_.height(); }
void set_height(Type height) { size_.set_height(height); }
const PointClass& origin() const { return origin_; }
void set_origin(const PointClass& origin) { origin_ = origin; }
const SizeClass& size() const { return size_; }
void set_size(const SizeClass& size) { size_ = size; }
Type right() const { return x() + width(); }
Type bottom() const { return y() + height(); }
PointClass top_right() const { return PointClass(right(), y()); }
PointClass bottom_left() const { return PointClass(x(), bottom()); }
PointClass bottom_right() const { return PointClass(right(), bottom()); }
VectorClass OffsetFromOrigin() const {
return VectorClass(x(), y());
}
void SetRect(Type x, Type y, Type width, Type height);
// Shrink the rectangle by a horizontal and vertical distance on all sides.
void Inset(Type horizontal, Type vertical) {
Inset(horizontal, vertical, horizontal, vertical);
}
// Shrink the rectangle by the given insets.
void Inset(const InsetsClass& insets);
// Shrink the rectangle by the specified amount on each side.
void Inset(Type left, Type top, Type right, Type bottom);
// Move the rectangle by a horizontal and vertical distance.
void Offset(Type horizontal, Type vertical);
void Offset(const VectorClass& distance) {
Offset(distance.x(), distance.y());
}
void operator+=(const VectorClass& offset);
void operator-=(const VectorClass& offset);
InsetsClass InsetsFrom(const Class& inner) const {
return InsetsClass(inner.y() - y(),
inner.x() - x(),
bottom() - inner.bottom(),
right() - inner.right());
}
// Returns true if the area of the rectangle is zero.
bool IsEmpty() const { return size_.IsEmpty(); }
// A rect is less than another rect if its origin is less than
// the other rect's origin. If the origins are equal, then the
// shortest rect is less than the other. If the origin and the
// height are equal, then the narrowest rect is less than.
// This comparison is required to use Rects in sets, or sorted
// vectors.
bool operator<(const Class& other) const;
// Returns true if the point identified by point_x and point_y falls inside
// this rectangle. The point (x, y) is inside the rectangle, but the
// point (x + width, y + height) is not.
bool Contains(Type point_x, Type point_y) const;
// Returns true if the specified point is contained by this rectangle.
bool Contains(const PointClass& point) const {
return Contains(point.x(), point.y());
}
// Returns true if this rectangle contains the specified rectangle.
bool Contains(const Class& rect) const;
// Returns true if this rectangle intersects the specified rectangle.
// An empty rectangle doesn't intersect any rectangle.
bool Intersects(const Class& rect) const;
// Computes the intersection of this rectangle with the given rectangle.
void Intersect(const Class& rect);
// Computes the union of this rectangle with the given rectangle. The union
// is the smallest rectangle containing both rectangles.
void Union(const Class& rect);
// Computes the rectangle resulting from subtracting |rect| from |*this|,
// i.e. the bounding rect of |Region(*this) - Region(rect)|.
void Subtract(const Class& rect);
// Fits as much of the receiving rectangle into the supplied rectangle as
// possible, becoming the result. For example, if the receiver had
// a x-location of 2 and a width of 4, and the supplied rectangle had
// an x-location of 0 with a width of 5, the returned rectangle would have
// an x-location of 1 with a width of 4.
void AdjustToFit(const Class& rect);
// Returns the center of this rectangle.
PointClass CenterPoint() const;
// Becomes a rectangle that has the same center point but with a size capped
// at given |size|.
void ClampToCenteredSize(const SizeClass& size);
// Splits |this| in two halves, |left_half| and |right_half|.
void SplitVertically(Class* left_half, Class* right_half) const;
// Returns true if this rectangle shares an entire edge (i.e., same width or
// same height) with the given rectangle, and the rectangles do not overlap.
bool SharesEdgeWith(const Class& rect) const;
// Returns the manhattan distance from the rect to the point. If the point is
// inside the rect, returns 0.
Type ManhattanDistanceToPoint(const PointClass& point) const;
// Returns the manhattan distance between the contents of this rect and the
// contents of the given rect. That is, if the intersection of the two rects
// is non-empty then the function returns 0. If the rects share a side, it
// returns the smallest non-zero value appropriate for Type.
Type ManhattanInternalDistance(const Class& rect) const;
protected:
RectBase(const PointClass& origin, const SizeClass& size)
: origin_(origin), size_(size) {}
explicit RectBase(const SizeClass& size)
: size_(size) {}
explicit RectBase(const PointClass& origin)
: origin_(origin) {}
// Destructor is intentionally made non virtual and protected.
// Do not make this public.
~RectBase() {}
private:
PointClass origin_;
SizeClass size_;
};
} // namespace gfx
#endif // UI_GFX_RECT_BASE_H_