/* vim: set ts=8 sw=8 noexpandtab: */
// qcms
// Copyright (C) 2009 Mozilla Foundation
// Copyright (C) 1998-2007 Marti Maria
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#include <stdlib.h>
#include "qcmsint.h"
#include "matrix.h"
struct vector matrix_eval(struct matrix mat, struct vector v)
{
struct vector result;
result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2];
result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2];
result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2];
return result;
}
//XXX: should probably pass by reference and we could
//probably reuse this computation in matrix_invert
float matrix_det(struct matrix mat)
{
float det;
det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] +
mat.m[0][1]*mat.m[1][2]*mat.m[2][0] +
mat.m[0][2]*mat.m[1][0]*mat.m[2][1] -
mat.m[0][0]*mat.m[1][2]*mat.m[2][1] -
mat.m[0][1]*mat.m[1][0]*mat.m[2][2] -
mat.m[0][2]*mat.m[1][1]*mat.m[2][0];
return det;
}
/* from pixman and cairo and Mathematics for Game Programmers */
/* lcms uses gauss-jordan elimination with partial pivoting which is
* less efficient and not as numerically stable. See Mathematics for
* Game Programmers. */
struct matrix matrix_invert(struct matrix mat)
{
struct matrix dest_mat;
int i,j;
static int a[3] = { 2, 2, 1 };
static int b[3] = { 1, 0, 0 };
/* inv (A) = 1/det (A) * adj (A) */
float det = matrix_det(mat);
if (det == 0) {
dest_mat.invalid = true;
} else {
dest_mat.invalid = false;
}
det = 1/det;
for (j = 0; j < 3; j++) {
for (i = 0; i < 3; i++) {
double p;
int ai = a[i];
int aj = a[j];
int bi = b[i];
int bj = b[j];
p = mat.m[ai][aj] * mat.m[bi][bj] -
mat.m[ai][bj] * mat.m[bi][aj];
if (((i + j) & 1) != 0)
p = -p;
dest_mat.m[j][i] = det * p;
}
}
return dest_mat;
}
struct matrix matrix_identity(void)
{
struct matrix i;
i.m[0][0] = 1;
i.m[0][1] = 0;
i.m[0][2] = 0;
i.m[1][0] = 0;
i.m[1][1] = 1;
i.m[1][2] = 0;
i.m[2][0] = 0;
i.m[2][1] = 0;
i.m[2][2] = 1;
i.invalid = false;
return i;
}
struct matrix matrix_invalid(void)
{
struct matrix inv = matrix_identity();
inv.invalid = true;
return inv;
}
/* from pixman */
/* MAT3per... */
struct matrix matrix_multiply(struct matrix a, struct matrix b)
{
struct matrix result;
int dx, dy;
int o;
for (dy = 0; dy < 3; dy++) {
for (dx = 0; dx < 3; dx++) {
double v = 0;
for (o = 0; o < 3; o++) {
v += a.m[dy][o] * b.m[o][dx];
}
result.m[dy][dx] = v;
}
}
result.invalid = a.invalid || b.invalid;
return result;
}